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Abstract

We apply matrix theory over F2 to understand the nature of so-
called “successful pressing sequences” of black-and-white vertex-colored
graphs. These sequences arise in computational phylogenetics, where,
by a celebrated result of Hannenhalli and Pevzner, the space of sortings-
by-reversal of a signed permutation can be described by pressing se-
quences. In particular, we offer several alternative linear-algebraic and
graph-theoretic characterizations of successful pressing sequences, de-
scribe the relation between such sequences, and provide bounds on the
number of them. We also offer several open problems that arose as a
result of the present work.

MSC classes: 05C50, 15B33, 92D15.
Keywords: Binary matrix, pressing sequence, adjacency matrix, matching,
bicolored graph.

1 Introduction

In a now classical paper in bioinformatics [5], Hannenhalli and Pevzner
showed that there is a polynomial time algorithm to sort signed permutations
by reversals, i.e., turn any signed permutation into the identity by revers-
ing subwords (and flipping their signs). This has important implications for
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computational phylogenetics: when comparing the sequence of genes of two
related species, the shortest length of a sequence of reversals that transforms
one into the other is one prominent measure of the evolutionary distance of
the associated organisms. The authors’ strategy, and one that was improved
upon in later work (for example, [8]), is to construct the so-called “breakpoint
graph” for the permutation to be sorted, show that a certain operation on the
breakpoint graph corresponds to reversals, and then use certain numerical
invariants of subgraphs to guide the sequence of moves to the identity.

This framework is now a keystone of bioinformatics algorithms, but it
leaves many questions unanswered. In particular, the proposed method-
ologies generate just one successful sorting of the signed permutation under
consideration, and it is understood that there are often many such minimum-
length sorting sequences. Since each is only representative of one possible
evolutionary history, it would be valuable to be able to sample from all pos-
sible such sequences to obtain more sensitive statistical properties. As of yet,
there is no full understanding of the space of possible histories, so Markov
Chain Monte Carlo methods are valuable for approximately uniform sam-
pling. Such approaches present their own problems, however: it is necessary
to obtain a proof of connectivity of the underlying graph of the Markov Chain
to know that it will eventually reach every vertex; and it is necessary to obtain
bounds on the mixing time of the process to ensure that near-uniformity will
be achieved in reasonable time. Indeed, some researchers have investigated
these very kinds of questions: see, for example, [9].

In order to state our results and situate it in the above discussion, we
need the following definitions.

Definition 1. A bicolored graph is a pair (G, c) where G is a simple graph,
and c : V (G) → {black,white} is a coloring of its vertices. Write black =
white and white = black.

Denote by V (G) the vertex set of a graph, E(G) its edge set, and G[S]
the induced subgraph of a set S ⊂ V (G); let N(v) = NG(v) denote the
neighborhood of v ∈ V (G), i.e., {w ∈ V (G) : {v, w} ∈ E(G)}, and N∗(v) =
N∗G(v) the closed neighborhood of v, i.e., N∗G(v) = NG(v) ∪ {v}.

Definition 2. Consider a bicolored graph, (G, c) with a black vertex v ∈
V (G). “Pressing v” is the operation of transforming (G, c) into (G′, c′), a new
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bicolored graph in which G[N∗(v)] is complemented. That is, V (G′) = V (G),

E(G′) = E(G)4
(
N∗(v)

2

)
,

(where “4” denotes symmetric difference) and c′(w) = c(w) for w 6∈ N∗(v)
and c′(w) = c(w) for w ∈ N∗(v).

(a) (b)

Figure 1: The vertex enclosed by a dotted circle is pressed in graph (a) to
obtain graph (b).

