
STAT/MATH 511

PROBABILITY

Fall, 2007

Lecture Notes

Joshua M. Tebbs

Department of Statistics

University of South Carolina



TABLE OF CONTENTS STAT/MATH 511, J. TEBBS

Contents

1 Probability 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Sample spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Basic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Properties of probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Discrete probability models and events . . . . . . . . . . . . . . . . . . . 7

1.6 Tools for counting sample points . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 The multiplication rule . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.2 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6.3 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Conditional probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.9 Law of Total Probability and Bayes Rule . . . . . . . . . . . . . . . . . . 22

2 Discrete Distributions 26

2.1 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Probability distributions for discrete random variables . . . . . . . . . . . 27

2.3 Mathematical expectation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Moment generating functions . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Geometric distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Negative binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Hypergeometric distribution . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.10 Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

i



TABLE OF CONTENTS STAT/MATH 511, J. TEBBS

3 Continuous Distributions 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Cumulative distribution functions . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Continuous random variables . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Mathematical expectation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.1 Expected values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.2 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.3 Moment generating functions . . . . . . . . . . . . . . . . . . . . 76

3.5 Uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 The gamma family of pdfs . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7.1 Exponential distribution . . . . . . . . . . . . . . . . . . . . . . . 84

3.7.2 Gamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.7.3 χ2 distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Beta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.9 Chebyshev’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Multivariate Distributions 96

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Discrete random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Continuous random vectors . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Marginal distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Conditional distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Independent random variables . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Expectations of functions of random variables . . . . . . . . . . . . . . . 113

4.8 Covariance and correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.8.1 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ii



TABLE OF CONTENTS STAT/MATH 511, J. TEBBS

4.8.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.9 Expectations and variances of linear functions of random variables . . . . 122

4.10 The multinomial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.11 The bivariate normal distribution . . . . . . . . . . . . . . . . . . . . . . 126

4.12 Conditional expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.12.1 Conditional means and curves of regression . . . . . . . . . . . . . 127

4.12.2 Iterated means and variances . . . . . . . . . . . . . . . . . . . . 128

iii



CHAPTER 1 STAT/MATH 511, J. TEBBS

1 Probability

Complementary reading: Chapter 2 (WMS).

1.1 Introduction

TERMINOLOGY : The text defines probability as a measure of one’s belief in the

occurrence of a future event. It is also sometimes called “the mathematics of uncertainty.”

EVENTS : Here are some events we may wish to assign probabilities to:

• tomorrow’s temperature exceeding 80 degrees

• manufacturing a defective part

• concluding one fertilizer is superior to another when it isn’t

• the NASDAQ losing 5 percent of its value

• you earning a “B” or better in this course.

ASSIGNING PROBABILITIES TO EVENTS : How do we assign probabilities to

events? There are three general approaches.

1. Subjective approach.

• this is based on feeling and may not even be scientific.

2. Relative frequency approach.

• this approach can be used when some random phenomenon is observed

repeatedly under identical conditions.

3. Axiomatic approach. This is the approach we will take in this course.
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Figure 1.1: The proportion of tosses which result in a “2”; each plot represents 1, 000

rolls of a fair die.

Example 1.1. An example illustrating the relative frequency approach to probability.

Suppose we roll a die 1000 times and record the number of times we observe a “2.” Let

A denote this event. The relative frequency approach says that

P (A) ≈ number of times A occurs

number of trials performed
=

n(A)

n
,

where n(A) denotes the frequency of the event, and n denotes the number of trials

performed. The ratio n(A)/n is sometimes called the relative frequency. The symbol

P (A) is shorthand for “the probability that A occurs.”

RELATIVE FREQUENCY APPROACH : Continuing with our example, suppose that

n(A) = 158. Then, we would estimate P (A) with 158/1000 = 0.158. If we performed

this experiment repeatedly, the relative frequency approach says that

n(A)/n −→ P (A),

as n →∞. Of course, if the die is unbiased, n(A)/n → P (A) = 1/6. ¤
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1.2 Sample spaces

TERMINOLOGY : In probability applications, it is common to perform some random

experiment and then observe an outcome. The set of all possible outcomes for an

experiment is called the sample space, hereafter denoted by S.

Example 1.2. The Michigan state lottery calls for a three-digit integer to be selected:

S = {000, 001, 002, ..., 998, 999}. ¤

Example 1.3. An industrial experiment consists of observing the lifetime of a certain

battery. If lifetimes are measured in hours, the sample space could be any one of

S1 = {w : w ≥ 0} S2 = {0, 1, 2, 3, ..., } S3 = {defective, not defective}. ¤

MORAL: Sample spaces are not unique; in fact, how we define the sample space has a

direct influence on how we assign probabilities to events.

1.3 Basic set theory

TERMINOLOGY : A countable set A is one whose elements can be put into a one-to-

one correspondence with N = {1, 2, ..., }, the set of natural numbers (i.e., there exists

an injection with domain A and range N ). A set that is not countable is called an

uncountable set.

TERMINOLOGY : Countable sets can be further divided up into two types. A count-

ably infinite set has an infinite number of elements. A countably finite set has a

finite number of elements.

TERMINOLOGY : Suppose that S is a nonempty set. We say that A is a subset of S,

and write A ⊂ S (or A ⊆ S), if

ω ∈ A ⇒ ω ∈ S.

PAGE 3
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In probability applications, S will denote a sample space, A will represent an event to

which we wish to assign a probability, and ω usually denotes a possible experimental

outcome. If ω ∈ A, we would say that “the event A has occurred.”

TERMINOLOGY : The null set, denoted as ∅, is the set that contains no elements.

TERMINOLOGY : The union of two sets is the set of all elements in either set or both.

We denote the union of two sets A and B as A ∪B. In ω notation,

A ∪B = {ω : ω ∈ A or ω ∈ B}.

TERMINOLOGY : The intersection of two sets A and B is the set containing those

elements which are in both sets. We denote the intersection of two sets A and B as

A ∩B. In ω notation,

A ∩B = {ω : ω ∈ A and ω ∈ B}.

EXTENSION : We can extend the notion of unions and intersections to more than two

sets. Suppose that A1, A2, ..., An is a finite sequence of sets. The union of these n sets is

n⋃
j=1

Aj = A1 ∪ A2 ∪ · · · ∪ An = {ω : ω ∈ Aj for at least one j},

and the intersection of the n sets is

n⋂
j=1

Aj = A1 ∩ A2 ∩ · · · ∩ An = {ω : ω ∈ Aj for all j}.

EXTENSION : Suppose that A1, A2, ... is a countable sequence of sets. The union and

intersection of this infinite collection of sets is

∞⋃
j=1

Aj = {ω : ω ∈ Aj for at least one j}
∞⋂

j=1

Aj = {ω : ω ∈ Aj for all j}.

Example 1.4. Define the sequence of sets Aj = [1, 1 + 1/j), for j = 1, 2, ..., . Then,

∞⋃
j=1

Aj = [1, 2) and
∞⋂

j=1

Aj = {1}. ¤
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TERMINOLOGY : The complement of a set A is the set of all elements not in A (but

still in S). We denote the complement as A. In ω notation,

A = {ω ∈ S : ω /∈ A}

TERMINOLOGY : We say that A is a subset of B, and write A ⊂ B (or A ⊆ B) if

ω ∈ A ⇒ ω ∈ B. Thus, if A and B are events in an experiment and A ⊂ B, then, if A

occurs, B must occur as well.

Distributive Laws:

1. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

2. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

DeMorgans Laws:

1. A ∩B = A ∪B

2. A ∪B = A ∩B

TERMINOLOGY : We call two events A and B mutually exclusive, or disjoint, if

A∩B = ∅. Extending this definition to a finite or countable collection of sets is obvious.

1.4 Properties of probability

THE THREE AXIOMS OF PROBABILITY : Given a nonempty sample space S, the

measure P (A) is a set function satisfying three axioms:

(1) P (A) ≥ 0, for every A ⊆ S

(2) P (S) = 1

(3) If A1, A2, ... is a countable sequence of pairwise mutually exclusive events (i.e.,

Ai ∩ Aj = ∅, for i 6= j) in S, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).
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IMPORTANT RESULTS : The following results are important properties of the prob-

ability set function P (·), and each follows from the Kolmolgorov Axioms (those just

stated). All events below are assumed to be subsets of S.

1. Complement rule: For any event A,

P (A) = 1− P (A).

Proof. Note that S = A ∪ A. Thus, since A and A are disjoint, P (A ∪ A) =

P (A) + P (A) by Axiom 3. By Axiom 2, P (S) = 1. Thus,

1 = P (S) = P (A ∪ A) = P (A) + P (A). ¤

2. P (∅) = 0.

Proof. Take A = ∅ and A = S. Use the last result and Axiom 2. ¤

3. Monotonicity property: Suppose that A and B are two events such that A ⊂ B.

Then, P (A) ≤ P (B).

Proof. Write B = A ∪ (B ∩ A). Clearly, A and (B ∩ A) are disjoint. Thus, by

Axiom 3, P (B) = P (A) + P (B ∩ A). Because P (B ∩ A) ≥ 0, we are done. ¤

4. For any event A, P (A) ≤ 1.

Proof. Since A ⊂ S, this follows from the monotonicity property and Axiom 2. ¤

5. Inclusion-exclusion: Suppose that A and B are two events. Then,

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. Write A ∪ B = A ∪ (A ∩ B). Then, since A and (A ∩ B) are disjoint, by

Axiom 3,

P (A ∪B) = P (A) + P (A ∩B).

Now, write B = (A ∩ B) ∪ (A ∩ B). Clearly, (A ∩ B) and (A ∩ B) are disjoint.

Thus, again, by Axiom 3,

P (B) = P (A ∩B) + P (A ∩B).

Combining the last two statements gives the result. ¤
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Example 1.5. The probability that train 1 is on time is 0.95, and the probability that

train 2 is on time is 0.93. The probability that both are on time is 0.90.

(a) What is the probability that at least one train is on time?

Solution: Denote by Ai the event that train i is on time (for i = 1, 2). Then,

P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2) = 0.95 + 0.93− 0.90 = 0.98. ¤

(b) What is the probability that neither train is on time?

Solution: By DeMorgan’s Law

P (A1 ∩ A2) = P (A1 ∪ A2) = 1− P (A1 ∪ A2) = 1− 0.98 = 0.02. ¤

EXTENSION : The inclusion-exclusion formula can be extended to any finite sequence

of sets A1, A2, ..., An. For example, if n = 3,

P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3)− P (A1 ∩ A2)− P (A1 ∩ A3)

− P (A2 ∩ A3) + P (A1 ∩ A2 ∩ A3).

In general, the inclusion-exclusion formula can be written for any finite sequence:

P

(
n⋃

i=1

Aj

)
=

n∑
i=1

P (Ai)−
∑
i1<i2

P (Ai1 ∩ Ai2) +
∑

i1<i2<i3

P (Ai1 ∩ Ai2 ∩ Ai3)−

· · ·+ (−1)n+1P (Ai1 ∩ Ai2 ∩ · · · ∩ Ain).

Of course, if the sets A1, A2, ..., An are disjoint, then we arrive back at

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai),

a result implied by Axiom 3.

1.5 Discrete probability models and events

TERMINOLOGY : If a sample space for an experiment contains a finite or countable

number of sample points, we call it a discrete sample space.
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• Finite: “number of sample points < ∞.”

