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Abstract

Tree approximation is a new form of nonlinear approximation which appears
naturally in some applications such as image processing and adaptive numerical
methods. It is somewhat more restrictive than the usual n-term approximation.
We show that the restrictions of tree approximation cost little in terms of rates of
approximation. We then use that result to design encoders for compression. These
encoders are universal (they apply to general functions) and progressive (increasing
accuracy is obtained by sending new bits). We show optimality of the encoders in
the sense that they provide upper estimates for the Kolmogorov entropy of Besov
balls.

AMS subject classification: 41A25, 41A46, 65F99, 65N12, 65N55.
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1 Introduction

Wavelets are utilized in many applications including image/signal processing and numer-
ical methods for PDEs. Their usefulness stems in part from the fact that they provide
efficient decompositions of functions into simple building blocks. For example, they pro-
vide unconditional bases, consisting of the shifted dilates of a finite number of functions,
for many function spaces such as the Lp, Hp, Besov, and Triebel-Lizorkin spaces. The
present paper is concerned with the following question: what is the most effective way
to organize the terms in the wavelet decomposition of a function f? Of course the an-
swer to this question depends on the potential application. We shall introduce a way
of organizing the wavelet decomposition, by using tree-structures and certain ideas from
nonlinear approximation, that is particularly well fitted to the application of data com-
pression. This will result in an optimal encoding technique, which will be used to give
simple proofs of upper estimates for the Kolmogorov entropy of Besov balls in Lp. The
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results from this paper have already been utilized in [5] for the design of encoders with
optimal rate distortion performance with respect to deterministic and stochastic models
for the signals.

1.1 Background and motivation

To describe the wavelet decompositions we have in mind, we introduce some notation
which will be used throughout the paper. We let D := D(IRd) denote the set of all
dyadic cubes in IRd, i.e. cubes of the type 2−j(k + [0, 1]d−), with j ∈ ZZ and k ∈ ZZd,
Dj := Dj(IRd) denote the set of dyadic cubes with sidelength 2−j, and D+ := D+(IRd) the
set of dyadic cubes with sidelength ≤ 1. We shall indicate the dependence of these sets on
d only if there is a chance of confusion. If g is a function in L2(IRd), and I = 2−j(k+[0, 1]d)
is in D, we define

gI := gI,2 := 2jd/2g(2j · −k).

Then, gI is normalized in L2(IRd): ‖gI‖L2(IRd) = ‖g‖L2(IRd), for each I ∈ D. We shall also

need normalizations in Lp(IR
d), 0 < p ≤ ∞, given by

gI,p := 2jd/pg(2j · −k).

In order to explain our results in their simplest setting, we shall limit ourselves in
this introduction to univariate decompositions using compactly supported orthogonal
wavelets. Our results hold in much more generality and in fact will be developed in
this paper in the multivariate setting for a general class of biorthogonal wavelets.

Let ψ be a univariate, compactly supported, orthogonal wavelet obtained from a com-
pactly supported scaling function φ. Denoting by 〈f, g〉 :=

∫
IR
f(x)g(x)dx the standard

scalar product for L2(IR), each function f ∈ L2(IR) has the wavelet decomposition

f =
∑
I∈D0

〈f, φI〉φI +
∑
I∈D+

aI(f)ψI (1.1)

with
aI(f) := aI,2(f) := 〈f, ψI〉.

The collection of functions Ψ appearing in (1.1) is an orthonormal basis for L2(IR); it is
also an unconditional basis for all of the Lp(IR) spaces, 1 < p <∞.

The most common way of organizing the decomposition (1.1) is

f =
∑
I∈D0

〈f, φI〉φI +
∞∑
j=0

∑
I∈Dj

aI(f)ψI . (1.2)

In other words, the terms are organized according to the dyadic level j (the frequency 2j);
low frequency terms appear first. This is analogous to the usual way of presenting Fourier
decompositions. This organization of the wavelet series can be justified to a certain extent
in that the membership of a function f in smoothness spaces (such as the Sobolev and
Besov spaces) can be characterized by the decay of the wavelet coefficients of f with
respect to frequency. Another justification comes from the viewpoint of approximation
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theory. Let Vn denote the linear space spanned by the functions φ(2n · −k), k ∈ ZZ, or
equivalently by the functions φI , I ∈ D0, and ψI , I ∈ Dj, j = 0, . . . , n − 1. Then the
partial sum

Pn(f) :=
∑
I∈D0

〈f, φI〉φI +
n−1∑
j=0

∑
I∈Dj

aI(f)ψI

is the best L2(IR) approximation to f from Vn. Also, it is a near best approximation to f
in Lp(IR) whenever 1 < p <∞:

‖f − Pn(f)‖Lp(IR) ≤ Cp dist(f, Vn)Lp(IR).

In most applications, we are dealing with functions defined on a domain Ω. In the
univariate case, that we are now discussing, we shall take Ω to be a (possibly infinite)
interval. In this case the wavelet decomposition (1.1) holds with D0 replaced by D0(Ω)
and D+ replaced by D+(Ω) where the Ω indicates that we only take those I such that φI
(respectively ψI) is not identically zero on Ω. It is also necessary to alter the definition
of the coefficients aI(f) when the support of ψI intersects the boundary of Ω (see §2). If
Ω is bounded, then the sets Dj(Ω), j ≥ 0, are finite.

A second way to organize the wavelet series comes forward when one considers the
following problem of nonlinear approximation. For each positive integer n ≥ 1, we let Σn

denote the set of all functions which can be written as a linear combination of the scaling
functions at level 0 together with at most n wavelets, i.e.,

S =
∑

I∈D0(Ω)

〈f, φI〉φI +
∑
I∈Λ

cIψI , #Λ ≤ n,

where Λ is any subset of D+(Ω). (In order to simplify the presentation here in the
introduction, we will not count the scaling functions appearing in the representation of
S.) Note that Σn is not a linear space since, for example, the sum of two elements from Σn

could require 2n wavelet terms in its representation. Approximation by the elements of Σn

is called n-term approximation and is one of the simplest cases of nonlinear approximation.
We define the error of n-term approximation in Lp(Ω) by

σn(f)p := inf
S∈Σn

‖f − S‖Lp(Ω). (1.3)

In the case of approximation in L2(IR), it is trivial to find best approximations to a
function f ∈ L2(IR) from Σn. Let I1 := I1(f), I2 := I2(f), . . ., be a rearrangement of the
intervals in D+(IR) so that

|aI1(f)| ≥ |aI2(f)| ≥ · · · .
Then,

Sn := Sn(f) :=
∑

I∈D0(IR)

〈f, φI〉φI +
n∑
j=1

aIj(f)ψIj (1.4)

is a best n-term approximation to f and

σn(f)2
2 =

∞∑
j=n+1

|aIj(f)|2. (1.5)
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It is remarkable that this same result is almost true when approximating in Lp. Now,
we choose the intervals Ij := Ij(f, p) such that

|aI1,p(f)| ≥ |aI2,p(f)| ≥ . . .

with aI,p(f) := |I|1/2−1/paI(f) the Lp normalized coefficients. With this choice, Temlyakov
[20] has shown that the corresponding approximant

Sn,p :=
∑

I∈D0(IR)

〈f, φI〉φI +
n∑
j=1

aIj ,p(f)ψIj ,p

is a near best approximation to f in Lp. Here, “near best” means that

‖f − Sn,p(f)‖Lp(IR) ≤ Cpσn(f)p

with the constant Cp depending only on p.
We return now to the question of efficient decompositions of a function. If f ∈ L2(IR),

we consider the following arrangement of the wavelet series:

f =
∑

I∈D0(IR)

〈f, φI〉φI +
∞∑
j=1

aIj(f)ψIj . (1.6)

This arrangement of the terms is optimal in the sense that each partial sum is a best
n-term approximation. Therefore, no other choice of n-terms could reduce the error more
than this partial sum. Similarly, for functions in Lp(IR), the arrangement

f =
∑

I∈D0(IR)

〈f, φI〉φI +
∞∑
j=1

aIj ,p(f)ψIj ,p. (1.7)

is near optimal.
The decompositions (1.6), (1.7) have many impressive applications (see [11]). However,

these decompositions do have the following deficiency. Consider the problem of encoding,
where we want to transmit a finite number of bits which would allow the user to recover
a good approximation to f with efficiency measured by the Lp(IR) error between f and
the approximant. A natural way to proceed would be to send a certain number of bits
for each coefficient aIj ,p (how one might assign bits will be spelled out in § 4). However,
for the receiver to reconstruct the approximant, he will also need to know the intervals
Ij and their correspondence with the bitstream. To send this additional information may
be very costly and in fact may dominate the total number of bits sent. The situation
can be ameliorated by imposing more organization on the decomposition (1.7). We shall
accomplish this by requiring that the intervals I appearing in the n-term approximation
(1.4) be identified with nodes on a tree. This leads us to the concept of tree approximation
which we now describe.