The “pressing game” (to use terminology from [2]) is played by pressing
black vertices of G iteratively with the ultimate goal of transforming G into
an all-white, empty graph. Hannenhalli and Pevzner showed ([5]) that “suc-
cessful” sequences of presses in the breakpoint graph of a signed permutation,
i.e., sequences that result in an all-white empty graph, correspond bijectively
to minimum-length sequences of reversals that turn the permutation into the
identity. Therefore, sampling from successful pressing sequences is equiva-
lent to sampling from the minimum length sequences of reversals that sort a
signed permutation. In [2], the authors make the following “Pressing Game
Conjecture”:

Conjecture 1. Every successful pressing sequence can be reached from ev-
ery other one by a sequence of edits that involve at most four deletions or
insertions.

If successful pressing sequences are taken to be the vertices of a graph
Π(G), and the edges correspond to edits of at most four deletions or inser-
tions, then the Pressing Game Conjecture implies that Π(G) is connected.
Then a simple random walk converges to a uniform distribution on the set of
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all successful pressing sequences, and Markov Chain Monte Carlo can be used
to analyze typical pressing sequences. Bixby, Flint, and Miklós [2] proved the
conjecture for paths. Despite this, the current authors have doubts about
the statement for general graphs.

In the present manuscript, we explore a few aspects of matrix theory
over F2 so as to better understand the successful pressing sequences of a
graph. Among other results: in Corollary 4, we show that the rank of the
“augmented adjacency matrix” of a bicolored graph is the length of every
successful pressing sequence of a graph; Theorems 8 and 9 provide a substan-
tial collection of equivalent characterizations of successful pressing sequences;
Proposition 11 gives a matrix-theoretic formulation of the relationship be-
tween successful pressing sequences; and Theorem 13 shows that the average
number of successful pressing sequences of a random (full-rank) bicolored
graph is large. The final section contains several open problems concerning
these sequences that arose in connection with the present work.

We note that some special cases of a few of our results are announced
but left largely unproven in [6]; the authors refer to the matrix analogue of
pressing as “clicking” and to the condition of the existence of a successful
pressing sequence that consists of all vertices as “tightness.”

2 Preliminaries

The following result appears (less explicitly) in [5] and [1], but we include
the proof for completeness.1

Proposition 1. Any graph with a black vertex in every component has a
successful pressing sequence.

Proof. It suffices to prove the statement for connected graphs. Let G be a
connected graph and X be the set of black vertices with the fewest possible
black neighbors. Choose some x ∈ X such that deg(x) is maximal in X.
When x is pressed, we obtain G′. We claim that each component of G′ is
either a white isolated vertex or has at least one black vertex.

Let N = NG(x) be the set of neighbors of x ∈ G, let P be the set of
vertices in N that were white in G, and let Q = N \ P . Note that G and G′

1Thanks to Éva Czabarka for suggesting this vastly simplified version of the
Hannenhalli-Pevzner argument.

4



are identical except on the induced subgraphs of N ∪ {x}. Every vertex in
V (G)− (N ∪ {x}) is in a component with a vertex of N (in both G and G′),
so it suffices to show that each vertex of N ∪ {x} is in a component of G′

with a black vertex or is an isolated white vertex. Furthermore, in G′, x is
isolated and white and the vertices of P are black, so we need only consider
the elements of Q.

Pick some z ∈ Q. If z is adjacent to a black vertex outside of N ∪ {x}
or z is not adjacent in G to some vertex in P , then in G′, z is adjacent to a
black vertex. Otherwise, in G, z is adjacent to all vertices of P and its black
neighbors are a subset of Q∪{x} \ {z}. By the choice of x, this implies that
the closed neighborhoods of x and z are the same in G, which implies that z
is a white isolated vertex in G′.

Definition 3. The augmented adjacency matrix A(G) ∈ Fn×n
2 of a bi-

colored graph G on n vertices, is the the adjacency matrix of with where the
entries along main diagonal correspond to the vertices G and are indexed by
the color of the vertex; 0 if white or 1 if black.