• Countable: “number of sample points may equal ∞, but can be counted; i.e.,

sample points may be put into a 1:1 correspondence with N = {1, 2, ..., }.”

Example 1.6. A standard roulette wheel contains an array of numbered compartments

referred to as “pockets.” The pockets are either red, black, or green. The numbers 1

through 36 are evenly split between red and black, while 0 and 00 are green pockets. On

the next play, one may be interested in the following events:

A1 = {13}
A2 = {red}
A3 = {0, 00}

TERMINOLOGY : A simple event is one that can not be decomposed. That is, a simple

event corresponds to exactly one sample point ω. Compound events are those events

that contain more than one sample point. In Example 1.6, because A1 only contains one

sample point, it is a simple event. The events A2 and A3 contain more than one sample

point; thus, they are compound events.

STRATEGY : Computing the probability of a compound event can be done by

(1) identifying all sample points associated with the event

(2) adding up the probabilities associated with each sample point.

NOTATION : We have used ω to denote an element in a set (i.e., a sample point in an

event). In a more probabilistic spirit, your authors use the symbol Ei to denote the ith

sample point (i.e., simple event). Thus, if A denotes any compound event,

P (A) =
∑

i:Ei∈A

P (Ei).

We simply sum up the simple event probabilities P (Ei) for all i such that Ei ∈ A.
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RESULT : Suppose a discrete sample space S contains N < ∞ sample points, each of

which are equally likely. If the event A consists of na sample points, then P (A) = na/N .

Proof. Write S = E1 ∪ E2 ∪ · · · ∪ EN , where Ei corresponds to the ith sample point;

i = 1, 2, ..., N . Then,

1 = P (S) = P (E1 ∪ E2 ∪ · · · ∪ EN) =
N∑

i=1

P (Ei).

Now, as P (E1) = P (E2) = · · · = P (EN), we have that

1 =
N∑

i=1

P (Ei) = NP (E1),

and, thus, P (E1) = 1
N

= P (E2) = · · · = P (EN). Without loss of generality, take

A = E1 ∪ E2 ∪ · · · ∪ Ena . Then,

P (A) = P (E1 ∪ E2 ∪ · · · ∪ Ena) =
na∑
i=1

P (Ei) =
na∑
i=1

1

N
= na/N. ¤

1.6 Tools for counting sample points

1.6.1 The multiplication rule

MULTIPLICATION RULE : Consider an experiment consisting of k ≥ 2 “stages,” where

n1 = number of ways stage 1 can occur

n2 = number of ways stage 2 can occur

...

nk = number of ways stage k can occur

Then, there are
k∏

i=1

ni = n1 × n2 × · · · × nk

different outcomes in the experiment.

Example 1.7. An experiment consists of rolling two dice. Envision stage 1 as rolling the

first and stage 2 as rolling the second. Here, n1 = 6 and n2 = 6. By the multiplication

rule, there are n1 × n2 = 6× 6 = 36 different outcomes. ¤
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Example 1.8. In a field experiment, I want to form all possible treatment combinations

among the three factors:

Factor 1: Fertilizer (60 kg, 80 kg, 100kg: 3 levels)

Factor 2: Insects (infected/not infected: 2 levels)

Factor 3: Temperature (70F, 90F: 2 levels).

Here, n1 = 3, n2 = 2, and n3 = 2. Thus, by the multiplication rule, there are n1×n2×n3 =

12 different treatment combinations. ¤

Example 1.9. Suppose that an Iowa license plate consists of seven places; the first three

are occupied by letters; the remaining four with numbers. Compute the total number of

possible orderings if

(a) there are no letter/number restrictions.

(b) repetition of letters is prohibited.

(c) repetition of numbers is prohibited.

(d) repetitions of numbers and letters are prohibited.

Answers:

(a) 26× 26× 26× 10× 10× 10× 10 = 175, 760, 000

(b) 26× 25× 24× 10× 10× 10× 10 = 156, 000, 000

(c) 26× 26× 26× 10× 9× 8× 7 = 88, 583, 040

(d) 26× 25× 24× 10× 9× 8× 7 = 78, 624, 000

1.6.2 Permutations

TERMINOLOGY : A permutation is an arrangement of distinct objects in a particular

order. Order is important.
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PROBLEM : Suppose that we have n distinct objects and we want to order (or permute)

these objects. Thinking of n slots, we will put one object in each slot. There are

• n different ways to choose the object for slot 1,

• n− 1 different ways to choose the object for slot 2,

• n− 2 different ways to choose the object for slot 3,

and so on, down to

• 2 different ways to choose the object for slot (n− 1), and

• 1 way to choose for the last slot.

PUNCHLINE : By the multiplication rule, there are n(n−1)(n−2) · · · (2)(1) = n! different

ways to order (permute) the n distinct objects.

Example 1.10. My bookshelf has 10 books on it. How many ways can I permute the

10 books on the shelf? Answer: 10! = 3, 628, 800. ¤

Example 1.11. Now, suppose that in Example 1.10 there are 4 math books, 2 chemistry

books, 3 physics books, and 1 statistics book. I want to order the 10 books so that all

books of the same subject are together. How many ways can I do this?

Solution: Use the multiplication rule.

Stage 1 Permute the 4 math books 4!

Stage 2 Permute the 2 chemistry books 2!

Stage 3 Permute the 3 physics books 3!

Stage 4 Permute the 1 statistics book 1!

Stage 5 Permute the 4 subjects {m, c, p, s} 4!

Thus, there are 4!× 2!× 3!× 1!× 4! = 6912 different orderings. ¤
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PERMUTATIONS : With a collection of n distinct objects, we want to choose and per-

mute r of them (r ≤ n). The number of ways to do this is

Pn,r ≡ n!

(n− r)!
.

The symbol Pn,r is read “the permutation of n things taken r at a time.”

Proof. Envision r slots. There are n ways to fill the first slot, n−1 ways to fill the second

slot, and so on, until we get to the rth slot, in which case there are n− r + 1 ways to fill

it. Thus, by the multiplication rule, there are

n(n− 1) · · · (n− r + 1) =
n!

(n− r)!

different permutations. ¤

Example 1.12. With a group of 5 people, I want to choose a committee with three

members: a president, a vice-president, and a secretary. There are

P5,3 =
5!

(5− 3)!
=

120

2
= 60

different committees possible. Here, note that order is important. For any 3 people

selected, there are 3! = 6 different committees possible. ¤

Example 1.13. In an agricultural experiment, we are examining 10 plots of land;

however, only four can be used in an experiment run to test four new (different) fertilizers.

How many ways can I choose these four plots and then assign fertilizers?

Solution: There are

P10,4 =
10!

(10− 4)!
= 5040

different permutations. Here, we are assuming fertilizer order is important.

(a) What is the probability of observing the permutation (7, 4, 2, 6)?

(b) What is the probability of observing a permutation with only even-numbered plots?

Answers: (a) 1/5040; (b) 120/5040.
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CURIOSITY : What happens if the objects to permute are not distinct?

Example 1.14. Consider the word PEPPER. How many permutations of the letters

are possible?

Trick: Initially, treat all letters as distinct objects by writing, say,

P1E1P2P3E2R.

With P1E1P2P3E2R, there are 6! = 720 different orderings of these distinct objects. Now,

we recognize that there are

3! ways to permute the P s

2! ways to permute the Es

1! ways to permute the Rs.

Thus, 6! is 3!× 2!× 1! times too large, so we need to divide 6! by 3!× 2!× 1!; i.e., there

are
6!

3! 2! 1!
= 60

possible permutations. ¤

MULTINOMIAL COEFFICIENTS : Suppose that in a set of n objects, there are n1 that

are similar, n2 that are similar, ..., nk that are similar, where n1 +n2 + · · ·+nk = n. The

number of permutations (i.e., distinguishable permutations, in the sense that the objects

are put into distinct groups) of the n objects is given by the multinomial coefficient
(

n

n1n2 · · ·nk

)
≡ n!

n1! n2! · · · nk!
.

NOTE : Multinomial coefficients arise in the algebraic expansion of the multinomial ex-

pression (x1 + x2 + · · ·+ xk); i.e.,

(x1 + x2 + · · ·+ xk)
n =

∑
D

n!

n1! n2! · · · nk!
xn1

1 xn2
2 · · ·xnk

k ,

where

D =

{
(n1, n2, ..., nk) :

k∑
j=1

ni = n

}
.
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Example 1.15. How many signals, each consisting of 9 flags in a line, can be made from

4 white flags, 2 blue flags, and 3 yellow flags?

Answer:
9!

4! 2! 3!
= 1260. ¤

Example 1.16. In Example 1.15, assuming all permutations are equally-likely, what is

the probability that all of the white flags are grouped together? I will offer two solutions.

The solutions differ in the way I construct the sample space. Define

A = {all four white flags are grouped together}.

Solution 1. Work with a sample space that does not treat the flags as distinct objects,

but merely considers color. Then, we know from Example 1.15 that there are 1260

different orderings. Thus,

N = number of sample points in S = 1260.

Let na denote the number of ways that A can occur. We find na by using the multipli-

cation rule.

Stage 1 Pick four adjacent slots n1 = 6

Stage 2 With the remaining 5 slots, permute

the 2 blues and 3 yellows n2 = 5!
2!3!

= 10

Thus, na = 6× 10 = 60. Finally, since we have equally likely outcomes, P (A) = na/N =

60/1260 ≈ 0.0476. ¤

Solution 2. Initially, treat all 9 flags as distinct objects; i.e.,

W1W2W3W4B1B2Y1Y2Y3,

and consider the sample space consisting of the 9! different permutations of these 9

distinct objects. Then,

N = number of sample points in S = 9!

PAGE 14



CHAPTER 1 STAT/MATH 511, J. TEBBS

Let na denote the number of ways that A can occur. We find na, again, by using the

multiplication rule.

Stage 1 Pick adjacent slots for W1,W2,W3,W4 n1 = 6

Stage 2 With the four chosen slots, permute W1,W2,W3,W4 n2 = 4!

Stage 3 With remaining 5 slots, permute B1, B2, Y1, Y2, Y3 n3 = 5!

Thus, na = 6× 4!× 5! = 17280. Finally, since we have equally likely outcomes, P (A) =

na/N = 17280/9! ≈ 0.0476. ¤

1.6.3 Combinations

COMBINATIONS : Given n distinct objects, the number of ways to choose r of them

(r ≤ n), without regard to order, is given by

Cn,r =

(
n

r

)
≡ n!

r! (n− r)!
.

The symbol Cn,r is read “the combination of n things taken r at a time.” By convention,

0! = 1.

Proof : Choosing r objects is equivalent to breaking the n objects into two distiguishable

groups:

Group 1 r chosen

Group 2 (n− r) not chosen.

There are Cn,r = n!
r!(n−r)!

ways to do this. ¤

REMARK : We will adopt the notation
(

n
r

)
, read “n choose r,” as the symbol for Cn,r.

The terms
(

n
r

)
are often called binomial coefficients since they arise in the algebraic

expansion of a binomial; viz.,

(x + y)n =
n∑

r=0

(
n

r

)
xn−ryr.
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Example 1.17. Return to Example 1.12. Now, suppose that we only want to choose

3 committee members from 5 (without designations for president, vice-president, and

secretary). Then, there are

(
5

3

)
=

5!

3! (5− 3)!
=

5× 4× 3!

3!× 2!
= 10

different committees. ¤

NOTE : From Examples 1.12 and 1.17, one should note that

Pn,r = r!× Cn,r.