We consider the case when Ω is a finite interval. Any dyadic interval I has a parent
and two children. We say that a collection of dyadic intervals T ⊂ D+(Ω) is a tree if
whenever I ∈ T , with |I| < 1, then its parent is also in T . The cubes I ∈ T . with |I| = 1,
are called the roots of the tree T .
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Given a positive integer n, we define Σt
n as the collection of all S ∈ Σn such that

S =
∑

I∈D0(Ω)

cIφI +
∑
I∈T

cIψI , #T ≤ n, (1.8)

with T a tree with cardinality ≤ n. Given f ∈ Lp(Ω), the error in tree approximation is
defined by

tn(f)p := inf
S∈Σtn

‖f − S‖Lp(Ω). (1.9)

Then clearly, Σt
n ⊂ Σn and σn(f)p ≤ tn(f)p. The question arises as to what is the cost in

imposing the tree condition on the approximant. We shall show in § 4 that this cost is
minimal in a certain sense which we now describe.

Let As := As∞(Lp(Ω)) denote the class of functions f ∈ Lp(Ω) such that

σn(f)p ≤ Cn−s, n = 1, 2, . . . . (1.10)

As we shall describe in more detail in § 3, it is possible to characterize As in terms of the
wavelet coefficients of f . From this characterization, we can deduce the approximation
properties of functions in the Besov spaces Bs

q(Lτ (Ω)). Recall that the functions in this
Besov space have smoothness of order s in Lτ , in the sense that their modulus of smooth-
ness ωm(f, t)Lτ := sup|h|≤t ‖∆m

h f‖Lτ behaves in O(ts) for m > s (where ∆m
h f denotes the

m-th order finite difference i.e.
∑m
n=0(mn )(−1)nf(· − nh)). The parameter q gives a fine

tuning of smoothness: by definition, f is in Bs
q(Lτ (Ω)) if and only if f ∈ Lp and the

sequence (2sjωm(f, 2−j)Lτ )j≥0 is in `q. In particular for any non integer s > 0, Bs
∞,∞ is

identical to the Hölder space Cs. Classical Sobolev spaces also fall in this class: Bs
p,p is

W s,p for all s > 0 if p = 2 and for all non integer s > 0 otherwise.
If f ∈ Bs

q(Lτ (Ω)), for some 0 < q ≤ ∞ and τ > (s+ 1/p)−1, then f ∈ As. This result
is also true if τ = (s+1/p)−1 and q ≤ τ . In fact, in all these cases, n−s is the best possible
rate in the following sense. Let σN (K)p := supf∈K σN(f)p where K is any compact subset
of Lp(Ω). Then, when U is the unit ball of Bs

q(Lτ (Ω)), one has σN(U)p � n−s. Here
a � b means that a can be bounded from above and below by some constant multiple of
b uniformly with respect to any parameters on which a and b may depend.

This result has a simple geometrical interpretation given on Figure 1 below. We iden-
tify with each point (x, y) in the upper right quadrant of the plane the spaces Bs

q(Lτ (Ω))
with x = 1/τ , y = s. Thus a given point has associated to it a family of spaces since
we do not distinguish between different values of q. The line 1/τ = s + 1/p is called the
critical line for nonlinear approximation. Notice that it is also the critical line for the
Sobolev embedding theorem. Each of the spaces corresponding to points to the left of the
critical line is compactly embedded in Lp(Ω) (i.e. bounded sets are mapped into compact
sets under the identity operator). Points on the critical line may or may not be embedded
in Lp(Ω) depending on the value of q. To be precise, a space Bs

q(Lτ (Ω)) on the critical
line is continuously embedded in Lp(Ω) if q ≤ p when p <∞ and if q ≤ 1 when p = ∞,
see [13], p. 385. However, these embeddings are not compact.

We shall show in §5, that for each space Bs
q(Lτ (Ω)) strictly to the left of the critical

line we have
tn(f)p ≤ C(τ, s)n−s‖f‖Bsq(Lτ (Ω)). (1.11)
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Figure 1.1: The critical line for nonlinear approximation in the case d = 1, s = 1/τ + 1/p.

Thus, for these spaces, tree approximation has the same performance as n-term approx-
imation. For spaces on the critical line this is no longer true. The construction of good
tree approximations can be achieved quite simply from thresholding (see § 4).

1.2 Kolmogorov entropy

The inequality (1.11), and its extension to several space dimensions, has many interesting
applications. We shall give two of them. The first one concerns the determination of the
Kolmogorov entropy of function classes.

Let X be a metric space with distance function ρ. If f ∈ X and r > 0, we let

B(f, r) := B(f, r)X := {g ∈ X : ρ(f, g) < r}
denote the (open) ball of radius r about f . If K ⊂ X is compact, then for each ε > 0,
there is a finite collection of balls B(fi, ε), i = 1, . . . , n, which cover K:

K ⊂
n⋃
i=1

B(fi, ε).

The covering number Nε(K) := Nε(K,X) is the smallest integer n for which there is such
an ε-covering of K. The Kolmogorov ε-entropy of K is then by definition

Hε(K) := Hε(K,X) := logNε(K), ε > 0, (1.12)

with log the logarithm to the base two.
We shall restrict our attention in this paper to the case X = Lp(Ω) where Ω is a

Lipschitz domain in IRd. We denote by Us
q (Lτ (Ω)) the unit ball of the Besov space

Bs
q(Lτ (Ω)). A fundamental result in approximation theory is the following.

Theorem 1.1 Let Ω be a Lipschitz domain in IRd and let 1 ≤ p ≤ ∞, and s > d/τ−d/p.
Then,

Hε(U
s
q (Lτ (Ω)), Lp(Ω)) � ε−d/s, (1.13)

with constants of equivalency depending only on s and δ := s− d/τ + d/p.

6



This theorem is well known when Ω is a cube in IRd (at least in the case τ ≥ 1). We
shall be interested in the upper estimate in (1.13). The usual proofs of the upper estimate,
see for example Chapter 13 of [17], utilize discretization and finite dimensional geometry.
For τ ≥ 1 they can also be derived by interpolation arguments from the classical result
of Birman and Solomjak on the entropy of Sobolev balls [3]. We shall give a new, more
elementary proof of this upper estimate by relating Kolmogorov entropy to deterministic
encoding.

To describe deterministic encoding, let K ⊂ X again be a compact subset of Lp(Ω).
An encoder for K consists of two mappings. The first is a mapping E from K into a set
B of bitstreams. That is, the elements B ∈ B are sequences of zeros and ones. Thus, E
assigns to each element f ∈ K an element E(f) ∈ B. The second mapping D associates
to each B ∈ B an element fB ∈ Lp(Ω). The mapping D decodes B. A codebook describes
how a bitstream is converted to fB.

Generally, D(E(f)) 6= f and ‖f − D(E(f))‖Lp(Ω) measures the error that occurs in
the encoding. The distortion of the encoding pair (D,E) on K is given by

d(K,E,D) := sup
f∈K
‖f −D(E(f))‖Lp(Ω). (1.14)

Given a compact set K of X, we let BK := {E(f) : f ∈ K} denote the set of bitstreams
E(f) that arise in encoding the elements of K. We also let

M(K,E,D) := max {#(E(f)) : f ∈ K} (1.15)

denote the largest length of the bitstreams that appear when E encodes the elements of
K. The efficiency of encoding is measured by the distortion for a given bit allocation.
Thus, the optimal distortion rate is given by

dn(K) := inf
D,E

d(K,E,D) (1.16)

where the infimum is taken over all encoding decoding pairs D,E for which the bit allo-
cation M(K,E,D) is ≤ n.

It is easy to see that the rate distortion theory for optimal encoding is equivalent to
determining the Kolmogorov entropy. Indeed, each ε covering B(fj , ε), j = 1, . . . , N , of
K gives an encoding pair E,D in an obvious way. For each f , the encoder E selects an
integer j ∈ {1, . . . , N} such that B(fj, ε) contains f and maps f into the binary digits of
j. The decoder D maps a bitstream B into the element fj where j is the integer with the
bits B. This encoding pair has distortion < ε. By taking a minimal ε-cover of K with
Nε(K) balls, we obtain an encoding of K with distortion < ε using at most dlog(Nε(K))e
bits, i.e.

M(K,E,D) ≤ dHε(K,X))e.
Conversely, given any encoding pair E,D with distortion < ε, the balls B(fB, ε),

B ∈ B, give an ε cover of K. So any such pair satisfies

Hε(K) ≤M(K,E,D). (1.17)

In this sense the two problems of constructing optimal encoders and estimating Kol-
mogorov entropy are equivalent.
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However, in the practice of encoding, one is interested in realizing the mappings E
and D by fast algorithms. This is not true in general for the encoder derived from an ε-
covering since finding fj might not be a trivial task. Thus a more relevant goal is to design
a practical encoder and decoder such that the corresponding distortion d̃n(K) has at least
the same asymptotic behaviour as the optimal dn(K) when n tends to +∞. Moreover it
might be desirable that this optimality is achieved not only for a specific K but for many
possible classes with the same encoding. For example, we might require that the rate
distortion performance is in accordance with Theorem 1.1 above when K = Us

q (Lτ (Ω))
for various choices of s, τ and q. We refer to such an encoder as “universal”.