Given a bicolored graph G, we can define a (loopy simple) graph Ĝ to be
the graph on the same vertex set with the same edges, but with a loop at
each black vertex (and none at white vertices). A perfect matching in such
a graph is a set of edges incident to every vertex exactly once, where a loop
is considered to be incident to its vertex only once. A special case of the
following result (that of zero diagonal) appears in [4].

Proposition 2. The number of perfect matchings in the loopy graph Ĝ cor-
responding to a bicolored graph (G, c) is odd if and only if A(G) is invertible.

Proof. It is well known that the permanent (which is equal to the determinant
in characteristic 2) of A(G) is equal to∑

C

2Z(C),

where C ranges over all vertex circuit covers, i.e., families of circuits (closed
walks) in which each vertex appears exactly once and Z(C) is the number of
such circuits of length greater than two. (See, for example, [3].) Therefore,
over F2, the only terms which make a contribution to det(A(G)) are ones in
which there are no circuits of length more than two, i.e., every component is
a loop or a single edge – precisely the condition of being a perfect matching.
Since det(A(G)) = 1 if and only if A(G) is invertible, this is equivalent to
there being an odd number of perfect matchings.

5



3 Matrix Theory

Define the function f(M) on n× n nonzero matrices over F2 as follows. Let
s denote the smallest row index of a left-most 1 in M , that is, the positive
integer for which there exists a t so that

1. Ms,t = 1

2. Ms,j = 0 if j < t

3. If i < s and j <= t, then Mi,j = 0.

Then let U be the set of row indices which have a 1 in column t, i.e.,

U = {i : Mi,t = 1}.

Then let f(M) denote the n× n matrix so that

f(M)i,j =

{
Mi,j if i 6∈ U
Mi,j +Ms,j if i ∈ U

Note that, for every matrix M , there is a sequence of s’s and t’s that arise
from the iterative application of f to M . That is, given M , there is an
increasing sequence s1, s2, ..., sp and increasing sequence t1, ..., tp which serve
as the indices in the above definition of f(M), f(f(M)), etc. Indeed, it is
easy to see that the sequence must eventually result in the all-zeroes matrix,
so this process terminates at some finite p = p(M).

If we have a matrix M and sequences s1, s2, ..., sp, and t1, ..., tp arising as
above we may also define

g(M)i,j =

{
Mi,j if i 6∈ U \ {s}
Mi,j +Ms,j if i ∈ U \ {s}.

If, for each r ∈ [p], the elements of U are all greater than or equal to sr, call
M “leading principally nonsingular (LPN)”. If M is LPN, then the sequence
M, g(M), g(g(M)), . . . g(p)(M), p = rank(M), is precisely the sequence of ma-
trices one obtains by performing Gaussian elimination on M . Furthermore,
such elimination does not involve row permutations, and si = ti = i for each
i ∈ [p]. Therefore, M is row-reducible to a matrix whose leading principle
submatrices of size ≤ p are identity matrices.
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Suppose that the M above is A(G) and is LPN. Then it is straightforward
to see that f(M) is in fact A(G′) where G′ is obtained from G by pressing
its lowest-indexed black vertex. Since A(G) being the all-zeroes matrix is
precisely the condition that G has no edges and all vertices are white, M =
A(G) being LPN is equivalent to G having a successful pressing sequence
consisting of the vertices indexing the first rank(A(G)) columns of M in
increasing order.

We may conclude the following.

Proposition 3. The map G 7→ A(G) is a bijection between bicolored graphs
with vertex set [n] so that the vertices [k] (in the usual order) form a successful
pressing sequence and matrices M for which si = ti = i for i ∈ [k] with
p(M) = k.

Corollary 4. The number of vertices in any successful pressing sequence for
a graph G depends only on the graph, and is equal to rank(A(G)).

The preceding result justifies the following definition.

Definition 4. The pressing number of a graph is the number of presses
required to transform the graph into an all-white, empty graph.

A matrix M is said to have an LU -decomposition if there exist a lower
triangular matrix L and an upper triangular matrix U so that

M = LU.