Recall that combinations do not regard order as important. Thus, once we have

chosen our r objects (there are Cn,r ways to do this), there are then r! ways to permute

those r chosen objects. Thus, we can think of a permutation as simply a combination

times the number of ways to permute the r chosen objects.

Example 1.18. A company receives 20 hard drives. Five of the drives will be randomly

selected and tested. If all five are satisfactory, the entire lot will be accepted. Otherwise,

the entire lot is rejected. If there are really 3 defectives in the lot, what is the probability

of accepting the lot?

Solution: First, the number of sample points in S is given by

N =

(
20

5

)
=

20!

5! (20− 5)!
= 15504.

Let A denote the event that the lot is accepted. How many ways can A occur? Use the

multiplication rule.

Stage 1 Choose 5 good drives from 17
(
17
5

)

Stage 2 Choose 0 bad drives from 3
(
3
0

)

By the multiplication rule, there are na =
(
17
5

)× (
3
0

)
= 6188 different ways A can occur.

Assuming an equiprobability model (i.e., each outcome is equally likely), P (A) =

na/N = 6188/15504 ≈ 0.399. ¤
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1.7 Conditional probability

MOTIVATION : In some problems, we may be fortunate enough to have prior knowl-

edge about the likelihood of events related to the event of interest. It may be of interest

to incorporate this information into a probability calculation.

TERMINOLOGY : Let A and B be events in a non-empty sample space S. The condi-

tional probability of A, given that B has occurred, is given by

P (A|B) =
P (A ∩B)

P (B)
,

provided that P (B) > 0.

Example 1.19. A couple has two children.

(a) What is the probability that both are girls?

(b) What is the probability that both are girls, if the eldest is a girl?

Solution: (a) The sample space is given by

S = {(M,M), (M, F ), (F, M), (F, F )}

and N = 4, the number of sample points in S. Define

A1 = {1st born child is a girl},
A2 = {2nd born child is a girl}.

Clearly, A1 ∩ A2 = {(F, F )} and P (A1 ∩ A2) = 1/4, assuming that the four outcomes in

S are equally likely. ¤

Solution: (b) Now, we want P (A2|A1). Applying the definition of conditional proba-

bility, we get

P (A2|A1) =
P (A1 ∩ A2)

P (A1)
=

1/4

1/2
= 1/2. ¤
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REMARK : In a profound sense the “new information” in Example 1.19 (i.e., that the

eldest is a girl) induces a new (or “restricted”) sample space given by

S∗ = {(F, M), (F, F )}.

On this space, note that P (A2) = 1/2 (computed with respect to S∗). Also note that

whether you compute P (A2|A1) with the original sample space S or compute P (A2) with

the restricted space S∗, you will get the same answer.

Example 1.20. In a certain community, 36 percent of the families own a dog, 22 percent

of the families that own a dog also own a cat, and 30 percent of the families own a cat.

A family is selected at random.

(a) Compute the probability that the family owns both a cat and dog.

(b) Compute the probability that the family owns a dog, given that it owns a cat.

Solution: Let C = {family owns a cat} and D = {family owns a dog}. In (a), we want

P (C ∩D). But,

0.22 = P (C|D) =
P (C ∩D)

P (D)
=

P (C ∩D)

0.36
.

Thus, P (C ∩D) = 0.36× 0.22 = 0.0792. For (b), simply use the definition of conditional

probability:

P (D|C) =
P (C ∩D)

P (C)
= 0.0792/0.30 = 0.264. ¤

PROBABILITY AXIOMS : It is interesting to note that conditional probability satisfies

the axioms for a probability set function, when P (B) > 0. In particular,

1. P (A|B) ≥ 0

2. P (B|B) = 1

3. If A1, A2, ... is a countable sequence of pairwise mutually exclusive events (i.e.,

Ai ∩ Aj = ∅, for i 6= j) in S, then

P

( ∞⋃
i=1

Ai

∣∣∣∣B
)

=
∞∑
i=1

P (Ai|B).

PAGE 18



CHAPTER 1 STAT/MATH 511, J. TEBBS

MULTIPLICATION LAW OF PROBABILITY : Suppose A and B are events in a non-

empty sample space S. Then,

P (A ∩B) = P (B|A)P (A)

= P (A|B)P (B).

Proof. As long as P (A) and P (B) are strictly positive, this follows directly from the

definition of conditional probability. ¤

EXTENSION : The multiplication law of probability can be extended to more than 2

events. For example,

P (A1 ∩ A2 ∩ A3) = P [(A1 ∩ A2) ∩ A3]

= P (A3|A1 ∩ A2)× P (A1 ∩ A2)

= P (A3|A1 ∩ A2)× P (A2|A1)× P (A1).

NOTE : This suggests that we can compute probabilities like P (A1 ∩ A2 ∩ A3) “sequen-

tially” by first computing P (A1), then P (A2|A1), then P (A3|A1 ∩ A2). The probability

of a k-fold intersection can be computed similarly; i.e.,

P

(
k⋂

i=1

Ai

)
= P (A1)× P (A2|A1)× P (A3|A1 ∩ A2)× · · · × P

(
Ak

∣∣∣∣
k−1⋂
i=1

Ai

)
.

Example 1.21. I am dealt a hand of 5 cards. What is the probability that they are all

spades?

Solution. Define Ai to be the event that card i is a spade (i = 1, 2, 3, 4, 5). Then,

P (A1) =
13

52

P (A2|A1) =
12

51

P (A3|A1 ∩ A2) =
11

50

P (A4|A1 ∩ A2 ∩ A3) =
10

49

P (A5|A1 ∩ A2 ∩ A3 ∩ A4) =
9

48
,

so that

P (A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5) =
13

52
× 12

51
× 11

50
× 10

49
× 9

48
≈ 0.0005. ¤
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1.8 Independence

TERMINOLOGY : When the occurrence or non-occurrence of A has no effect on whether

or not B occurs, and vice-versa, we say that the events A and B are independent.

Mathematically, we define A and B to be independent iff

P (A ∩B) = P (A)P (B).

Otherwise, A and B are called dependent events. Note that if A and B are independent,

P (A|B) =
P (A ∩B)

P (B)
=

P (A)P (B)

P (B)
= P (A)

and

P (B|A) =
P (B ∩ A)

P (A)
=

P (B)P (A)

P (A)
= P (B).

Example 1.22. A red die and a white die are rolled. Let A = {4 on red die} and

B = {sum is odd}. Of the 36 outcomes in S, 6 are favorable to A, 18 are favorable to

B, and 3 are favorable to A∩B. Thus, since outcomes are assumed to be equally-likely,

3

36
= P (A ∩B) = P (A)P (B) =

6

36
× 18

36
,

and the events A and B are independent. ¤

Example 1.23. In an engineering system, two components are place in a series; that

is, the system is functional as long as both components are. Let Ai; i = 1, 2, denote the

event that component i is functional. Assuming independence, the probability the

system is functional is then P (A1 ∩ A2) = P (A1)P (A2). If P (Ai) = 0.95, for example,

then P (A1 ∩ A2) = (0.95)2 = 0.9025. ¤

INDEPENDENCE OF COMPLEMENTS : If A and B are independent events, so are

(a) A and B

(b) A and B

(c) A and B.
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Proof. We will only prove (a). The other parts follow similarly.

P (A ∩B) = P (A|B)P (B) = [1− P (A|B)]P (B) = [1− P (A)]P (B) = P (A)P (B). ¤

EXTENSION : The concept of independence (and independence of complements) can be

extended to any finite number of events in S.

TERMINOLOGY : Let A1, A2, ..., An denote a collection of n ≥ 2 events in a non-empty

sample space S. The events A1, A2, ..., An are said to be mutually independent if for

any subcollection of events, say, Ai1 , Ai2 , ..., Aik , 2 ≤ k ≤ n, we have

P

(
k⋂

j=1

Aij

)
=

k∏
j=1

P (Aij).

Challenge: Come up with a three events which are pairwise independent, but not

mutually independent.

COMMON SETTING : Many experiments consist of a sequence of n trials that are

independent (e.g., flipping a coin 10 times). If Ai denotes the event associated with the

ith trial, and the trials are independent,

P

(
n⋂

i=1

Ai

)
=

n∏
i=1

P (Ai).

Example 1.24. An unbiased die is rolled six times. Let Ai = {i appears on roll i}, for

i = 1, 2, ..., 6. Then, P (Ai) = 1/6, and assuming independence,

P (A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6) =
6∏

i=1

P (Ai) =
(1

6

)6

.

Suppose that if Ai occurs, we will call it “a match.” What is the probability of at least

one match in the six rolls?

Solution: Let B denote the event that there is at least one match. Then, B denotes

the event that there are no matches. Now,

P (B) = P (A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6) =
6∏

i=1

P (Ai) =
(5

6

)6

= 0.335.

Thus, P (B) = 1− P (B) = 1− 0.335 = 0.665, by the complement rule.

Exercise: Generalize this result to an n sided die. What does this probability converge

to as n →∞? ¤

PAGE 21



CHAPTER 1 STAT/MATH 511, J. TEBBS

1.9 Law of Total Probability and Bayes Rule

SETTING : Suppose A and B are events in a non-empty sample space S. We can easily

express the event A as follows

A = (A ∩B) ∪ (A ∩B)︸ ︷︷ ︸
union of disjoint events

.

Thus, by Axiom 3,

P (A) = P (A ∩B) + P (A ∩B)

= P (A|B)P (B) + P (A|B)P (B),

where the last step follows from the multiplication law of probability. This is called the

Law of Total Probability (LOTP). The LOTP can be very helpful. Sometimes com-

puting P (A|B), P (A|B), and P (B) may be easily computed with available information

whereas computing P (A) directly may be difficult.

NOTE : The LOTP follows from the fact that B and B partition S; that is,

(a) B and B are disjoint, and

(b) B ∪B = S.

Example 1.25. An insurance company classifies people as “accident-prone” and “non-

accident-prone.” For a fixed year, the probability that an accident-prone person has an

accident is 0.4, and the probability that a non-accident-prone person has an accident

is 0.2. The population is estimated to be 30 percent accident-prone. (a) What is the

probability that a new policy-holder will have an accident?

Solution:

Define A = {policy holder has an accident} and B = {policy holder is accident-prone}.
Then, P (B) = 0.3, P (A|B) = 0.4, P (B) = 0.7, and P (A|B) = 0.2. By the LOTP,

P (A) = P (A|B)P (B) + P (A|B)P (B)

= (0.4)(0.3) + (0.2)(0.7) = 0.26. ¤
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(b) Now suppose that the policy-holder does have an accident. What is the probability

that he was “accident-prone?”

Solution: We want P (B|A). Note that

P (B|A) =
P (A ∩B)

P (A)
=

P (A|B)P (B)

P (A)
=

(0.4)(0.3)

0.26
= 0.46. ¤

NOTE : From this last part, we see that, in general,

P (B|A) =
P (A|B)P (B)

P (A)
=

P (A|B)P (B)

P (A|B)P (B) + P (A|B)P (B)
.

This is a form of Bayes Rule.

Example 1.26. A lab test is 95 percent effective in detecting a certain disease when it

is present (sensitivity). However, there is a one-percent false-positive rate; that is, the

test says that one percent of healthy persons have the disease (specificity). If 0.5 percent

of the population truly has the disease, what is the probability that a person has the

disease given that

(a) his test is positive?

(b) his test is negative?