1.3 Organization of material

The rest of this paper is organized as follows. In § 2, we introduce wavelet decompositions
and recall how the coefficients in these decompositions can be used to describe the Besov
spaces. In § 3, we recall some fundamental results in nonlinear approximation theory. In
§ 4, we introduce tree approximation and prove the results (1.11) in the multivariate case.
In § 5 and § 6, we use the tree structure to build a universal encoder for any prescribed
Lp metric with 1 ≤ p < ∞ used to measure the error. In §we employ this encoder in
order to prove the upper estimates for encoding (Theorem 7.1) and Kolmogorov entropy
(Corollary 7.2) for various Besov balls. Finally, in § 8 we derive analogous results for the
case p =∞.

It should be pointed out that wavelet decompositions have already been used in [2]
and [15] for proving upper bounds of Kolmogorov entropies. In [15] the bounds are in
the L2 metric and involve a logarithmic factor since the classes which are considered are
slightly different than the Us

q (Lτ (Ω)). In [2], wavelets are used to prove upper bounds
for Kolmogorov entropies by means of approximation procedures which are also universal
with respect to the error metric Lp, 1 ≤ p ≤ ∞. However, no explicit encoding strategies
are presented there. The specificity of our approach is that the tree-structured encoding
technique which is proved to be optimal is essentially close to practical algorithms such
as given in [19] and [18] and that they are universal for a prescribed Lp metric. Note that
some optimal or near optimal rate/distorsion bounds in the L2 metric for wavelet-based
encoders are also proved in [5] and [16]. Our approach also provides entropy bounds for
the sets that precisely consist of those functions which can be approximated at a certain
rate with a tree structure. These sets are larger than the Besov balls that are usually
considered, and they are very natural in the context of image compression since they
comply with the idea that the important coefficients produced by edges are naturally
organized in a tree structure.

2 Wavelet decompositions and Besov classes

In this and the next section, we shall set forth the notation used throughout this paper,
and we recall some known results on wavelet decompositions and nonlinear approximation
which are related to the topics of this paper. We assume that the reader is familiar with
the basics of wavelet theory (see [10]).
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The results of this paper hold for quite general wavelet decompositions. However, we
shall restrict oursleves to the compactly supported biorthogonal wavelets as introduced
by Cohen, Daubechies, and Feauveau [4]. These are general enough to also include the
orthogonal wavelets of compact support as introduced by Daubechies [9]. A good reference
for these bases and their properties is Chapter 8 of the monograph of Daubechies [10].

The construction of biorthogonal wavelets begins with two compactly supported uni-
variate scaling functions φ and φ̃ whose shifts are in duality,∫

IR

φ(x− k)φ̃(x− k′) dx = δ(k − k′), k, k′ ∈ ZZ,

with δ the Kronecker delta. Associated to each of the scaling functions are mother wavelets
ψ and ψ̃.

These functions can be used to generate a wavelet basis for the Lp(IR
d) spaces as

follows. We define ψ0 := φ, ψ1 := ψ. Let V ′ denote the collection of vertices of the unit
cube [0, 1]d and V the nonzero vertices. For each vertex v = (v1, . . . , vd) ∈ V ′, we define
the multivariate function

ψv(x1, . . . , xd) := ψv1(x1) · · ·ψvd(xd), ψ̃v(x1, . . . , xd) := ψv1(x1) · · ·ψvd(xd).

The collection of functions
ψvI , I ∈ D, v ∈ V,

are a Riesz basis for L2(IRd) (in the orthogonal case they form a complete orthonormal
basis for L2(IRd)). They are an unconditional basis for Lp(IR

d), 1 < p <∞. Each function
f which is locally integrable on IRd has the wavelet expansion

f =
∑
I∈D

∑
v∈V

avI(f)ψvI , avI(f) := 〈f, ψ̃vI 〉. (2.1)

We can also start the wavelet decomposition at any dyadic level. For example, starting
at dyadic level 0, we obtain

f =
∑
I∈D0

∑
v∈V ′

avI(f)ψvI +
∞∑
j=1

∑
I∈Dj

∑
v∈V

avI(f)ψvI . (2.2)

It can be convenient, in the characterizations of Besov spaces, to choose different nor-
malizations for the wavelets and coefficients appearing in the decompositions (2.1),(2.2).
In (2.1), (2.2), we have normalized in L2(IRd); we can also normalize in Lp(IR

d), 0 < p ≤
∞, by taking

ψvI,p := |I|−1/p+1/2ψvI , I ∈ D, v ∈ V. (2.3)

Then, we can rewrite (2.2) as

f =
∑
I∈D0

∑
v∈V ′

avI,p(f)ψvI,p +
∞∑
j=1

∑
I∈Dj

∑
v∈V

avI,p(f)ψvI,p, (2.4)

where
avI,p(f) := 〈f, ψ̃vI,p′〉,
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with 1/p+ 1/p′ = 1.
For simplicity of notation, we shall combine all terms associated with a dyadic cube I

in one expression:

AI(f) :=

{ ∑
v∈V ′ a

v
I,p(f)ψvI,p, I ∈ D0,∑

v∈V a
v
I,p(f)ψvI,p, I ∈ Dj , j ≥ 1.

(2.5)

Note that the definition of AI(f) does not depend on p and that

‖AI(f)‖Lp(IRd) � aI,p(f) :=

{
(
∑
v∈V ′ |avI,p(f)|p)1/p, I ∈ D0,

(
∑
v∈V |avI,p(f)|p)1/p, I ∈ Dj, j ≥ 1.

(2.6)

It is easy to go from one normalization to another. For example, for any 0 < p, q ≤ ∞,
we have

ψvI,p = |I|1/q−1/pψvI,q, aI,p(f) = |I|1/p−1/qaI,q(f). (2.7)

Note that we can compute the Lp(IR
d) norms of single scale wavelet sums Sj(f) :=∑

I∈Dj AI(f) from a fixed dyadic level j. Namely,

‖Sj(f)‖Lp(IRd) � ‖(aI,p(f))I∈Dj‖`p, 0 < p ≤ ∞, (2.8)

with the constants of equivalency depending only on p when p is small.
Many function spaces can be described by wavelet coefficients. In particular, such

characterizations hold for the Besov spaces Bs
q(Lτ (IR

d)), s > 0, 0 < τ, q ≤ ∞. We shall

only need the case when Bs
q(Lτ (IR

d)) is compactly embedded in L1(IRd) which means that
s > d/τ−d. We choose a univariate biorthogonal wavelet pair such that ψ has smoothness
Cr, and ψ̃ has at least r vanishing moments with r > s. The Besov space Bs

q(Lτ (IR
d))

can then be defined as the set of all functions f that are locally in L1(IRd) and for which

‖f‖Bsq(Lτ (IRd)) :=


(∑∞

j=0 2jsq
(∑

I∈Dj aI,τ (f)τ
)q/τ)1/q

, 0 < q <∞,

supj≥0 2js
(∑

I∈Dj aI,τ (f)τ
)1/τ

, q =∞,
(2.9)

is finite and with the usual change if τ = ∞. The quasi-norm in (2.9) is equivalent to
the other quasi-norms used to define Besov spaces in terms of moduli of smoothness or
Fourier transforms.

In most applications, the functions of interest are not defined on IRd but rather on a
bounded domain Ω ⊂ IRd. We shall assume that Ω is a Lipschitz domain (for a definition
see e.g. Adams [1]). The Besov spaces Bs

q(Lτ (Ω)) for such domains are usually defined by
moduli of smoothness but they can also be described by wavelet decompositions similar
to (2.9).

To see this, we use the fact that any such function f has an extension Ef to all of IRd

which satisfies (see [14])

‖Ef‖Bsq(Lτ (IRd)) ≤ C‖f‖Bsq(Lτ (Ω)),

with the constant C independent of f . In going further, we simply denote Ef by f .
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Since we now have a function f defined on all of IRd, we can apply the characterization
(2.9). In (2.9), we only have to include those ψvI which do not vanish identically on Ω. For
j = 0, 1, . . ., we denote by Dj(Ω) the collection of all dyadic cubes I ∈ Dj such that, for
some v ∈ V ′, ψvI does not vanish identically on Ω. We further set D+(Ω) := ∪j≥0Dj(Ω).

In analogy with (2.9), we have the following quasi-norm for the Besov space Bs
q(Lτ (Ω)):

‖f‖Bsq(Lτ (Ω)) :=


(∑∞

j=0 2jsq‖(aI,τ(f))I∈Dj(Ω)‖q`τ
)1/q

, 0 < q <∞,
supj≥0 2js‖(aI,τ (f))I∈Dj(Ω)‖`τ , q =∞.

(2.10)

For simple domains (e.g. polyhedra, or piecewise smooth domains) one can also di-
rectly construct wavelet bases on Ω that satisfy (2.10).

We close this section with the following observation.

Remark 2.1 Let τ > (s/d + 1/p)−1. Then the unit ball Us
q (Lτ (Ω)) of Bs

q(Lτ (Ω)), is a
compact subset of Lp(Ω).