Call a matrix M “Cholesky” (to borrow terminology from the theory of
real/complex matrices; q.v. [7]) if there exists a lower-triangular L so that
M = LLT ; such a product is evidently a special type of LU -decomposition.
The following lemma is folkloric.

Lemma 5. If M = LU and M is invertible, this decomposition is unique.

Proof. Suppose M = LU = L′U ′. Then L, U , L′, and U ′ are invertible, so

L′−1L = U ′U−1.

The left-hand side of this equation is lower-triangular and the right is upper-
triangular, so they must both be diagonal. However, since the only invertible
diagonal matrix over F2 is the identity, L = L′ and U = U ′.
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Lemma 6. If a symmetric matrix M over F2 has an LU decomposition, then
it has a Cholesky decomposition L̃L̃T .

Proof. We proceed by induction. The base case is trivial: M = [0] or M =
[1]. Suppose M is n × n and the statement is true for all 1 ≤ k < n. Then
M can be written

M = LU

=

[
L0 O
A B

] [
U0 C
O D

]
=

[
L0U0 L0C
AU0 AC +BD

]
where L0 are U0 are invertible leading principal submatrices, B is lower-
triangular and D is upper-triangular – unless M is the all-zeroes matrix, in
which case the result is trivial. By Proposition 3, existence of an LU decom-
position is equivalent to the first k invertible leading principal minors being
nonzero with k = rank(M). Furthermore, since M0 = L0U0 is nonsingular,
this decomposition of M0 is unique by Lemma 5. Thus, M0 = MT

0 = UT
0 L

T
0

implies that UT
0 = L0. Since M is symmetric,

L0C = (AU0)
T = UT

0 A
T = L0A

T ,

whence C = AT . Therefore, if M1 = AC + BD is the lower-right (n − k) ×
(n− k) principal submatrix of M , we may rewrite

M1 − AAT = BD.

Since the left-hand side is symmetric, the right-hand is as well, and we may
apply induction: M1−AAT has an LU -decomposition of the form BD, so it
has an L1L

T
1 -decomposition as well. Therefore, we may let

L̃ =

[
L0 O
A L1

]
and conclude that M = L̃L̃T .

Lemma 7. If M is symmetric, it is LPN iff it is Cholesky.
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Proof. By the argument above, being LPN is equivalent to Gaussian elimi-
nation proceeding to completion without ever permuting rows; it is classical
that this is equivalent to the existence of an LU factorization, i.e., M can be
written

M = LU

where L is lower-triangular and U is upper-triangular. Therefore, for any M ,
having an LU -factorization is equivalent to being LPN. Then, by Lemma 6,
there exists a factorization M = LLT . Hence, M is LPN iff it is Cholesky.

Theorem 8. Given a bicolored labeled graph G and integer k, the following
are equivalent:

1. The pressing number of G is k.

2. A(G) has rank k and can be written

A(G) = P TLLTP

for some lower-triangular matrix L and permutation matrix P .

3. rank(A(G)) = k and G has a black vertex in each component that is
not an isolated vertex.

4. There is some permutation matrix P so that the j-th leading principal
minor of P TA(G)P is nonzero for j ∈ [k] and is zero for j > k if
k < n.

5. There is an ordering of the vertices v1, . . . , vn of Ĝ so that the induced
subgraph Ĝ[{v1, . . . , vj}] has an odd number of perfect matchings for

each j ∈ [k], and, for each j ∈ [n] \ [k], Ĝ[{v1, . . . , vj}] has an even
number of perfect matchings.

6. A(G) = P TLUP for some permutation matrix P , lower triangular ma-
trix L, and upper triangular matrix U , where rank(LU) = k.

We note that there are yet other equivalent conditions in terms of rank
of submatrices is given by Johnson and Okunev in [10].