Solution: Let D = {disease is present} and z = {test is positive}. We are given that

P (D) = 0.005, P (z|D) = 0.95 (sensitivity), P (z|D) = 0.01 (specificity), and, for (a),

we want to compute P (D|z). By Bayes Rule,

P (D|z) =
P (z|D)P (D)

P (z|D)P (D) + P (z|D)P (D)

=
(0.95)(0.005)

(0.95)(0.005) + (0.01)(0.995)
≈ 0.323.

The reason this is so low is that P (z|D) is high relative to P (D). In (b), we want

P (D|z). By Bayes Rule,

P (D|z) =
P (z|D)P (D)

P (z|D)P (D) + P (z|D)P (D)

=
(0.05)(0.005)

(0.05)(0.005) + (0.99)(0.995)
≈ 0.00025. ¤
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Table 1.1: The general Bayesian scheme.

Measure before test Result Updated measure

P (D) F P (D|F )

0.005 −→ z −→ 0.323

0.005 −→ z −→ 0.00025

NOTE : We have discussed the LOTP and Bayes Rule in the case of the partition {B, B}.
However, these rules hold for any partition.

TERMINOLOGY : A sequence of sets B1, B2, ..., Bk is said to form a partition of the

sample space S if

(a) B1 ∪B2 ∪ · · · ∪Bk = S (exhaustive condition), and

(b) Bi ∩Bj = ∅, for all i 6= j (disjoint condition).

LAW OF TOTAL PROABILITY (restated): Suppose that B1, B2, ..., Bk forms a partition

of S, and suppose P (Bi) > 0 for all i = 1, 2, ..., k. Then,

P (A) =
k∑

i=1

P (A|Bi)P (Bi).

Proof. Write

A = A ∩ S = A ∩ (B1 ∪B2 ∪ · · · ∪ Bk) =
k⋃

i=1

(A ∩Bi).

Thus,

P (A) = P

[
k⋃

i=1

(A ∩Bi)

]
=

k∑
i=1

P (A ∩Bi) =
k∑

i=1

P (A|Bi)P (Bi). ¤

BAYES RULE (restated): Suppose that B1, B2, ..., Bk forms a partition of S, and suppose

that P (A) > 0 and P (Bi) > 0 for all i = 1, 2, ..., k. Then,

P (Bj|A) =
P (A|Bj)P (Bj)∑k
i=1 P (A|Bi)P (Bi)

.
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Proof. Simply apply the definition of conditional probability and the multiplication law

of probability to get

P (Bj|A) =
P (A|Bj)P (Bj)

P (A)
.

Then, just apply LOTP to P (A) in the denominator to get the result. ¤

REMARK : Bayesians will call P (Bj) the prior probability for the event Bj; they call

P (Bj|A) the posterior probability of Bj.

Example 1.27. Suppose that a manufacturer buys approximately 60 percent of a raw

material (in boxes) from Supplier 1, 30 percent from Supplier 2, and 10 percent from

Supplier 3 (these are the prior probabilities). For each supplier, defective rates are as

follows: Supplier 1: 0.01, Supplier 2: 0.02, and Supplier 3: 0.03. Suppose that the

manufacturer observes a defective box of raw material.

(a) What is the probability that it came from Supplier 2?

(b) What is the probability that the defective did not come from Supplier 3?

Solution: (a) Let A = {observe defective}, and B1, B2, and B3, respectively, denote

the events that the box comes from Supplier 1, 2, and 3. Note that {B1, B2, B3} partitions

the space of possible suppliers. Thus, by Bayes Rule, we have

P (B2|A) =
P (A|B2)P (B2)

P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
(0.02)(0.3)

(0.01)(0.6) + (0.02)(0.3) + (0.03)(0.1)

= 0.40.

Solution: (b) First, compute the posterior probability P (B3|A). By Bayes Rule,

P (B3|A) =
P (A|B3)P (B3)

P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
(0.03)(0.1)

(0.01)(0.6) + (0.02)(0.3) + (0.03)(0.1)

= 0.20.

Thus, P (B3|A) = 1− P (B3|A) = 1− 0.20 = 0.80, by the complement rule. ¤

PAGE 25



CHAPTER 2 STAT/MATH 511, J. TEBBS

2 Discrete Distributions

Complementary reading: Chapter 3 (WMS), except § 3.10-11.

2.1 Random variables

MATHEMATICAL DEFINITION : A random variable Y is a function whose domain is

the sample space S and whose range is the set of real numbers R = {y : −∞ < y < ∞}.

WORKING DEFINITION : A random variable is a variable whose observed value is

determined by chance.

Example 2.1. Suppose that our experiment consists of flipping two fair coins. The

sample space consists of four sample points:

S = {(H, H), (H, T ), (T, H), (T, T )}.

Now, let Y denote the number of heads observed. Before we perform the experiment, we

do not know, with certainty, the value of Y . What are the possible values of Y ?

Sample point, Ei Y (Ei) = y

(H,H) 2

(H, T ) 1

(T,H) 1

(T, T ) 0

In a profound sense, a random variable Y takes sample points Ei ∈ S and assigns them

a real number. This is precisely why we can think of Y as a function; i.e.,

Y [(H, H)] = 2 Y [(H, T )] = 1 Y [(T, H)] = 1 Y [(T, T )] = 0,

so that

P (Y = 2) = P [{(H,H)}] = 1/4

P (Y = 1) = P [{(H,T )}] + P [{(T, H)}] = 1/4 + 1/4 = 1/2

P (Y = 0) = P [{(T, T )}] = 1/4.
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NOTE : From these probability calculations; note that we can

• work on the sample space S and compute probabilities from S, or

• work on R and compute probabilities for events {Y ∈ B}, where B ⊂ R.

NOTATION : We denote a random variable Y with a capital letter; we denote an

observed value of Y as y, a lowercase letter. This is standard notation.

Example 2.2. Let Y denote the weight, in ounces, of the next newborn boy in Columbia,

SC. Here, Y is random variable. After the baby is born, we observe y = 128. ¤

2.2 Probability distributions for discrete random variables

TERMINOLOGY : The support of a random variable Y is set of all possible values that

Y can assume. We will often denote the support set as R. If the random variable Y has

a support set R that is either finite or countable, we call Y a discrete random variable.

Example 2.3. Suppose that in rolling an unbiased die, we record two random variables:

X = face value on the first roll

Y = number of rolls needed to observe a six.

The support of X is RX = {1, 2, 3, 4, 5, 6}. The support of Y is RY = {1, 2, 3, ...}. RX is

finite and RY is countable; thus, both random variables X and Y are discrete. ¤

GOAL: With discrete random variables, we would like to assign probabilities to events

of the form {Y = y}. That is, we would like to compute P (Y = y) for any y ∈ R. To

do this, one approach is to determine all sample points Ei ∈ S such that Y (Ei) = y and

then compute

pY (y) ≡ P (Y = y) =
∑

P [Ei ∈ S : Y (Ei) = y],

for all y ∈ R. However, as we will see, this approach is often unnecessary.
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TERMINOLOGY : The function pY (y) = P (Y = y) is called the probability mass

function (pmf) for the discrete random variable Y .

FACTS : The pmf pY (y) for a discrete random variable Y consists of two parts:

(a) R, the support set of Y

(b) a probability assignment P (Y = y), for all y ∈ R.

PROPERTIES : The pmf pY (y) for a discrete random variable Y satisfies the following:

(1) pY (y) > 0, for all y ∈ R

(2) The sum of the probabilities, taken over all support points, must equal one; i.e.,

∑
y∈R

pY (y) = 1.

(3) The probability of an event B is computed by adding the probabilities pY (y) for

all y ∈ B; i.e.,

P (Y ∈ B) =
∑
y∈B

pY (y).

Example 2.4. Suppose that we roll an unbiased die twice and observe the face on each

roll. Here, the sample space is

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

Let the random variable Y record the sum of the two faces. Here, R = {2, 3, ..., 12}.

P (Y = 2) = P ({all Ei ∈ S where Y (Ei) = y = 2})
= P [{(1, 1)}] = 1/36.
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P (Y = 3) = P ({all Ei ∈ S where Y (Ei) = y = 3})
= P [{(1, 2)}] + P [{(2, 1)}] = 2/36.

The calculation P (Y = y) is performed similarly for y = 4, 5, ..., 12. The pmf for Y can

be given as a formula, table, or graph. In tabular form, the pmf of Y is given by

y 2 3 4 5 6 7 8 9 10 11 12

pY (y) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

A probability histogram is a display which depicts a pmf in graphical form. The

probability histogram for the pmf in Example 2.4 is given in Figure 2.2.

0 2 4 6 8 10 12

y

0.00

0.05

0.10

0.15

p(
y)

=P
(Y

=y
)

Figure 2.2: Probability histogram for the pmf in Example 2.4.

The astute reader will note that a closed form formula for the pmf exists; i.e.,

pY (y) =





1
36

(6− |7− y|) , y = 2, 3, ..., 12

0, otherwise.

Is pY (y) valid? Yes, since pY (y) > 0 for all support points y = 2, 3, ..., 12, and

∑
y∈R

pY (y) =
12∑

y=2

1

36
(6− |7− y|) = 1.
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Question: Define the events B1 = {the sum is 3} and B2 = {the sum is odd}. In

Example 2.4,

P (B1) = pY (3) = 2/36

and

P (B2) =
∑
y∈B2

pY (y)

= pY (3) + pY (5) + pY (7) + pY (9) + pY (11)

= 2/36 + 4/36 + 6/36 + 4/36 + 2/36 = 1/2.

Example 2.5. An experiment consists of rolling an unbiased die until the first “6”

is observed. Let Y denote the number of rolls needed. Here, the support set is R =

{1, 2, ..., }. Assuming independent trials, we have

P (Y = 1) =
1

6

P (Y = 2) =
5

6
× 1

6

P (Y = 3) =
5

6
× 5

6
× 1

6
;

in general, the probability that y rolls are needed to observe the first “6” is given by

P (Y = y) =
1

6

(
5

6

)y−1

,

for all y = 1, 2, .... Thus, the pmf for Y is given by

pY (y) =





1
6

(
5
6

)y−1
, y = 1, 2, ...

0, otherwise.

Is this a valid pmf? Clearly, pY (y) > 0 for all y ∈ R and

∑
y∈R

pY (y) =
∞∑

y=1

1

6

(
5

6

)y−1

=
∞∑

x=0

1

6

(
5

6

)x

=

( 1
6

1− 5
6

)
= 1. ¤
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Figure 2.3: Probability histogram for the pmf in Example 2.5.

IMPORTANT : In the last calculation, we have used an important fact concerning infi-

nite geometric series; namely, if a is any real number and |r| < 1. Then,
∞∑

x=0

arx =
a

1− r
.

The proof of this fact can be found in any standard calculus text. We will use this fact

many times in this course!

Exercise: In Example 2.5, find P (B), where

B = {the first “6” is observed on an odd-numbered roll}.

2.3 Mathematical expectation

TERMINOLOGY : Let Y be a discrete random variable with pmf pY (y) and support R.

The expected value of Y is given by

E(Y ) =
∑
y∈R

ypY (y).
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DESCRIPTION : In words, the expected value for discrete random variable is a weighted

average of possible values the variable can assume; each value, y, being weighted with

the probability, pY (y), that the random variable assumes the corresponding value.

MATHEMATICAL ASIDE : For the expected value E(Y ) to exist, the sum above must

be absolutely convergent; i.e., we need

∑
y∈R

|y|pY (y) < ∞.

If E(Y ) is not finite; i.e., if E(Y ) = ∞, we say that E(Y ) does not exist.