Proof: We define µ := min(p, τ) and introduce the discrepancy

δ := s− d

µ
+
d

p
> 0. (2.11)

Then, it follows from (2.10), (2.7) and (2.8) that for each j = 0, 1, . . .,

2jδ‖
∑

I∈Dj(Ω)

AI(f)‖Lp � 2jδ

 ∑
I∈Dj(Ω)

aI,p(f)p

1/p

≤ 2jδ

 ∑
I∈Dj(Ω)

aI,p(f)µ

1/µ

= 2jδ

 ∑
I∈Dj(Ω)

2−d(
µ
p
−1)jaI,µ(f)µ

1/µ

= 2sj

 ∑
I∈Dj(Ω)

aI,µ(f)µ

1/µ

≤ ‖f‖Bs∞(Lµ(Ω)) ≤ ‖f‖Bsq(Lµ(Ω)) ≤ ‖f‖Bsq(Lτ (Ω)), (2.12)

for any 0 < q ≤ ∞. This implies the estimate

‖f −
J∑
j=0

∑
I∈Dj(Ω)

AI(f)‖Lp ≤
∑
j>J

‖
∑

I∈Dj(Ω)

AI(f)‖Lp ≤ C2−Jδ‖f‖Bsq(Lτ (Ω)), (2.13)

which shows the compactness of Us
q (Lτ (Ω)). 2

3 Nonlinear approximation

In this section, we shall recall some facts about nonlinear approximation that will serve
as an orientation for the results on tree approximation presented in the next section. A
general reference for the results of this section is [11]. We fix a domain Ω and consider the
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approximation of functions in Lp(Ω). We begin by describing what is known as n term
approximation.

Let Σn be defined as the set of all functions S that satisfy the condition

S =
∑
I∈Λ

AI(S), #Λ ≤ n, (3.1)

with AI defined as in (2.5). We shall consider approximation in the space Lp(Ω) by the
elements of Σn. Given f ∈ Lp(Ω), 1 ≤ p ≤ ∞, we define (as in (1.3))

σn(f)p := inf
S∈Σn

‖f − S‖Lp(Ω), n = 0, 1. . . . . (3.2)

Note that by definition σ0(f)p := ‖f‖Lp(Ω).
We can describe the functions f for which σn(f)p has a prescribed asymptotic behavior

as n → ∞. For 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and s > 0, we define the approximation class
Asq(Lp(Ω)) to be the set of all f ∈ Lp(Ω) such that

‖f‖Asq(Lp(Ω)) :=


(∑∞

n=0[(n+ 1)sσn(f)p]
q 1
n+1

)1/q
, 0 < q <∞

supn≥0(n+ 1)sσn(f)p, q =∞,
(3.3)

is finite. From the monotonicity of σn(f)p, it follow that (3.3) is equivalent to

‖f‖Asq(Lp(Ω)) �

(∑

j≥−1[2jsσ2j(f)p]
q
)1/q

, 0 < q <∞,
supj≥−1 2jsσ2j(f)p, q =∞,

(3.4)

where for the purposes of this formula we define σ1/2(f)p = σ0(f)p.
It is possible to characterize the spaces Asq(Lp(Ω)) in several ways: in terms of interpo-

lation spaces; in terms of wavelet coefficients; and in terms of smoothness spaces (Besov
spaces). For spaces X, Y we denote by (X, Y )θ,q the interpolation spaces generated by the
real method of interpolation (K-functional) with parameters 0 < θ < 1, 0 < q ≤ ∞. We
shall denote by `µ,q the Lorentz space of sequences (cI)I∈D+ indexed on dyadic intervals
(for a definition of this space see [13] or [11]).

Theorem 3.1 ([12] and [6] ) Let 1 < p <∞ and let ψ, ψ̃ be a biorthogonal wavelet pair
where ψ has smoothness of order r and ψ̃ has at least r vanishing moments. Then, the
following characterizations of Asq(Lp(Ω)) hold:

(i) For each 0 < s < r, we have that a function f is in As/dq (Lp(Ω)) if and only if
the sequence (aI,p(f))I∈D+(Ω) defined by (2.6) is in the Lorentz sequence space `τ,q with
1/τ := s/d+ 1/p and

‖f‖As/dq (Lp(Ω))
� ‖f‖Lp(Ω) + ‖(aI,p(f))I∈D+(Ω)‖`τ,q . (3.5)

(ii) For each 0 < s < r and 0 < q ≤ ∞,

As/dq (Lp(Ω)) = (Lp(Ω), Br
µ(Lµ(Ω)))s/r,q, (3.6)

with equivalent norms, where 1/µ = r/d+ 1/p,
(iii) In the special case 0 < s < r and q = τ = (s/d+ 1/p)−1. we have

As/dτ (Lp(Ω)) = Bs
τ (Lτ (Ω)). (3.7)

where 1/τ = s/d+ 1/p.

12



Thus, we have in (i) a characterization of the approximation spaces in terms of the
decay of the wavelet coefficients, while in (ii) this space is characterized in terms of
interpolation between Besov spaces. Characterization (iii) shows that in the special case
q = τ = (s/d+ 1/p)−1 the approximation space is identical with a Besov space.

As we already mentioned, there is a simple and useful geometrical interpretation of
this theorem given in Figure 1: Theorem 3.1 says that the approximation space As/dτ (Lp)
corresponds to the point (1/τ, s) of smoothness s on the critical line for nonlinear approx-
imation in Lp(Ω), or equivalently on the line segment connecting (1/p, 0) (corresponding
to Lp(Ω)) to (1/µ, r) (corresponding to Br

µ(Lµ(Ω))).
For any compact subset K of Lp(Ω), we let

σn(K)p := sup
f∈K

σn(f)p (3.8)

be the error of n-term approximation for this class. The main inference we wish to retain
from Theorem 3.1 is the following. For any point (1/τ, s), 0 < s < r, lying above the
critical line of nonlinear approximation and any of the Besov classes Bs

q(Lτ (Ω)) and its
unit ball Us

q (Lτ (Ω)), we have

σn(Us
q (Lτ (Ω)) ≤ Cn−s/d, n = 1, 2, . . . , (3.9)

with the constant C independent of n. This inequality also holds for the Besov spaces on
the critical line provided q ≤ (s/d+ 1/p)−1.

We have already noted in the introduction that a way of constructing near best n-term
approximations to a function f ∈ Lp(Ω) is to retain the n terms in the wavelet expansion
of f which have the largest Lp(Ω) norms. We shall not formulate this result explicitly
(see [11]) since we shall not need it. However, we shall need the following closely related
result of Temlyakov (see [20] or [11]).

Theorem 3.2 Let 1 ≤ p <∞ and let Λ ⊂ D+(Ω) be any finite set. If S is a function of
the form S =

∑
I∈ΛAI,p(S), then

‖S‖Lp(Ω) ≤ Cp max
I∈Λ

aI,p(S)(#Λ)1/p (3.10)

with the constant Cp depending only on p. Also, for any such set Λ and any 1 < p ≤ ∞,
we have

C ′p min
I∈Λ

aI,p(S)(#Λ)1/p ≤ ‖S‖Lp(Ω) (3.11)

where again the constant depends only on p.

Note that in the case p = 1, the inequality (3.10) (as stated and proved in [6]) is given
for the Hardy space H1 in place of L1 but then (3.10) follows because the L1 norm can
be bounded by the H1 norm. Similarly, (3.11) holds for the space BMO from which one
derives the case p =∞.
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4 Tree approximation

We turn now to the main topic of this paper which is tree approximation. Dyadic cubes
I in IRd have one parent (the smallest dyadic cube which properly contains I) and 2d

children (the largest dyadic cubes strictly contained in I). By a tree T we shall mean a
set of dyadic cubes from D+(Ω) with the property: if |I| < 1 and I ∈ T , then its parent
is also in T . We denote by Σt

n the collection of all functions that satisfy

S =
∑
I∈T

AI(S), #T ≤ n, (4.1)

with T a tree. If f ∈ Lp(Ω), 1 ≤ p ≤ ∞, then we recall (1.9) and define the error of tree
approximation by

tn(f)p := inf
S∈Σtn

‖f − S‖Lp(Ω). (4.2)

More generally for a compact subset K ⊂ Lp(Ω), we set

tn(K)p := sup
f∈K

tn(f)p. (4.3)

4.1 The case p <∞
In the following we fix the Lp metric in which the error is measured and we shall assume
first that p <∞. There is a simple and constructive way of generating tree approximations
of a given function f ∈ Lp(Ω) by thresholding its wavelet coefficients. For each η > 0, we
let

Λ(f, η) := {I ∈ D+(Ω) : aI,p(f) ≥ η}. (4.4)

Defining now T (f, η) as the smallest tree containing Λ(f, η) we note that

T (f, η) ⊆ T (f, η′), η′ ≤ η, (4.5)

and that these sets depend on p. With each tree T (f, η) we associate now the approximant

S(f, η) :=
∑

I∈T (f,η)

AI(f). (4.6)

It will be convenient to associate a family of spaces with this construction by bounding
the cardinality of the trees T (f, η) in terms of the threshold η. To this end, note first
that for 1 < p ≤ ∞ one has by the inequality (3.11) in Theorem 3.2

C ′pη (#(T (f, η)))1/p ≤ ‖S(f, η)‖Lp(Ω).