Proof. 1 ⇔ 6: This follows from Proposition 3, since the existence of an
LU decomposition is equivalent to a matrix being row-reducible without
performing row permutations; conjugation by P has the effect of placing
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rows and columns indexed by the pressing sequence in an initial position of
the matrix.
2⇔ 6: This is a consequence of Lemma 6.
1 ⇔ 3: The combination of Proposition 1, Proposition 3, and Corollary 4
gives this equivalence.
1⇔ 4: This follows from Proposition 3.
4⇔ 5: This is a consequence of Proposition 2.
All conditions are therefore equivalent by transitivity.

We may consider the special case when the labeling provides a successful
pressing sequence.

Theorem 9. Given a bicolored labeled graph G on [n], the following are
equivalent:

1. The vertices of G, in the usual order, are a successful pressing sequence.

2. A(G) can be written
A(G) = LLT

for some invertible lower-triangular matrix L and permutation matrix
P .

3. Every leading principal minor of A(G) is nonzero for j ∈ [n].

4. The induced subgraph Ĝ[{1, . . . , j}] has an odd number of perfect match-
ings for each j ∈ [n].

5. A(G) = LU for some invertible lower triangular matrix L and invertible
upper triangular matrix U .

Proof. All statements are simply specializations of those from the preceding
Theorem, except for 2. That L (and not just A(G)) can be taken to be full
rank follows from the fact that rank(L) = rank(LLT ) if L is invertible.

4 Enumeration and Pressing Sequences

Proposition 10. Given a graph G with vertex set [n] and a permutation σ
of [n], there is exactly one bicoloring of G for which σ is a valid pressing
sequence.
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Proof. We apply the part of Theorem 8 that says that σ is a valid pressing
sequence if and only if Ĝ[σ(1), . . . , σ(k)] has an odd number of perfect match-
ings for each k ∈ [n]. The proof proceeds by induction on k. If k = 1, clearly
the number of perfect matchings is odd if and only if Ĝ[σ(1)] has a loop,
so σ(1) must be black in the bicoloring. Suppose the statement is true for
k < n. Let a denote the number of perfect matchings of Ĝ[σ(1), . . . , σ(k)], b
the number of perfect matchings of Ĝ[σ(1), . . . , σ(k + 1)], and c the number
of perfect matchings of Ĝ[{σ(1), . . . , σ(k)} \ N(σ(k + 1))]. Then b = c if
σ(k + 1) does not have a loop, while b = a + c if σ(k + 1) does have a loop.
Since a is odd by the inductive hypothesis, exactly one of c or a + c is odd,
so the color of σ(k + 1) is uniquely determined.

As with real/complex matrices, a matrix Q over F2 is said to be “orthog-
onal” if QTQ = I. The set of all n × n orthogonal matrices over F2 is the
“orthogonal group” and is denoted O(n).

Proposition 11. Suppose the bicolored graph G with vertex set [n] has the
identity permutation as a pressing sequence, let A be the augmented adjacency
matrix of G, and let A = LLT be the Cholesky decomposition guaranteed
by Theorem 8. Then σ is also a pressing sequence of G iff there exist an
orthogonal matrix Q and an upper triangular matrix U so that

LTP T = QU,

where P is the permutation matrix encoding σ.

Proof. If LTP T = QU , then

PAP T = PLLTP T = UTQTQU = UTU,

a Cholesky decomposition for the matrix PAP T . On the other hand, suppose
σ is a pressing sequence for G. Then

PAP T = UTU.

for some U , whence
PLLTP T = UTU.

Let Q = LTP TU−1; then QTQ = I, so Q is orthogonal, and

LTP T = QU.
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It is worth remarking that one may take P to be any permutation matrix
representing an automorphism of G, Q = I, and U = LT to obtain a solution
to LTP T = QU . Indeed, acting on a bicolored graph by an automorphism
fixes its pressing sequences. Therefore, by the above proposition, one may
view successful pressing sequences as a kind of F2-relaxation of automor-
phisms.