Example 2.6. Let the random variable Y have pmf

pY (y) =





1
10

(5− y), y = 1, 2, 3, 4

0, otherwise.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

y

0.0

0.1

0.2

0.3

0.4

p(
y)

=P
(Y

=y
)

Figure 2.4: Probability histogram for the pmf in Example 2.6.

The pmf for Y is depicted in Figure 2.4. The expected value of Y is given by

∑
y∈R

ypY (y) =
4∑

y=1

y
1

10
(5− y)

= 1(4/10) + 2(3/10) + 3(2/10) + 4(1/10) = 2. ¤
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Example 2.7. A random variable whose expected value does not exist. Suppose that the

random variable Y has pmf

pY (y) =





1/y, y ∈ R

0, otherwise,

where the support set R = {2i; i = 1, 2, 3, ..., }. It is easy to see that pY (y) is a valid

pmf since
∑
y∈R

pY (y) =
∞∑

y=1

(
1

2

)y

=

[ ∞∑
y=0

(
1

2

)y
]
− 1 =

1

1− 1
2

− 1 = 1.

However,

E(Y ) =
∑
y∈R

ypY (y) =
∑
y∈R

y

(
1

y

)
=

∑
y∈R

1 = ∞,

since R, the support set, is countably infinite. ¤

INTERPRETATION : How is E(Y ) interpreted?

(a) the “center of gravity” of a probability distribution

(b) a long-run average

(c) the first moment of the random variable.

STATISTICAL CONNECTION : When used in a statistical context, the expected value

E(Y ) is sometimes called the mean of Y , and we might use the symbol µ or µY when

discussing it; that is,

E(Y ) = µ = µY .

In statistical settings, µ denotes a population parameter.

EXPECTATIONS OF FUNCTIONS OF Y : Let Y be a discrete random variable with

pmf pY (y) and support R, and suppose that g is a real-valued function. Then, g(Y ) is a

random variable and

E[g(Y )] =
∑
y∈R

g(y)pY (y).

The proof of this result is given on pp 90 (WMS). ¤
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MATHEMATICAL ASIDE : For the expected value E[g(Y )] to exist, the sum above must

be absolutely convergent; i.e.,

∑
y∈R

|g(y)|pY (y) < ∞

If E[g(Y )] is not finite; i.e., if E[g(Y )] = ∞, we say that E[g(Y )] does not exist.

Example 2.8. In Example 2.6, find E(Y 2) and E(eY ).

Solution: The functions g1(Y ) = Y 2 and g2(Y ) = eY are real functions of Y . From the

definition,

E(Y 2) =
∑
y∈R

y2pY (y)

=
4∑

y=1

y2 1

10
(5− y)

= 12(4/10) + 22(3/10) + 32(2/10) + 42(1/10) = 5

and

E(eY ) =
∑
y∈R

eypY (y)

=
4∑

y=1

ey 1

10
(5− y)

= e1(4/10) + e2(3/10) + e3(2/10) + e4(1/10) ≈ 12.78. ¤

Example 2.9. The discrete uniform distribution. Suppose that the random variable X

has pmf

pX(x) =





1/m, x = 1, 2, ..., m

0, otherwise,

where m is a fixed positive integer larger than 1. Find the expected value of X.

Solution. The expected value of X is given by

E(X) =
∑
x∈R

xpX(x) =
m∑

x=1

x

(
1

m

)
=

1

m

m∑
x=1

x =
1

m

[
m(m + 1)

2

]
=

m + 1

2
.

In this calculation, we have used the fact that
∑m

x=1 x, the sum of the first m integers,

equals m(m + 1)/2; this fact can be proven by mathematical induction.
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REMARK : If m = 6, then the discrete uniform distribution serves as a probability model

for the outcome of an unbiased die. The expected outcome is E(X) = 6+1
2

= 3.5. ¤

x 1 2 3 4 5 6

pX(x) 1/6 1/6 1/6 1/6 1/6 1/6

PROPERTIES OF EXPECTATIONS : Let Y be a discrete random variable with pmf

pY (y) and support R, suppose that g, g1, g2, ..., gk are real-valued functions, and let c be

any real constant. Then,

(a) E(c) = c

(b) E[cg(Y )] = cE[g(Y )]

(c) E[
∑k

j=1 gj(Y )] =
∑k

j=1 E[gj(Y )].

Since E(·) enjoys these above-mentioned properties, we sometimes call E a linear op-

erator. Proofs to these facts are easy and are left as exercises.

Example 2.10. In a one-hour period, the number of gallons of a certain toxic chemical

that is produced at a local plant, say Y , has the pmf

y 0 1 2 3

pY (y) 0.2 0.3 0.3 0.2

(a) Compute the expected number of gallons produced during a one-hour period.

(b) The cost (in tens of dollars) to produce Y gallons is given by the cost function

C(Y ) = 3 + 12Y + 2Y 2. What is the expected cost in a one-hour period?

Solution: (a) We have that

E(Y ) =
∑
y∈R

ypY (y) = 0(0.2) + 1(0.3) + 2(0.3) + 3(0.2) = 1.5.
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Thus, we would expect 1.5 gallons of the toxic chemical to be produced per hour. For

(b), first compute E(Y 2):

E(Y 2) =
∑
y∈R

y2pY (y) = 02(0.2) + 12(0.3) + 22(0.3) + 32(0.2) = 3.3.

Now, we use the aforementioned linearity properties to compute

E[C(Y )] = E(3 + 12Y + 2Y 2)

= 3 + 12E(Y ) + 2E(Y 2)

= 3 + 12(1.5) + 2(3.3) = 27.6.

Thus, the expected hourly cost is $276.00. ¤

2.4 Variance

REMARK : We have learned that E(Y ) is a measure of the center of a probability dis-

tribution. Now, we turn our attention to quantifying the variability in the distribution.

TERMINOLOGY : Let Y be a discrete random variable with pmf pY (y), support R, and

mean µ. The variance of Y is given by

σ2 ≡ V (Y ) ≡ E[(Y − µ)2] =
∑
y∈R

(y − µ)2pY (y).

The standard deviation of Y is given by the positive square root of the variance; i.e.,

σ =
√

V (Y ).

FACTS ABOUT THE VARIANCE :

(a) σ2 ≥ 0.

(b) σ2 = 0 if and only if the random variable Y has a degenerate distribution; i.e.,

all the probability mass is at one point.

PAGE 36



CHAPTER 2 STAT/MATH 511, J. TEBBS

(c) The larger (smaller) σ2 is, the more (less) spread in the possible values of Y about

the mean µ = E(Y ).

(d) σ2 is measured in (units)2 and σ is measured in the original units.

NOTE : Facts (a), (b), and (c) above are true if we replace σ2 with σ.

THE VARIANCE COMPUTING FORMULA: Let Y be a random variable (not neces-

sarily a discrete random variable) with pmf pY (y) and mean E(Y ) = µ. Then

V (Y ) = E[(Y − µ)2] = E(Y 2)− µ2.

The formula V (Y ) = E(Y 2)− µ2 is called the variance computing formula.

Proof. Expand the (Y − µ)2 term and distribute the expectation operator as follows:

E[(Y − µ)2] = E(Y 2 − 2µY + µ2)

= E(Y 2)− 2µE(Y ) + µ2

= E(Y 2)− 2µ2 + µ2

= E(Y 2)− µ2. ¤

Example 2.11. The discrete uniform distribution. Suppose that the random variable

X has pmf

pX(x) =





1/m, x = 1, 2, ..., m

0, otherwise,

where m is a fixed positive integer larger than 1. Find the variance of X.

Solution. We will find σ2 = V (X) by using the variance computing formula. In

Example 2.9, we computed

µ = E(X) =
m + 1

2
.

We first find E(X2); note that

E(X2) =
∑
x∈R

x2pX(x) =
m∑

x=1

x2

(
1

m

)
=

1

m

m∑
x=1

x2 =
1

m

[
m(m + 1)(2m + 1)

6

]

=
(m + 1)(2m + 1)

6
.
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Above, we have used the fact that
∑m

x=1 x2, the sum of the first m squared integers,

equals m(m + 1)(2m + 1)/6; this fact can be proven by mathematical induction. The

variance of X is equal to

σ2 = E(X2)− µ2

=
(m + 1)(2m + 1)

6
−

(
m + 1

2

)2

=
m2 − 1

12
.

Note that if m = 6, as for our unbiased die example, σ2 = 35/12. ¤

Exercise: Find σ2 for the pmf in Example 2.6 (notes).

IMPORTANT RESULT : Let Y be a random variable (not necessarily a discrete random

variable) and suppose that a and b are real constants. Then

V (a + bY ) = b2V (Y ).

Proof. Exercise. ¤

REMARK : Taking b = 0 above, we see that V (a) = 0, for any constant a. This makes

sense intuitively. The variance is a measure of variability for a random variable; a constant

(such as a) does not vary. Also, by taking a = 0, we see that V (bY ) = b2V (Y ). Both of

these facts are important and we will use them repeatedly.

2.5 Moment generating functions

TERMINOLOGY : Let Y be a discrete random variable with pmf pY (y) and support R.

The moment generating function (mgf) for Y , denoted by mY (t), is given by

mY (t) = E(etY ) =
∑
y∈R

etypY (y),

provided E(etY ) < ∞ for t in an open neighborhood about 0; i.e., there exists some

h > 0 such that E(etY ) < ∞ for all t ∈ (−h, h). If E(etY ) does not exist in an open

neighborhood of 0, we say that the moment generating function does not exist.
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TERMINOLOGY : We call E(Y k) the kth moment of the random variable Y .

E(Y ) 1st moment (mean!)

E(Y 2) 2nd moment

E(Y 3) 3rd moment
...

...

NOTATION : WMS use the notation µ′k to denote the kth moment; i.e., E(Y k) = µ′k.

This is common notation in statistics applications, but I rarely use it.

REMARK : The moment generating function (mgf) can be used to generate moments.

In fact, from the theory of Laplace transforms, it follows that if the mgf exists, it char-

acterizes an infinite set of moments. So, how do we generate moments?

RESULT : Let Y denote a random variable (not necessarily a discrete random variable)

with support R and mgf mY (t). Then,

E(Y k) =
dkmY (t)

dtk

∣∣∣∣∣
t=0

.

Note that derivatives are taken with respect to t.

Proof. Assume, without loss, that Y is discrete. With k = 1, we have

d

dt
mY (t) =

d

dt

∑
y∈R

etypY (y)

=
∑
y∈R

d

dt
etypY (y) =

∑
y∈R

yetypY (y) = E(Y etY ).

Thus, it follows that

dmY (t)

dt

∣∣∣∣∣
t=0

= E(Y etY )
∣∣∣
t=0

= E(Y ).

Continuing to take higher-order derivatives, we can prove that

dkmY (t)

dtk

∣∣∣∣∣
t=0

= E(Y k),

for any integer k ≥ 1. Thus, the result follows. ¤
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MATHEMATICAL ASIDE : In the second line of the proof of the last result, we in-

terchanged the derivative and (possibly infinite) sum. This is permitted as long as

mY (t) = E(etY ) exists.

COMPUTING MEANS AND VARIANCES : Let Y denote a random variable (not nec-

essarily a discrete random variable) with mgf mY (t). Then, we know that

E(Y ) =
dmY (t)

dt

∣∣∣∣∣
t=0

,

and

E(Y 2) =
d2mY (t)

dt2

∣∣∣∣∣
t=0

.