Thus defining Bλ(Lp(Ω)) as the set of those f ∈ Lp(Ω) for which there exists a constant
C(f) such that

#(T (f, η)) ≤ C(f)η−λ, (4.7)

for all η > 0, one obtains a strict subset of Lp(Ω) only when 0 < λ < p. It is easy to
see that Bλ(Lp(Ω)) constitutes indeed a linear space: if f and g are in Bλ(Lp(Ω)), we
simply remark that T (f + g, η) ⊂ T (f, η/2)∪T (g, η/2) so that we have #(T (f + g, η)) ≤
#(T (f, η/2)) + #(T (g, η/2)). Moreover, we define a quasinorm ‖f‖Bλ(Lp(Ω)) := C∗(f)1/λ

where C∗(f) is the smallest constant such that (4.7) holds.
The next theorem will examine the approximation properties of S(f, η).
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Theorem 4.1 Let 1 ≤ p <∞, and 0 < λ < p. Then we have

‖f − S(f, η)‖Lp(Ω) ≤ c1‖f‖λ/pBλ(Lp(Ω))η
1−λ/p, (4.8)

where c1 depends only on λ if λ is close to p. Moreover, let (1/τ, s) be a point above the
critical line for nonlinear approximation in Lp, i.e., s and τ should satisfy s > d/τ −d/p.
Then, if 0 < q ≤ ∞, Bs

q(Lτ (Ω)) is continuously embedded in Bλ(Lp(Ω)) with λ := d
s+d/p

:

‖f‖Bλ(Lp(Ω)) ≤ c2‖f‖Bsq(Lτ (Ω)), (4.9)

with c2 depending only δ when δ is close to zero and on the size of the support of ϕ and
ψ.

Proof: Let f ∈ Bλ(Lp(Ω)) and let M := ‖f‖Bλ(Lp(Ω)). To prove (4.8), we note that for
each cube I not in T (f, 2−jη), we have aI,p(f) ≤ 2−jη. Let

Σj :=
∑

I∈T (f,2−j−1η)\T (f,2−jη)

AI(f).

Then, using (3.10) and (4.7), we deduce that

‖Σj‖Lp(Ω) ≤ C2−jη[#(T (f, 2−j−1η))]1/p ≤ C2−jη[Mλ2jλη−λ]1/p. (4.10)

Therefore,

‖f − S(f, η)‖Lp(Ω) ≤
∞∑
j=0

‖Σj‖Lp(Ω) ≤ CMλ/pη1−λ/p
∞∑
j=0

2−j(1−λ/p) ≤ CMλ/pη1−λ/p, (4.11)

where we have used that λ < p.
In order to prove (4.9), we also define Λj(f, η) := Λ(f, η)∩Dj(Ω). For f ∈ Bs

q(Lτ (Ω)),

let M̃ = ‖f‖Bsq(Lτ (Ω)). Then the estimates (2.12) at the end of § 2 provide

#(Λj(f, η))ητ ≤
∑

I∈Dj(Ω))

aI,p(f)τ ≤ M̃τ2−jδτ , (4.12)

where δ is defined by (2.11). In order to exploit this estimate for bounding the cardinality
of T (f, η) we define Tj(f, η) := T (f, η) ∩ Dj(Ω). Note next that a cube I is in Tj(f, η),
j ≥ 0, if and only if there is a cube I ′ ⊆ I such that I ′ ∈ Λ(f, η). In fact, when I 6∈ Λj(f, η)
then I must be an ancestor of some I ′ ∈ Λ(f, η). Since any such cube I ′ belongs to at
most one cube I ∈ Tj(f, η), we have, from (4.12),

#Tj(f, η) ≤ C min(2jd, M̃τ
∑
k≥j

2−kδτη−τ) ≤ C min(2jd, M̃τ2−jδτη−τ ). (4.13)

Here we have used the fact that Dj(Ω) contains at most C2jd cubes because the wavelets
have compact support and Ω is a bounded domain. In order to sum (4.13) over all j ≥ 0,
we observe first that the turnover level J , i.e., the smallest integer for which

2Jd ≥ M̃τ
∑
k≥J

2−kδτη−τ , (4.14)
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is given by J =
⌈
λ
d

log2

(
M̃
η

)⌉
+

. Thus the sum of (4.13) over all j ≥ 0 is bounded by

C
((

M̃
η

)λ
+
(
M̃
η

)τ ∑
j=J 2−jδτ

)
which yields

#T (f, η) ≤ CM̃λη−λ. (4.15)

This establishes M ≤ CM̃ , confirming (4.9). 2

We can use Theorem 4.1 to estimate the error of tree approximation.

Corollary 4.2 Let 1 ≤ p < ∞ and 0 < λ < p. Then, for each n = 1, 2, . . . and each
f ∈ Bλ(Lp(Ω)), we have

tn(f)p ≤ c1‖f‖Bλ(Lp(Ω))n
−(1/λ−1/p), (4.16)

with c1 the constant in (4.8). Moreover, let (1/τ, s) be a point above the critical line for
nonlinear approximation in Lp, i.e., s and τ should satisfy s > d/τ − d/p. Then, if
0 < q ≤ ∞, for each n = 1, 2, . . . and each f ∈ Bs

q(Lτ (Ω)), we have

tn(f)p ≤ c3‖f‖Bsq(Lτ (Ω)n
−s/d, (4.17)

where c3 := c1c2 and c1, c2 are the constants in (4.8), (4.9), respectively.

Proof: Let f ∈ Bλ(Lp(Ω)). Given a positive integer n, we take η such that

‖f‖λBλ(Lp(Ω))η
−λ = n. (4.18)

Then S(f, η) ∈ Σt
n, and (4.8) yields

tn(f)p ≤ ‖f − S(f, η)‖Lp(Ω) ≤ c1‖f‖λ/pBλ(Lp(Ω))η
1−λ/p.

Writing

‖f‖λ/pBλ(Lp(Ω))η
1−λ/p = ‖f‖Bλ(Lp(Ω))

(
‖f‖λBλ(Lp(Ω))η

−λ
) 1
p
− 1
λ , (4.19)

provides, in view of (4.18), the first estimate (4.16). Using (4.9) to bound the first factor
on the right hand side of (4.19) yields again, on account of (4.18)

tn(f)p ≤ c1c2‖f‖Bsq(Lτ (Ω))n
−(1/λ−1/p). (4.20)

The second estimate (4.17) follows now because λ := d
s+d/p

means 1/λ− 1/p = s/d. 2

4.2 The case p =∞
The constants in the estimates (4.10) and (4.11) in the proof of the above Theorem 4.1
depend on p as p tends to infinity (because the inequality (3.10) in Theorem 3.2 was
used) and on p − λ when λ tends to p. Consequently the constants c1, c2 deteriorate as
p − λ (resp. δ = s − d/τ + d/p) tends to zero and also when p increases to +∞. In
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fact, Theorem 4.1 and Corollary 4.2 do not hold for p = ∞. To tackle the p = ∞ case,
we have to overcome several technical difficulties. We have to compensate for the fact
that we can no longer resort to Temlyakov’s inequality. The main idea is to change the
definition of Λ(f, η) by introducing a dependence of the threshold on the level of scale.
Moreover, recall from (4.13) that complete coarse scales up to a certain turnover level
J can be included without spoiling the complexity of the trees. The reader who is not
interested in these details should skip the rest of this section.

For f a function in L∞(Ω) and η > 0, we define, in analogy with (4.14), J to be the
smallest positive integer such that

2Jd ≥
∑
j>J

∑
l≥j

#(Λl(f, η(l − J)−2)). (4.21)

Whenever such a J exists, we define a modified set Λ̃(f, η) by

Λ̃(f, η) := {I ∈ Dj(Ω) ; j ≤ J} ∪ {I ∈ Λj(f, η(j − J)−2) ; j > J}; (4.22)

If there is no J for which (4.21) holds, we simply set Λ̃(f, η) := D(Ω). Λ̃(f, η) thus
includes all cubes with scales j ≤ J , as well as those with scales j larger than J for which
|aI,∞(f)| ≥ η(j−J)−2. As before we define T̃ (f, η) as the smallest tree containing Λ̃(f, η)
and set

S̃(f, η) :=
∑

I∈T̃ (f,η)

AI(f). (4.23)

This construction gives again rise to a class of functions in L∞(Ω) as follows: for 0 < λ <
∞, we say that f is in B̃λ(L∞(Ω)) if and only if there exists a constant C(f) such that

#(T̃ (f, η)) ≤ C(f)η−λ, (4.24)

for all η > 0. For the sake of convenience, we introduce a succinct notation for the r.h.s.
of (4.21) in the case where T̃ (f, η) is finite:

R(f, η, J) :=
∑
j>J

∑
l≥j

#(Λl(f, η(l − J)−2)). (4.25)

We will make use of the following simple facts about the quantities R(f, η, J).