Given a matrix B, we define a new matrix ψ(B) as follows. Let the
columns of B be b1, . . . , bn and the columns of ψ(B), b′1, . . . , b

′
n. If b′1, . . . , b

′
k

have been defined for k < n, we define

b′k+1 = bk+1 +
k∑

j=1

b′j(b
′
j · bk+1).

Note that we can also define b′k+1 by

b′k+1 = bk+1 +
∑
j<k

b′j ·bk+1=1

b′j.

Proposition 12. Suppose the bicolored graph G with vertex set [n] has the
identity permutation as a pressing sequence, let A be the augmented adjacency
matrix of G, and let A = LLT be the Cholesky decomposition guaranteed by
Theorem 9. Let σ be a permutation of [n] and P is the permutation matrix
encoding σ. Then σ is a valid pressing sequence for G iff the all-ones vector
1̂ is a (left) eigenvector of ψ(LTP T ) iff ψ(LTP T ) is orthogonal.

Proof. Note that the computation of ψ(B) is precisely that of performing
the Gram-Schmidt algorithm on the columns of B, except that no “normal-
ization” occurs, i.e., one does divide by the norm of the resulting vectors.
However, over F2, there are only two possible “norms”: 0 and 1. Therefore,
if the norm of each of the b′j produced in the computation of ψ(B) is 1 for
all j, the columns of ψ(B) are the same as the output of Gram-Schmidt
orthonormalization, whence we obtain a factorization of B of the form QU
with Q orthogonal and U upper triangular. (This is usually termed a “QR-
factorization”.) The only failure mode of this computation is if some bj
is self-orthogonal. Since self-orthogonality is equivalent to having an inner
product of 0 with 1̂, by Proposition 11, if σ is a successful pressing sequence,
ψ(LTP T ) is orthogonal and 1̂Tψ(LTP T ) = 1̂T ; otherwise, ψ(LTP T ) is not
orthogonal and 1̂Tψ(LTP T ) 6= 1̂T .
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Theorem 13. For an (ordinary) graph G on n vertices, let αG denote the
average number of length-n successful pressing sequences over all bicolorings
of G. Then

αG =
n!

2n
.

Proof. We construct a bipartite graph Γ as follows. One partition class S
consists of all permutations of [n]; the other partition class is C, the set of
all bicolorings of G, which we assume has vertex set [n]. We place an edge
between a permutation σ and a bicolored graph G iff σ is a successful pressing
sequence for G. By Proposition 10, the Γ-degree of each vertex in S is 1,
so the number of edges in Γ is n!. On the other hand, the number of edges
incident to a bicolored graph is its number of length-n successful pressing
sequences. Therefore, the sum of all degrees in C is αG2n. We may conclude
that

αG =
n!

2n
.

Note that, since a particular labeling of a graph admits precisely one
bicoloring so that rank(A(G)) = n, the probability that a symmetric matrix
(i.e., the adjacency matrix of a bicolored graph) is Cholesky 2−n.

5 Conclusion

We present a few open questions on the subject of pressing sequences in
addition to the Pressing Game Conjecture (discussed in the introduction).

Question 1. How hard is it in general to compute the number of successful
pressing sequences of a given bicolored graph?

By the remarks following Proposition 10, it is perhaps the case that this
enumeration problem is GI-complete, i.e., the same difficulty as certifying
graph isomorphism and counting automorphisms. Alternatively, the connec-
tion with counting perfect matchings suggests it might be #P-hard. Given
that we do not know the complexity of counting pressing sequences exactly,
perhaps the approximation problem is easier:

Question 2. Is there a polynomial time algorithm for approximating within
a small factor the number of successful pressing sequences of a given bicolored
graph?
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In studying some of these questions, the authors found a substantial,
though small, number of nonisomorphic graphs which have exactly one press-
ing sequence – graphs we term “uniquely pressable”. However, we lack a
characterization of these graphs.

Question 3. Describe the uniquely pressable graphs.
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