Thus,

V (Y ) = E(Y 2)− [E(Y )]2

=
d2mY (t)

dt2

∣∣∣∣∣
t=0

−
[

dmY (t)

dt

∣∣∣∣∣
t=0

]2

≡ m
′′
Y (0)− [m′

Y (0)]2.

REMARK : In many applications, being able to compute means and variances is impor-

tant. Thus, we can use the mgf as a tool to do this. This is helpful because

sometimes computing

E(Y ) =
∑
y∈R

ypY (y)

directly (or even higher order moments) may be extremely difficult, depending on the

form of pY (y).

Example 2.12. Suppose that Y is a random variable with pmf

pY (y) =





(
1
2

)y
, y = 1, 2, 3, ...

0, otherwise.

Find the mean of Y .

Solution. Using the definition of expected values, the mean of Y is given by

E(Y ) =
∑
y∈R

ypY (y) =
∞∑

y=1

y

(
1

2

)y

.
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Finding this infinite sum is quite difficult (at least, this sum is not a geometric sum). It

is easier to use moment generating functions! The mgf of Y is given by

mY (t) = E(etY ) =
∑
y∈R

etypY (y)

=
∞∑

y=1

ety

(
1

2

)y

=
∞∑

y=1

(
et

2

)y

=

[ ∞∑
y=0

(
et

2

)y
]
− 1 =

1

1− et

2

− 1 =
et

2− et
,

for values of t < ln 2 (why?). Thus,

E(Y ) =
dmY (t)

dt

∣∣∣∣∣
t=0

=
d

dt

(
et

2− et

)∣∣∣∣∣
t=0

=
et(2− et)− et(−et)

(2− et)2

∣∣∣∣∣
t=0

= 2. ¤

Example 2.13. Let the random variable Y have pmf pY (y) given by

pY (y) =





1
6
(3− y), y = 0, 1, 2

0, otherwise.

For this probability distribution, simple calculations (verify!) show that

E(Y ) = 2/3

V (Y ) = 5/9.

Let’s “check” these calculations using the mgf. It is given by

mY (t) = E(etY ) =
∑
y∈R

etypY (y)

= et(0) 3

6
+ et(1) 2

6
+ et(2) 1

6

=
3

6
+

2

6
et +

1

6
e2t.
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Taking derivatives of mY (t) with respect to t, we get

d

dt
mY (t) =

2

6
et +

2

6
e2t

and
d2

dt2
mY (t) =

2

6
et +

4

6
e2t.

Thus,

E(Y ) =
dmY (t)

dt

∣∣∣∣∣
t=0

=
2

6
e0 +

2

6
e2(0) = 4/6 = 2/3

E(Y 2) =
d2mY (t)

dt2

∣∣∣∣∣
t=0

=
2

6
e0 +

4

6
e2(0) = 1

so that

V (Y ) = E(Y 2)− [E(Y )]2 = 1− (2/3)2 = 5/9.

So, in this example, we can use the mgf to get E(Y ) and V (Y ), or we can compute E(Y )

and V (Y ) directly. We get the same answer, as we should. ¤

REMARK : Not only is the mgf a tool for computing moments, but it also helps us

to characterize a probability distribution. How? When an mgf exists, it happens to

be unique. Thus, if two random variables have same mgf, then they have the same

probability distribution! Sometimes, this is referred to as the uniqueness property of

mgfs (it is based on the uniqueness of Laplace transforms). For now, however, it suffices

to envision the mgf as a “special expectation” that generates moments. This, in turn,

helps us to compute means and variances of random variables.

2.6 Binomial distribution

BERNOULLI TRIALS : Many experiments consist of a sequence of trials, where

(i) each trial results in a “success” or a “failure,”

(ii) the trials are independent, and

(iii) the probability of “success,” denoted by p, 0 < p < 1, is the same on every trial.
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TERMINOLOGY : In a sequence of n Bernoulli trials, denote by Y the number of

successes (out of n, where n is fixed). We call Y a binomial random variable, and say

that “Y has a binomial distribution with parameters n and success probability p.”

Shorthand notation is Y ∼ b(n, p).

Example 2.14. Each of the following situations represent binomial experiments.

(Are you satisfied with the Bernoulli assumptions in each instance?)

(a) Suppose we flip a fair coin 10 times and let Y denote the number of tails in 10 flips.

Here, Y ∼ b(n = 10, p = 0.5).

(b) In an agricultural experiment, forty percent of all plots respond to a certain treat-

ment. I have four plots of land to be treated. If Y is the number of plots that

respond to the treatment, then Y ∼ b(n = 4, p = 0.4).

(c) In rural Kenya, the prevalence rate for HIV is estimated to be around 8 percent.

Let Y denote the number of HIV infecteds in a sample of 740 individuals. Here,

Y ∼ b(n = 740, p = 0.08).

(d) It is known that screws produced by a certain company do not meet specifications

(i.e., are defective) with probability 0.001. Let Y denote the number of defectives

in a package of 40. Then, Y ∼ b(n = 40, p = 0.001). ¤

DERIVATION : We now derive the pmf of a binomial random variable. That is, we need

to compute pY (y) = P (Y = y), for each possible value of y ∈ R. Recall that Y is the

number of “successes” in n Bernoulli trials so the support set is R = {y : y = 0, 1, 2, ..., n}.

QUESTION : In a sequence of n trials, how can we get exactly y successes? Denoting

S = success

F = failure

a possible sample point may be

SSFSFSFFS · · ·FSF .
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Because the trials are independent, the probability that we get any particular ordering

of y successes and n−y failures is py(1−p)n−y. Now, how many ways are there to choose

y successes from n trials? We know that there are
(

n
y

)
ways to do this. Thus, the pmf

for Y is, for 0 < p < 1,

pY (y) =





(
n
y

)
py(1− p)n−y, y = 0, 1, 2, ..., n

0, otherwise.

0 1 2 3 4

y

0.0

0.1

0.2

0.3

p(
y)

=P
(Y

=y
)

Figure 2.5: Probability histogram for the number of plots which respond to treatment.

This represents the b(n = 4, p = 0.4) model in Example 2.14(b).

Example 2.15. In Example 2.14(b), assume that Y ∼ b(n = 4, p = 0.4). Here are the

probability calculations for this binomial model:

P (Y = 0) = pY (0) =
(
4
0

)
(0.4)0(1− 0.4)4−0 = 1× (0.4)0 × (0.6)4 = 0.1296

P (Y = 1) = pY (1) =
(
4
1

)
(0.4)1(1− 0.4)4−1 = 4× (0.4)1 × (0.6)3 = 0.3456

P (Y = 2) = pY (2) =
(
4
2

)
(0.4)2(1− 0.4)4−2 = 6× (0.4)2 × (0.6)2 = 0.3456

P (Y = 3) = pY (3) =
(
4
3

)
(0.4)3(1− 0.4)4−3 = 4× (0.4)3 × (0.6)1 = 0.1536

P (Y = 4) = pY (4) =
(
4
4

)
(0.4)4(1− 0.4)4−4 = 1× (0.4)4 × (0.6)0 = 0.0256

The probability histogram is depicted in Figure 2.5. ¤
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Example 2.16. In a small clinical trial with 20 patients, let Y denote the number

of patients that respond to a new skin rash treatment. The physicians assume that a

binomial model is appropriate so that Y ∼ b(n = 20, p), where p denotes the probability

of response to the treatment. In a statistical setting, p would be an unknown parameter

that we desire to estimate. For this problem, we’ll assume that p = 0.4. Compute (a)

P (Y = 5), (b) P (Y ≥ 5), and (c) P (Y < 10).

(a) P (Y = 5) = pY (5) =
(
20
5

)
(0.4)5(0.6)20−5 = 0.0746.

(b)

P (Y ≥ 5) =
20∑

y=5

P (Y = y) =
20∑

y=5

(
20

y

)
(0.4)y(0.6)20−y

This computation involves using the binomial pmf 16 times and adding the results!

Trick: Instead of computing the sum
∑20

y=5

(
20
y

)
(0.4)y(0.6)20−y directly, we can

write

P (Y ≥ 5) = 1− P (Y ≤ 4),

by the complement rule. We do this because WMS’s Appendix III (Table 1, pp.

783-785) contains binomial probability calculations of the form

FY (a) ≡ P (Y ≤ a) =
a∑

y=0

(
n

y

)
py(1− p)n−y,

for different n and p. With n = 20 and p = 0.4, we see from Table 1 that

P (Y ≤ 4) = 0.051.

Thus, P (Y ≥ 5) = 1− 0.051 = 0.949.

(c) P (Y < 10) = P (Y ≤ 9) = 0.755, from Table 1. ¤

REMARK : The function

FY (y) ≡ P (Y ≤ y)

is called the cumulative distribution function; we’ll talk more about this function in

the next chapter.
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Figure 2.6: Probability histogram for the number of patients responding to treatment.

This represents the b(n = 20, p = 0.4) model in Example 2.16.

CURIOSITY : Is the binomial pmf a valid pmf? Clearly pY (y) > 0 for all y. To check

that the pmf sums to one, consider the binomial expansion

[p + (1− p)]n =
n∑

y=0

(
n

y

)
py(1− p)n−y.

The LHS clearly equals 1, and the RHS represents the b(n, p) pmf. Thus, pY (y) is valid.

MGF FOR THE BINOMIAL DISTRIBUTION : Suppose that Y ∼ b(n, p). Then the

mgf of Y is given by

mY (t) = E(etY ) =
n∑

y=0

ety

(
n

y

)
py(1− p)n−y =

n∑
y=0

(
n

y

)
(pet)y(1− p)n−y = (q + pet)n,

where q = 1− p. The last step follows from noting that
∑n

y=0

(
n
y

)
(pet)y(1− p)n−y is the

binomial expansion of (q + pet)n. ¤

MEAN AND VARIANCE OF THE BINOMIAL DISTRIBUTION : We want to compute

E(Y ) and V (Y ) where Y ∼ b(n, p). To do this, we will use the mgf. Taking the derivative
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of mY (t) with respect t, we get

m′
Y (t) ≡ d

dt
mY (t) =

d

dt
(q + pet)n = n(q + pet)n−1pet.

Thus,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

= n(q + pe0)n−1pe0 = n(q + p)n−1p = np,

since q + p = 1. Now, we need to find the second moment. By using the product rule for

derivatives, we have

d2

dt2
mY (t) =

d

dt
n(q + pet)n−1pet

︸ ︷︷ ︸
m′

Y (t)

= n(n− 1)(q + pet)n−2(pet)2 + n(q + pet)n−1pet.

Thus,

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣
t=0

= n(n−1)(q+pe0)n−2(pe0)2 +n(q+pe0)n−1pe0 = n(n−1)p2 +np.

Finally, the variance is calculated by appealing to the variance computing formula; i.e.,

V (Y ) = E(Y 2)− [E(Y )]2

= n(n− 1)p2 + np− (np)2

= np(1− p). ¤

Example 2.17. Artichokes are a marine climate vegetable and thrive in the cooler

coastal climates. Most will grow on a wide range of soils, but produce best on a deep,

fertile, well-drained soil. Suppose that 15 artichoke seeds are planted in identical soils

and temperatures, and let Y denote the number of seeds that germinate. If 60 percent

of all seeds germinate (on average) and we assume a b(15, 0.6) probability model for Y ,

the mean number of seeds that will germinate is

E(Y ) = np = 15(0.6) = 9.