Remark 4.3 If (4.25) holds then for fixed f and η, R(f, η, J) decreases as J increases.
Moreover, for fixed f and J the quantities R(f, η, J) increase as η decreases.

The first statement in Remark 4.3 says that (4.25) already implies the existence of a
turnover scale J satisfying (4.21) and hence the finiteness of T̃ (f, η) so that S̃(f, η) is well-
defined. Moreover, (3.11) together with (2.12) imply a geometric decay of the quantities
aI,∞(f) in scale as soon as f belongs to any space Bs

q(Lτ (Ω)) above the critical line, i.e.,
1
τ
< s

d
. Therefore for any η > 0 the set Λl(f, η(l − J)−2) will be empty for l sufficiently

large, so that (4.25) will indeed hold anywhere above the critical line for approximation
in L∞(Ω).

The second statement in Remark 4.3 implies that the turnover scale J increases when
η decreases.

We can now formulate the following adaptation of Theorem 4.1.
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Theorem 4.4 Assuming that (4.25) holds we have

‖f − S̃(f, η)‖L∞(Ω) ≤ c̃1η, (4.26)

where c̃1 depends only on the support of ϕ and ψ. Moreover, let (1/τ, s) be a point above
the critical line for nonlinear approximation in L∞(Ω), i.e., s and τ should satisfy s > d/τ .
Then if 0 < q ≤ ∞, Bs

q(Lτ (Ω)) is embedded in Bλ(L∞(Ω)), with λ := d/s, in the sense
that any f in Bs

q(Lτ (Ω)) satifies (4.24) with

C(f) ≤ c̃2‖f‖λBsq(Lτ (Ω)), (4.27)

where c̃2 depends only on s− d/τ when this quantity becomes close to zero.

Proof: The error estimate (4.26) is immediate since we have

‖f − S̃(f, η)‖L∞(Ω) ≤ ‖
∑

I /∈Λ̃(f,η)

AI(f)‖L∞(Ω)

≤
∑
j>J

‖
∑

I∈Dj(Ω)\Λj (f,η(j−J)−2)

AI(f)‖L∞(Ω)

≤ η
∑
j>J

(j − J)−2‖
∑

I∈Dj(Ω)

ψI,∞‖L∞(Ω) = c̃1η.

In order to prove (4.27), we follow the same reasoning as in the proof of Theorem 4.1 (see
(4.13), (4.15)) and remark first that

#(T̃ (f, η)) ≤ 2Jd +
∑
j>J

∑
l≥j

#(Λl(f, η(l − J)−2)) ≤ 2Jd+1. (4.28)

On the other hand, for f ∈ Bs
q(Lτ (Ω)), with s > d/τ , let δ = s−d/τ and M̃ = ‖f‖Bsq(Lτ (Ω)).

We then have by the definition of J in (4.21) and by (4.12)

2(J−1)d ≤
∑
j≥J

∑
l≥j

#(Λl(f, η(l − J + 1)−2))

≤
∑
j≥J

∑
l≥j

2−lδτM̃τη−τ (l − J + 1)2τ

≤ CM̃τη−τ
∑
j≥J

(j − J + 1)2τ2−jδτ

≤ CM̃τη−τ2−Jδτ ,

so that we obtain
2J(d+δτ) ≤ CM̃τη−τ . (4.29)

Combining this last estimate with (4.28), we deduce

#(T̃ (f, η)) ≤ C[M̃τη−τ ]
d

d+δ/τ = c̃2M̃
λη−λ, (4.30)

which concludes the proof. 2
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5 A tree based wavelet decomposition

The results of the previous section now give rise to a new wavelet decomposition based
on trees. First we treat the case 1 ≤ p < ∞. For f ∈ Lp(Ω) and each k = 0, 1, . . ., we
define the trees

Tk(f) := T (f, 2−k) (5.1)

where we adhere to the notation of the previous section and let

Σk(f) :=
∑

I∈Tk(f)

AI(f). (5.2)

Bearing in mind that, according to (4.5), Tk−1(f) ⊂ Tk(f), for all k ≥ 1, we introduce the
layers

L0(f) := T0(f), Lk(f) := Tk(f) \ Tk−1(f), k ∈ IN,
corresponding to the wavelet coeffcients grouped by size, and set

∆0(f) := Σ0(f), ∆k(f) := Σk(f)− Σk−1(f) =
∑

I∈Lk(f)

AI(f), k ≥ 1. (5.3)

Then, each f ∈ Lp(Ω) has the decomposition

f =
∑
k≥0

∆k(f). (5.4)

In the case p =∞, we modify the definition of the ∆k as follows. We wish to employ the
modified trees T̃ (f, η) appearing in the definition (4.23) of S̃(f, η). However, since we can
no longer guarantee that the trees T̃ (f, 2−k) are nested we note that the union of trees is
a tree and set

Tk(f) :=
⋃

0≤j≤k
T̃ (f, 2−j). (5.5)

In this case Lk(f) in (5.3) takes the form

Lk(f) = Tk(f) \ Tk−1(f) = T̃ (f, 2−k) \
 ⋃

0≤j<k
T̃ (f, 2−j)

 .
When 1 < p < ∞ the unconditionality of the wavelet basis implies that the series in

(5.4) converges in Lp(Ω) whenever f ∈ Lp(Ω). For p = 1,∞ the strong convergence of
the partial sums in (5.4) for f in any Besov space on the left of the respective critical
line is ensured by Theorems 4.1 and 4.4, provided that for p = ∞ the modified tree
approximations are used.

6 A universal encoding pair

In this section, we shall use the tree decomposition (5.4) to construct encoding pairs for
Lp functions. We treat first the case 1 ≤ p <∞ in this section and defer the modifications
necessary to obtain encoders for the full range 1 ≤ p ≤ ∞ to a later section. The encoder
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E to be described below assigns to each f ∈ Lp(Ω) an infinite bitstream which completely
determines f . The encoder E is progressive in the following sense. Defining encoders EN
by associating with f a certain finite number of lead bits of E(f), adding new bits gives
additional information about f and increases the accuracy in approximating f (decreases
the distortion).

The encoder

To begin the discussion, we fix p with 1 ≤ p < ∞. For f ∈ Lp(Ω), the bitstream E(f)
will take the following form

L(f), P0(f), S0(f), B0,0(f), P1(f), S1(f), B0,1(f), B1,0(f), . . . ,

PN(f), SN(f), B0,N(f), B1,N−1(f), . . . , BN,0(f), . . . , (6.1)

where

• L(f) is a bitstream that gives the size of the largest wavelet coefficient of f ;

• each bitstream Pk(f) gives the positions of the cubes in Lk(f);

• each bitstream Sk(f) gives the signs of the coefficients avI,p(f), I ∈ Lk(f);

• each bitstream Bk,N−k(f) adds a certain bit to each of the wavelet coefficients avI,p(f)
for the I ∈ Lk(f), 0 ≤ k ≤ N .

We now describe these bitstreams in more detail.

The bitstream L(f): Let κ be the integer such that the absolute value of the largest
wavelet coefficient avI,p(f) of f appearing in (5.4) is in [2−κ, 2−κ+1). The first bit in L(f)
is a zero respectively one if κ > 0, respectively κ ≤ 0. It is followed by |κ| ones while the
last bit is zero indicating the termination of L(f). Thus in the case κ = 0, L(f) is the
bitstream consisting of two zeros.

We next discuss the bitstreams Pk(f) which identify the positions of the cubes appear-
ing in Lk(f). Here essential use will be made of the tree structure to guarantee efficient
encoding of these positions.

There is a natural ordering of dyadic cubes that will always be referred to below. Each
dyadic cube is of the form 2−j(k+ [0, 1]d), with j ∈ ZZ and k ∈ ZZd. The ordering of these
cubes is determined by the lexicographical ordering of the corresponding (d + 1)-tuples
(j, k).

We shall use the following general result about encoding trees and their growth. Ac-
cording to the present context a tree is always understood to be a 2d-tree, i.e., a node
always branches into 2d children.

Lemma 6.1 (i) Given any finite tree T , its positions can be encoded, in their natural
order, with a bitstream P consisting of at most m0(1 + #(T ∩ D0(Ω))) + 2d#(T ) bits
where m0 := dlogM0e and M0 := #D0(Ω) + 1.
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(ii) If T contains the smaller tree T ′ and the positions of T ′ are known then the
positions of T \ T ′ can be encoded, in their natural order, with a bitstream P consisting
of at most m0(1 + #((T \ T ′) ∩ D0(Ω))) + 2d(#(T \ T ′) bits.

(iii) In case (i) or (ii), if the bitstream P is embedded in a larger bitstream, then
whenever the position of the first bit of P is known, we can identify the termination of P
(i.e. the position of the last bit of P ).

Proof: We take the natural ordering of the cubes in D0(Ω). The number M0 of these
cubes is part of the codebook known to the decoder. We can identify each cube I ∈ D0(Ω)
with a bit stream consisting of m0 bits. We do not use the bitstream consisting of all zeros
in this identification because this will be used to indicate the termination of this bitstream.
The first bits of our encoding will identify the cubes in D0(Ω)∩ T as follows. If all cubes
from D0(Ω) are in T then we send the bitstream consisting of m0 zeros terminating the
encoding of cubes in D0(Ω)∩ T . Otherwise, we send the bitstreams associated with each
of the cubes I ∈ T ∩ D0(Ω), in their natural order, and terminate with the bitstream
consisting of m0 zeros.

We next identify the cubes in T ∩ D1(Ω). Each such cube is a child of a cube from
T ∩ D0(Ω). If I ∈ T ∩ D0(Ω), then to each of its children we assign a zero if the child is
not in T and a one if the child is in T . We arrange these bits according to the natural
ordering of T ∩ D0(Ω) and then according to the natural ordering of the children. This
bitstream will use 2d#(T0 ∩D0(Ω)) bits and will identify all cubes in T ∩D1(Ω). We can
repeat this process to identify all of the cubes in T ∩ D2(Ω) by using 2d#(T ∩ D1(Ω))
bits. If we continue in this way we shall eventually encode all cubes in T and arrive at
(i).

The proof of (ii) is almost identical to (i).
Note also that the encoding will terminate with a sequence of 2d zeros which will also

serve to identify the completion of the encoding. Thus, property (iii) is also valid. 2

The bitstreams Pk(f), k ≥ 0. These bitstreams are given by Lemma 6.1 and identify
the positions of the cubes in Lk(f) for k ≥ 0 with T−1(f) := ∅. Notice that some of these
bitstreams may be empty. This occurs when κ > 0. Recall that the value of κ is identified
by the lead bits L(f) and so is known. Let κ0 := max(κ, 0). From the lemma, we know that
each of the Pk(f), k ≥ κ0, consist of at most m0(1 + #((Lk(f)))∩D0(Ω)) + 2d(#(Lk(f)))
bits.

We next describe the encoding of the signs of the wavelet coefficients. We take the
natural ordering of the set V ′ of vertices of the unit cube. This in turn induces an ordering
of the set V of nonzero vertices.

The bitstreams Sk(f), k ≥ 0. These bitstreams give the signs of the wavelet coefficients.
Let k ≥ 0 and let I ∈ Lk(f). If v ∈ V (v ∈ V ′ in the case I ∈ D0(Ω)), we assign the
coefficient avI,p(f) the bit zero if this coefficient is nonnegative and one if this coefficient
is negative. The bitstream Sj(f) is this sequence of zeros and ones ordered according to
the natural ordering of the cubes I ∈ Lk(f) and subsequently the natural ordering of the
vertices. Each of the Sk(f), k ≥ 0, consists of 2d(#(Lk(f))) bits.
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We next discuss how we encode coefficients. Any real number a has a binary repre-
sentation ∞∑

j=−∞
bj(a)2−j

with each bj(a) ∈ {0, 1}. In the case a has two representations (i.e., a is a binary rational)
we choose the representation with a finite number of ones. First consider the encoding of
the coefficients in T0(f) which is a little different from the general case of encoding the
coefficients in Lk(f), k ≥ 1. Recall the integer κ given in the lead bits L(f). T0(f) will be
nonempty if κ ≤ 0. We know that each coefficient a = avI,p(f), I ∈ T0(f), v ∈ V ′, satisfies
bj(a) = 0, j ≤ κ.

The bitstream B0,0(f). In compliance with the natural ordering of the cubes I ∈ T0(f)
given by P0(f), and in compliance with the natural ordering of V ′, we send the bits
bj(a

v
I,p(f)), j = κ, . . . , 0, I ∈ T0(f), v ∈ V (v ∈ V ′ in the case I ∈ D0(Ω)). This

bitstream will consist of at most 2d(|κ|+ 1)#T0(f) bits.

We now describe the bitstreams Bk,n−k, k = 0, . . . , n for n ≥ 1. A coefficient avI,p(f)
corresponding to I ∈ Ln(f) and v ∈ V (v ∈ V ′ if I ∈ D0(Ω)) satisfies |avI,p(f)| < 2−n+1.
Thus, b`(a

v
I,p(f)) = 0, ` < n. Hence sending a single bit bn(avI,p(f)) for I ∈ Ln(f) reduces

the quantization error to 2−n for those cubes. In addition the accuracy of the coefficients
avI,p(f) for I ∈ Lk(f), k < n, has to be updated to the level 2−n. By induction this
requires a single additional bit bn(avI,p(f)) for each such coefficient. Therefore for each
0 ≤ k ≤ n the bitstream Bk,n−k(f) consists of the bits bn(avI,p(f)) for I ∈ Lk(f) ordered
according to Pk(f) and the natural ordering of V (respectively V ′).

The bitstream Bk,j(f), j, k ≥ 0, j + k > 0: In compliance with the natural ordering of
the cubes I ∈ Lk(f) given by Pk(f), and in compliance with the natural ordering of V
(v ∈ V ′ in the case I ∈ D0(Ω)), we send the bits bj+k(a

v
I(f)). This bitstream will consist

of at most 2d(#(Lk(f))) bits.

This completes the description of the encoder E. For each N ≥ 0, we define the
encoder EN which assigns to f ∈ Lp(Ω) the first portion of the bitstream for E(f):

L(f), . . . , PN(f), SN(f), B0,N(f), . . . .BN,0(f), (6.2)

In particular, when the number κ encoded by L(f) exceeds N the following rule will
apply. When successively reading in the bits in L(f), the encoder realizes the case κ > N
when the first bit is a zero and a one appears at position N + 2. In this case the encoding
terminates and the bitstream EN (f) consists of one zero followed by N + 1 ones. We
further define BN to be the bitstreams EN(f). While each bitstream EN (f) is finite, the
collection BN is infinite. However, when we restrict f to come from a compact set U , we
will obtain a finite set BN (U).

The decoder

Let us now describe the decoder DN associated to EN . Let B be any bitstream from BN .
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Decoding κ: If the first two bits in L(f) are zero then we know that κ = 0. Otherwise,
the first bit of B is zero or one which identifies the sign of the number κ. Next comes a
sequence of ones followed by a zero if κ ≤ N . In this case the number of ones determine
κ (i.e., |κ| is equal to this number of ones). If the first bit is zero and the N + 2nd bit is
one the decoder knows that κ > N and hence that all wavelet coefficients have absolute
value below 2−N . The decoder then assigns the approximant 0.

Decoding the lead tree: Recall that κ0 := max(κ, 0). Next comes a sequence of zeros
and ones which identifies the cubes I in Tκ0(B). Recall from Lemma 6.1 that we know
when this sequence terminates. Next comes for each I ∈ Tκ0(B), in their natural order,
a sequence of zeros and ones which gives for each I ∈ Tκ0(B), v ∈ V (v ∈ V ′, in case
I ∈ D0(Ω)) bits b(j, I, v, B), where j ≤ κ0 if κ0 = 0 and j = κ0 if κ0 > 0.

Progressive reconstruction of the trees Tk(B). Each new subsequent bitstream
identifies the new cubes in Lk(B), sends one additional bit bk(a

v
I,p(f)) for each of the old

cubes I ∈ Lj(B), v ∈ V (v ∈ V ′ if I ∈ D0(Ω)), j < k, and one bit bk(a
v
I,p(f)) for the

new cubes I ∈ Lk(B). In totality, the bitstream B determines a nested sequence of trees
Tk(B), k = 0, . . . , N , and for each I ∈ TN , v ∈ V (v ∈ V ′, in case I ∈ D0(Ω)), and
j ≤ N , a number b(j, I, v, B) ∈ {0, 1}. By definition, these numbers are zero if j < k in
the case I ∈ Lk(B), k = 1, 2, . . . , N (j ≤ κ0 in the case k = 0). The decoder DN uses this
information to construct an element SN(B) from Lp(Ω) as follows.

For each I ∈ TN(B), and each v ∈ V (v ∈ V ′ in case I ∈ D0(Ω)), we define

avI,p,N(B) :=
∑
j≤N

b(j, I, v, B)2−j. (6.3)

and

ANI (B) :=


∑
v∈V ′ a

v
I,p,N(B)ψvI,p, I ∈ D0,∑

v∈V a
v
I,p,N(B)ψvI,p, I ∈ Dj , j ≥ 1.

(6.4)

It follows that in the case B = E(f) one has

|avI,p(f)− avI,p,N(E(f))| ≤ 2−N . (6.5)

We define
∆N
k (B) :=

∑
I∈Lk(B)

ANI (B) (6.6)

and

S̃N(B) :=
N∑
k=0

∆N
k (B). (6.7)

The decoder DN maps B into S̃N(B) ∈ Lp(Ω).