The variance is

σ2 = np(1− p) = 15(0.6)(0.4) = 3.6 (seeds)2

The standard deviation is

σ =
√

3.6 ≈ 1.9 seeds. ¤
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SPECIAL BINOMIAL DISTRIBUTION : In the b(n, p) family, when n = 1, the binomial

pmf reduces to

pY (y) =





py(1− p)1−y, y = 0, 1

0, otherwise.

This is sometimes called the Bernoulli distribution. Shorthand notation is Y ∼ b(1, p).

The sum of n independent b(1, p) random variables actually follows a b(n, p) distribution!

2.7 Geometric distribution

TERMINOLOGY : Imagine an experiment where Bernoulli trials are observed. If Y

denotes the trial on which the first success occurs, then Y is said to follow a geometric

distribution with parameter p, the probability of success on any one trial, 0 < p < 1.

This is sometimes written as Y ∼ geom(p). The pmf for Y is given by

pY (y) =





(1− p)y−1p, y = 1, 2, 3, ...

0, otherwise.

RATIONALE : The form of this pmf makes intuitive sense; we need y − 1 failures (each

of which occurs with probability 1− p), and then a success on the yth trial (this occurs

with probability p). By independence, we multiply

(1− p)× (1− p)× · · · × (1− p)︸ ︷︷ ︸
y−1 failures

×p = (1− p)y−1p.

NOTE : Clearly pY (y) > 0 for all y. Does pY (y) sum to one? Note that

∞∑
y=1

(1− p)y−1p = p

∞∑
x=0

(1− p)x

=
p

1− (1− p)
= 1.

In the last step, we realized that
∑∞

x=0(1 − p)x is an infinite geometric sum with

common ratio 1− p. ¤
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Example 2.18. Biology students are checking the eye color of fruit flies. For each fly,

the probability of observing white eyes is p = 0.25. What is the probability the first

white-eyed fly will be observed among the first five flies that we check?

Solution: Let Y denote the number of flies needed to observe the first white-eyed fly.

We need to compute P (Y ≤ 5). We can envision each fly as a Bernoulli trial (each

fly either has white eyes or not). If we assume that the flies are independent, then a

geometric model is appropriate; i.e., Y ∼ geom(p = 0.25), so that

P (Y = 1) = pY (1) = (1− 0.25)1−1(0.25) = 0.25

P (Y = 2) = pY (2) = (1− 0.25)2−1(0.25) ≈ 0.19

P (Y = 3) = pY (3) = (1− 0.25)3−1(0.25) ≈ 0.14

P (Y = 4) = pY (4) = (1− 0.25)4−1(0.25) ≈ 0.11

P (Y = 5) = pY (5) = (1− 0.25)5−1(0.25) ≈ 0.08.

Thus, P (Y ≤ 5) =
∑5

y=1 P (Y = y) ≈ 0.77. The pmf for the geom(p = 0.25) model is

depicted in Figure 2.7. ¤

MGF FOR THE GEOMETRIC DISTRIBUTION : Suppose that Y ∼ geom(p). Then

the mgf of Y is given by

mY (t) =
pet

1− qet
,

where q = 1− p, for t < − ln q.

Proof. Exercise. ¤

MEAN AND VARIANCE OF THE GEOMETRIC DISTRIBUTION : With the mgf, we

can derive the mean and variance. Differentiating the mgf, we get

m′
Y (t) ≡ d

dt
mY (t) =

d

dt

(
pet

1− qet

)
=

pet(1− qet)− pet(−qet)

(1− qet)2
.

Thus,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

=
pe0(1− qe0)− pe0(−qe0)

(1− qe0)2
=

p(1− q)− p(−q)

(1− q)2
=

1

p
.

Similar calculations show

E(Y 2) =
d2

dt2
mY (t)

∣∣∣∣
t=0

=
1 + q

p2
.
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Figure 2.7: Probability histogram for the number of flies needed to find the first white-eyed

fly. This represents the geom(p = 0.25) model in Example 2.18.

Finally,

V (Y ) = E(Y 2)− [E(Y )]2

=
1 + q

p2
−

(
1

p

)2

=
q

p2
. ¤

Example 2.19. At an apple orchard in Maine, bags of “20-lbs” are continually observed

until the first underweight bag is discovered. Suppose that four percent of bags are under

filled. If we assume that the bags are independent, and if Y denotes the the number of

bags observed, then Y ∼ geom(p = 0.04). The mean number of bags we will observe is

E(Y ) =
1

p
=

1

0.04
= 25 bags.

The variance is

V (Y ) =
q

p2
=

0.96

(0.04)2
= 600 (bags)2. ¤
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2.8 Negative binomial distribution

NOTE : The negative binomial distribution can be motivated from two perspectives:

• as a generalization of the geometric

• as a “reversal” of the binomial.

Recall that the geometric random variable was defined to be the number of trials needed

to observe the first success in a sequence of Bernoulli trials.

TERMINOLOGY : Imagine an experiment where Bernoulli trials are observed. If Y

denotes the trial on which the rth success occurs, r ≥ 1, then Y has a negative

binomial distribution with parameters r and p, where p denotes the probability of

success on any one trial, 0 < p < 1. This is sometimes written as Y ∼ nib(r, p).

PMF FOR THE NEGATIVE BINOMIAL: The pmf for Y ∼ nib(r, p) is given by

pY (y) =





(
y−1
r−1

)
pr(1− p)y−r, y = r, r + 1, r + 2, ...

0, otherwise.

Of course, when r = 1, the nib(r, p) pmf reduces to the geom(p) pmf.

RATIONALE : The logic behind the form of pY (y) is as follows. If the rth success occurs

on the yth trial, then r− 1 successes must have occurred during the 1st y− 1 trials. The

total number of sample points (in the underlying sample space S) where this is the case

is given by the binomial coefficient
(

y−1
r−1

)
, which counts the number of ways you order

r− 1 successes and y− r failures in the 1st y− 1 trials. The probability of any particular

ordering, by independence, is given by pr−1(1− p)y−r. Now, on the yth trial, we observe

the rth success (this occurs with probability p). Thus, putting it all together, we get

(
y − 1

r − 1

)
pr−1(1− p)y−r

︸ ︷︷ ︸
pertains to 1st y−1 trials

×p =

(
y − 1

r − 1

)
pr(1− p)y−r.
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Example 2.20. A botanist in Iowa City is observing oak trees for the presence of a

certain disease. From past experience, it is known that 30 percent of all trees are infected

(p = 0.30). Treating each tree as a Bernoulli trial (i.e., each tree is infected/not), what

is the probability that she will observe the 3rd infected tree (r = 3) on the 6th or 7th

observed tree?

Solution. Let Y denote the tree on which she observes the 3rd infected tree. Then,

Y ∼ nib(r = 3, p = 0.3). We want to compute P (Y = 6 or Y = 7).

P (Y = 6) =

(
6− 1

3− 1

)
(0.3)3(1− 0.3)6−3 = 0.0926

P (Y = 7) =

(
7− 1

3− 1

)
(0.3)3(1− 0.3)7−3 = 0.0972

Thus,

P (Y = 6 or Y = 7) = P (Y = 6) + P (Y = 7)

= 0.0926 + 0.0972

= 0.1898. ¤

RELATIONSHIP WITH THE BINOMIAL: Recall that in a binomial experiment, we fix

the number of Bernoulli trials, n, and we observe the number of successes. However,

in a negative binomial experiment, we fix the number of successes we are to observe,

r, and we continue to observe Bernoulli trials until we reach that success. This is another

way to think about the negative binomial model.

MGF FOR THE NEGATIVE BINOMIAL DISTRIBUTION : Suppose that Y ∼ nib(r, p).

The mgf of Y is given by

mY (t) =

(
pet

1− qet

)r

,

where q = 1− p, for all t < − ln q. Before we prove this, let’s state and prove a lemma.

Lemma. Suppose that r is a nonnegative integer. Then,

∞∑
y=r

(
y − 1

r − 1

)
(qet)y−r = (1− qet)−r.
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Proof of lemma. Consider the function f(w) = (1 − w)−r, where r is a nonnegative

integer. It is easy to show that

f ′(w) = r(1− w)−(r+1)

f ′′(w) = r(r + 1)(1− w)−(r+2)

...

In general, f (z)(w) = r(r + 1) · · · (r + z − 1)(1−w)−(r+z), where f (z)(w) denotes the zth

derivative of f with respect to w. Note that

f (z)(w)
∣∣∣
w=0

= r(r + 1) · · · (r + z − 1).

Now, consider writing the McLaurin Series expansion of f(w); i.e., a Taylor Series ex-

pansion of f(w) about w = 0; this expansion is given by

f(w) =
∞∑

z=0

f (z)(0)wz

z!

=
∞∑

z=0

r(r + 1) · · · (r + z − 1)

z!
wz

=
∞∑

z=0

(
z + r − 1

r − 1

)
wz.

Now, letting w = qet and z = y − r, the lemma is proven for 0 < q < 1. ¤

MGF : Now that we are finished with the lemma, let’s find the mgf of the nib(r, p) random

variable. With q = 1− p,

mY (t) = E(etY ) =
∞∑

y=r

ety

(
y − 1

r − 1

)
prqy−r

=
∞∑

y=r

et(y−r)etr

(
y − 1

r − 1

)
prqy−r

= (pet)r

∞∑
y=r

(
y − 1

r − 1

)
(qet)y−r

= (pet)r(1− qet)−r

=

(
pet

1− qet

)r

,

for t < − ln q, where the penultimate step follows from the lemma. ¤
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REMARK : Showing that the nib(r, p) distribution sums to one can be done by using a

similar series expansion as above. We omit it for brevity.

MEAN AND VARIANCE OF THE NEGATIVE BINOMIAL DISTRIBUTION : For a

nib(r, p) random variable, with q = 1− p,

E(Y ) =
r

p

and

V (Y ) =
rq

p2
.

Proof. Exercise. ¤

2.9 Hypergeometric distribution

SETTING : Consider a collection of N objects (e.g., people, poker chips, plots of land,

etc.) and suppose that we have two dichotomous classes, Class 1 and Class 2. For

example, the objects and classes might be

Poker chips red/blue

People infected/not infected

Plots of land respond to treatment/not

From the collection of N objects, we observe a sample of n < N of them, and record Y ,

the number of objects in Class 1 (i.e., the number of “successes”).

REMARK : This sounds like binomial setup! However, the difference is that, here, N , the

population size, is finite (the population size, theoretically, is assumed to be infinite

in the binomial model). Thus, if we sample from a population of objects without

replacement, then the “success” probability changes trial to trial! This, violates the

binomial model assumptions!! Of course, if N is large (i.e., in very large populations),

the two models will be similar, because the change in the probability of success from trial

to trial will be small (maybe so small that it is not of practical concern).
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HYPERGEOMETRIC DISTRIBUTION : Envision a collection of n objects sampled (at

random and without replacement) from a population of size N , where r denotes the size

of Class 1 and N − r denotes the size of Class 2. Let Y denote the number of objects

in the sample that belong to Class 1. Then, Y has a hypergeometric distribution,

written Y ∼ hyper(N, n, r), where

N = total number of objects

r = number of the 1st class (e.g., “success”)

N − r = number of the 2nd class (e.g., “failure”)

n = number of objects sampled.

HYPERGEOMETRIC PMF : The pmf for Y ∼ hyper(N, n, r) is given by

pY (y) =





(r
y)(

N−r
n−y)

(N
n)

, y ∈ R

0, otherwise,

where the support set R = {y ∈ N : max(0, n−N + r) ≤ y ≤ min(n, r)}.