7 Performance of the encoders EN on compact sets

K ⊂ Lp(Ω), 1 ≤ p <∞
We next examine the distortion of the encoding EN , DN on compact sets which are unit
balls of Besov spaces. Again we treat first only the case 1 ≤ p <∞.
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Theorem 7.1 Let 1 ≤ p <∞, and let 0 < λ < p. If U := U(Bλ(Lp(Ω))), we have

M(U,EN , DN) ≤ c42λN , (7.1)

and
d(U,EN , DN) ≤ c52−Nλs/d (7.2)

with s := d
λ
− d

p
and the constants c4, c5 depending only on p and p− λ.

Moreover, for 0 < q ≤ ∞ and (1/τ, s) above the critical line for nonlinear approxima-
ton in Lp, i.e., δ := s − d/τ + d/p > 0, the same estimate holds for U := U(Bs

q(Lτ (Ω)),

with λ := d
s+d/p

and the constants c4, c5 depending only on p, τ , and the discrepancy δ.

Proof: Let f ∈ U := U(Bλ(Lp(Ω))). Then, f has all wavelet coefficients ≤ 1 in absolute
value. Hence κ ≥ 0. As noted earlier if κ > N , then EN(f) consists of N + 2 bits. So the
number of bits nL in L(f) satisfies

nL ≤ N + 2. (7.3)

If f ∈ U , we know from (4.7) that #(TN (f)) = #(T (f, 2−N) ≤ 2λN . This means that the
number nP of bits in all of the bitstreams Pk(f), k = 0, . . . , N will satisfy

nP ≤ m0#(D0(Ω) + 1) + 2d#TN (f) ≤ m0#(D0(Ω) + 1) + 2d2λN . (7.4)

The total number of bits nS appearing in the Sk, k = 0, . . . , N , satisfies

nS ≤ 2d#TN(f) ≤ 2d2λN (7.5)

because there are at most 2d coefficients associated with each I ∈ TN(f). For each
coefficient avI,p(f), I ∈ Lk(f), k = 0, . . . , N , we will send at most (N −k+ 1) bits. Hence,
using the estimate #(Tk(f)) ≤ 2kλ ensured by (4.7), we find that the total number of bits
nB in all of the sequences Bj,k, 0 ≤ j, k ≤ N will satisfy

nC ≤
N∑
k=0

(N + 1− k)2d2kλ ≤ C2λN (7.6)

with C depending only on λ and d. Hence the total number of bits used in EN (f) does
not exceed

nL + nP + nS + nC ≤ C(N + 2Nλ) ≤ c42Nλ. (7.7)

This completes the proof of (7.1).
Let

SN(f) := S(f, 2−N)

be the function of (4.6). We have shown in Theorem 4.1 (see (4.8)) that

‖f − SN(f)‖Lp(Ω) ≤ c12−N(1−λ/p). (7.8)

On the other hand, from Temlyakov’s inequality (3.10) and (6.5), we have

‖SN(f)− S̃N (E(f))‖Lp(Ω) ≤ C2−N(#TN(f))1/p ≤ C2−N2λN/p. (7.9)
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Therefore,
‖f − S̃N(E(f))‖Lp(Ω) ≤ c52−N(1−λ/p).

Since 1− λ/p = λs/d, this proves (7.2).
In the case where U := U(Bs

q(Lτ (Ω)), similar estimates are obtained by using (4.9) in
order to majorize #(TN (f)) and ‖f − SN(f)‖Lp(Ω) as above (see Corollary 4.2). 2

As a corollary of Theorem 7.1, we obtain upper estimates for the Kolmogorov entropy
of the balls U .

Corollary 7.2 Let 1 ≤ p <∞, 0 < q ≤ ∞ and let the point (1/τ, s) be above the critical
line for nonlinear approximaton in Lp. If U := U(Bs

q(Lτ (Ω)), then we have:

Hε(U) ≤ c6ε
−d/s, ε > 0 (7.10)

with the constant c6 depending only on p, τ , and the discrepancy δ := s− d/τ + d/p.

Proof: Let N be the smallest integer such that c52−Nλs/d < ε with c5 the constant
in Theorem 7.1. We have shown in Theorem 7.1 that the encoding pair EN , DN has
distortion ≤ c52−Nλs/d < ε and M(U,EN , DN) ≤ c42λN = c4ε

−d/s. Hence the corollary
follows from (1.17). 2

8 The case p =∞
We wish to describe next how to modify the above encoders so as to obtain Theorem 7.1
and Corollary 7.2 also for p =∞.

To this end, we simply use the modified trees Tk(f) from (5.5). The bitstreams
L(f), Pk(f), Sk(f) are then defined in the same way as described in § 6. The only fur-
ther modification concerns the bitstreams Bk,j(f). The reason is that, since for p = ∞
Temlyakov’s inequality (3.10) is no longer applicable, a somewhat higher accuracy for
the quantization is needed for the estimation of the quantization error. In fact, the main
obstruction caused by the L∞-norm is that locally wavelets from many levels may overlap.
Therefore we will exploit the decay of wavelet coefficients required by (4.22). To this end,
recall the turnover level Jk for the tree Tk(f) defined by (4.21). Now from the definition
of T̃ (f, η) we know that I ∈ Dj(Ω) ∩ Lk(f) implies that j > Jk−1 and that

|avI,∞(f)| ≤ 2−k+1−`(j−Jk−1), (8.1)

where
`(j − J) := b2 log2(j − J)c .

Modified Bk,n−k(f): In compliance with the natural ordering of the cubes I ∈ Lk(f)
and in compliance with the natural ordering of the v ∈ V (v ∈ V ′ if I ∈ D0(Ω)) we
send for each I ∈ Lk(f)∩Dj(Ω), k = 1, . . . , n, j = Jk−1 + 1, . . . , the two bits bl(a

v
I,∞(f)),

l = `(j−Jk−1)+2n−k+1, `(j−Jk−1)+2n−k. Analogous modifications apply to B0,0(f).
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Hence when decoding, (6.3) is replaced for I ∈ Lk(f) ∩Dj(Ω) by

avI,∞,N(B) :=
∑

r≤`(j−Jk−1)+2N−k+1

b(r, I, v, B)2−r, (8.2)

so that now for k = 1, . . . , N , I ∈ Lk(f) ∩Dj(Ω),

|avI,∞(f)− avI,∞,N(E(f))| ≤ 2−(`(j−Jk−1)+2N−k). (8.3)

The counterparts of the above results read then as follows.

Theorem 8.1 Let λ <∞. If U := U(Bλ(L∞(Ω))), we have

M(U,EN , DN) ≤ c72λN , (8.4)

and
d(U,EN , DN) ≤ c52−Nλs/d (8.5)

with s := d/λ and the constants c4, c5 depending only on λ.
Moreover, for 0 < q ≤ ∞ and (1/τ, s) above the critical line for nonlinear approxima-

ton in L∞, i.e., δ := s − d/τ > 0, the same estimate holds for U := U(Bs
q(Lτ (Ω)), with

λ := d
s

and the constants c4, c5 depending only on p, τ , and the discrepancy δ = s− d/τ .
Furthermore, we have:

Hε(U) ≤ c6ε
−d/s, ε > 0 (8.6)

with the constant c6 depending only on τ , and the discrepancy δ := s− d/τ .

Proof: We essentially follow the arguments in the proofs of Theorem 7.1 and Corollary
7.2. The estimates (7.4) and (7.5) for nP and nS remain the same. The estimate (7.6) is
replaced now by

nC ≤ C
N∑
k=0

2(N − k + 1)2d2λk ≤ C 2λN , (8.7)

so that the total number of bits nL + nP + nS + nC in the modified E(f) still satisfies
(7.7).

The approximation error (7.8) of the form

‖f − SN(f)‖L∞(Ω) ≤ c12−N (8.8)

follows now from Theorem 4.4.
Only the estimation of the quantization error requires a different argument because,

as mentioned above, Temlyakov’s inequality (3.10) is no longer applicable. This will
be compensated by the higher accuracy provided by the modification of the bitstreams
Bk,j(f) and the additional decay of wavelet coefficients required by (4.22) in the definition
of the trees T̃ (f, η).

We will use the fact that for each fixed level j ≥ 0 only a uniformly bounded finite
number of terms AI(f)− ANI (B), I ∈ Dj , are simultaneously nonzero at any given point
in Ω. As before let B := E(f) and note that

‖SN(f)− S̃N(B)‖L∞(Ω) ≤
∑

I∈T0(f)

‖AI(f)− ANI (B)‖L∞(Ω) (8.9)

+
N∑
k=1

∞∑
j=Jk−1+1

∥∥∥∥∥∥
∑

I∈Lk(f)∩Dj(Ω)

(
AI(f)−ANI (B)

)∥∥∥∥∥∥
L∞(Ω)

.
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By (8.3) the first sum on the right hand side of (8.9) is clearly bounded by C 2−N . The
second sum is, in view of (8.3), bounded by

C 2−N
N∑
k=1

∞∑
j=Jk−1+1

2−`(j−Jk−1)−(N−k) ≤ C 2−N ,

which provides the desired counterpart to (7.9):

‖SN(f)− S̃N (B)‖L∞(Ω) ≤ C 2−N . (8.10)

The rest of the proof is the same as before in § 7. 2

4.4 (3.10) does bit count, (7.9).
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