BREAKDOWN : In the hyper(N, n, r) pmf, we have three parts:

(
r
y

)
= number of ways to choose y Class 1 objects from r

(
N−r
n−y

)
= number of ways to choose n− y Class 2 objects from N − r

(
N
n

)
= number of sample points.

REMARK : In the hypergeometric model, it follows that pY (y) sums to 1 over the support

R, but we omit this proof for brevity (see Exercise 3.176, pp 148, WMS).

Example 2.21. In my fish tank at home, there are 50 fish. Ten have been tagged.

If I catch 7 fish (and random, and without replacement), what is the probability that

exactly two are tagged?

Solution. Here, N = 50 (total number of fish), n = 7 (sample size), r = 10 (tagged

fish; Class 1), N − r = 40 (untagged fish; Class 2), and y = 2 (number of tagged fish

caught). Thus,

P (Y = y) = P (Y = 2) = pY (2) =

(
10
2

)(
40
5

)
(
50
7

) = 0.2964.
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What about the probability that my catch contains at most two tagged fish?

Solution. Here, we want

P (Y ≤ 2) = P (Y = 0) + P (Y = 1) + P (Y = 2)

=

(
10
0

)(
40
7

)
(
50
7

) +

(
10
1

)(
40
6

)
(
50
7

) +

(
10
2

)(
40
5

)
(
50
7

)
= 0.1867 + 0.3843 + 0.2964 = 0.8674. ¤

Example 2.22. A supplier ships parts to another company in lots of 25 parts. The

receiving company has an acceptance sampling plan which adopts the following ac-

ceptance rule:

“....sample 5 parts at random and without replacement. If there are no de-

fectives in the sample, accept the entire lot; otherwise, reject the entire lot.”

Let Y denote the number of defectives in the sampled parts (i.e., out of 5). Then,

Y ∼ hyper(25, 5, r), where r denotes the number defectives in the lot (in real life, r is

unknown). Define

OC(p) = P (Y = 0) =

(
r
0

)(
25−r

5

)
(
25
5

) ,

where p = r/25 denotes the true proportion of defectives in the lot. The symbol OC(p)

denotes the probability of accepting the lot (which is a function of p). Consider the

following table, whose entries are computed using the above probability expression:

r p OC(p)

0 0 1.00

1 0.04 0.80

2 0.08 0.63

3 0.12 0.50

4 0.16 0.38

5 0.20 0.29

10 0.40 0.06

15 0.60 0.01
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REMARK : The graph of OC(p) versus p is sometimes called an operating character-

istic curve. Of course, as r (or equivalently, p) increases, the probability of accepting

the lot decreases. Acceptance sampling is important in statistical process control

used in engineering and manufacturing settings. In practice, lot sizes may be very large

(e.g., N = 1000, etc.), and developing sound sampling plans is crucial in order to avoid

using defective parts in finished products. ¤

MEAN AND VARIANCE OF THE HYPERGEOMETRIC DISTRIBUTION : If Y ∼
hyper(N,n, r), then

E(Y ) = n
( r

N

)

and

V (Y ) = n

(
r

N

)(
N − r

N

)(
N − n

N − 1

)
.

We will prove this result later in the course.

RELATIONSHIP WITH THE BINOMIAL: As noted earlier, the binomial and hyperge-

ometric models are similar. The key difference is that in a binomial experiment, p does

not change from trial to trial, but it does in the hypergeometric setting, noticeably if N

is small. However, one can show that, for y fixed,

lim
N→∞

(
r
y

)(
N−r
n−y

)
(

N
n

) =

(
n

y

)
py(1− p)n−y

︸ ︷︷ ︸
b(n,p) pmf

as r/N → p. The upshot is this: if N is large (i.e., the population size is large), a

binomial probability calculation, with p = r/N , closely approximates the corresponding

hypergeometric probability calculation. See pp 123 (WMS).

Example 2.23. In a small town, there are 900 right-handed individuals and 100 left-

handed individuals. We take a sample of size n = 20 individuals from this town (at

random and without replacement). What is the probability that 4 or more people in the

sample are left-handed?

Solution. Let X denote the number of left-handed individuals in our sample. Let’s

compute this probability P (X ≥ 4) using both the binomial and hypergeometric models.
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• Hypergeometric: Here, N = 1000, r = 100, N − r = 900, and n = 20. Thus,

P (X ≥ 4) = 1− P (X ≤ 3) = 1−
3∑

x=0

(
100
x

)(
900

20−x

)
(
1000
20

) ≈ 0.130947.

• Binomial: Here, n = 20 and p = r/N = 0.10. Thus,

P (X ≥ 4) = 1− P (X ≤ 3) = 1−
3∑

x=0

(
20

x

)
(0.1)x(0.9)20−x ≈ 0.132953. ¤

REMARK : Of course, since the binomial and hypergeometric models are similar when

N is large, their means and variances are similar too. Note the similarities; recall that

the quantity r/N → p, as N →∞.

E(Y ) = n
( r

N

)
≈ np

and

V (Y ) = n

(
r

N

)(
N − r

N

)(
N − n

N − 1

)
≈ np(1− p).

2.10 Poisson distribution

TERMINOLOGY : Let the number of occurrences in a given continuous interval of time

or space be counted. A Poisson process enjoys the following properties:

(1) the number of occurrences in non-overlapping intervals are independent random

variables.

(2) The probability of an occurrence in a sufficiently short interval is proportional to

the length of the interval.

(3) The probability of 2 or more occurrences in a sufficiently short interval is zero.

GOAL: Suppose that an experiment satisfies the above three conditions, and let Y denote

the number of occurrences in an interval of length one. Our goal is to find an expression

for pY (y) = P (Y = y), the pmf of Y .
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APPROACH : Envision partitioning the unit interval [0, 1] into n subintervals, each of

size 1
n
. Now, if n is sufficiently large (i.e., much larger than y), then we can approximate

the probability that y events occur in this unit interval by finding the probability that

exactly one event (occurrence) occurs in exactly y of the subintervals.

• By Property (2), we know that the probability of one event in any one subinterval

is proportional to the subinterval’s length, say λ/n, where λ is the proportionality

constant.

• By Property (3), the probability of more than one occurrence in any subinterval is

zero (for n large).

• Consider the occurrence/non-occurrence of an event in each subinterval as a

Bernoulli trial. Then, by Property (1), we have a sequence of n Bernoulli trials,

each with probability of “success” p = λ/n. Thus, a binomial calculation gives

P (Y = y) ≈
(

n

y

)(
λ

n

)y(
1− λ

n

)n−y

.

Now, to get a better approximation, we let n grow without bound. Then,

lim
n→∞

P (Y = y) = lim
n→∞

n!

y! (n− y)!
λy

( 1

n

)y(
1− λ

n

)n
(

1

1− λ
n

)y

= lim
n→∞

n(n− 1) · · · (n− y + 1)

ny︸ ︷︷ ︸
an

λy

y!︸︷︷︸
bn

(
1− λ

n

)n

︸ ︷︷ ︸
cn

(
1

1− λ
n

)y

︸ ︷︷ ︸
dn

Now, the limit of the product is the product of the limits. Thus,

lim
n→∞

an = lim
n→∞

n(n− 1) · · · (n− y + 1)

ny
= 1

lim
n→∞

bn = lim
n→∞

λy

y!
=

λy

y!

lim
n→∞

cn = lim
n→∞

(
1− λ

n

)n

= e−λ

lim
n→∞

dn = lim
n→∞

(
1

1− λ
n

)y

= 1.

PAGE 59



CHAPTER 2 STAT/MATH 511, J. TEBBS

Thus,

pY (y) =





λye−λ

y!
, y = 0, 1, 2, ...

0, otherwise.

This is the pmf of a Poisson random variable with parameter λ. We sometimes write

Y ∼ Poisson(λ). That pY (y) sums to one is easily seen as

∑
y∈R

pY (y) =
∞∑

y=0

λye−λ

y!

= e−λ

∞∑
y=0

λy

y!

= e−λeλ = 1,

since eλ =
∑∞

y=0 λy/y!, the McLaurin series expansion of eλ. ¤

EXAMPLES OF POISSON PROCESSES :

(1) counting the number of people in a certain community living to 100 years of age.

(2) counting the number of customers entering a post office in a given day.

(3) counting the number of α-particles discharged from a radioactive substance in a

fixed period of time.

(4) counting the number of blemishes on a piece of artificial turf.

(5) counting the number of chocolate chips in a Chips-Ahoy cookie.

Example 2.24. The number of cars abandoned weekly on a certain highway is modeled

using a Poisson distribution with λ = 2.2. In a given week, what is the probability that

(a) no cars are abandoned?

(b) exactly one car is abandoned?

(c) at most one car is abandoned?

(d) at least one car is abandoned?
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Solutions. Let Y denote the number of cars abandoned weekly.

(a)

P (Y = 0) = pY (0) =
(2.2)0e−2.2

0!
= e−2.2 = 0.1108

(b)

P (Y = 1) = pY (1) =
(2.2)1e−2.2

1!
= 2.2e−2.2 = 0.2438

(c) P (Y ≤ 1) = P (Y = 0) + P (Y = 1) = pY (0) + pY (1) = 0.1108 + 0.2438 = 0.3456

(d) P (Y ≥ 1) = 1− P (Y = 0) = 1− pY (0) = 1− 0.1108 = 0.8892. ¤

0 2 4 6 8 10 12

y

0.00

0.05

0.10

0.15

0.20

0.25

p(
y)

=P
(Y

=y
)

Figure 2.8: Probability histogram for the number of abandoned cars. This represents the

Poisson(λ = 2.2) model in Example 2.24.

REMARK : WMS’s Appendix III, (Table 3, pp 787-791) includes an impressive table for

Poisson probabilities of the form

FY (a) = P (Y ≤ a) =
a∑

y=0

λye−λ

y!
.

Recall that this function is called the cumulative distribution function of Y . This

makes computing compound event probabilities much easier.
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MGF FOR THE POISSON DISTRIBUTION : Suppose that Y ∼ Poisson(λ). The mgf

of Y , for all t, is given by

mY (t) = E(etY ) =
∞∑

y=0

ety λye−λ

y!

= e−λ

∞∑
y=0

(λet)y

y!
︸ ︷︷ ︸

eλet

= e−λeλet

= exp[λ(et − 1)].

MEAN AND VARIANCE OF THE POISSON DISTRIBUTION : With the mgf, we can

derive the mean and variance. Differentiating the mgf, we get

m′
Y (t) ≡ d

dt
mY (t) =

d

dt
exp[λ(et − 1)] = λet exp[λ(et − 1)].

Thus,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

= λe0 exp[λ(e0 − 1)] = λ.

Now, we need to find the second moment. By using the product rule for derivatives, we

have

d2

dt2
mY (t) =

d

dt
λet exp[λ(et − 1)]︸ ︷︷ ︸

m′
Y (t)

= λet exp[λ(et − 1)] + (λet)2 exp[λ(et − 1)].

Thus, E(Y 2) = λ + λ2 and

V (Y ) = E(Y 2)− [E(Y )]2

= λ + λ2 − λ2

= λ.

REVELATION : With a Poisson model, the mean and variance are always equal. ¤

Example 2.25. Suppose that Y denotes the number of monthly defects observed at an

automotive plant. From past experience, engineers believe the Poisson model is appro-

priate and that Y ∼ Poisson(7).

Question 1: What is the probability that, in any given month, we observe 11 or more

defectives?
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Solution. We want to compute

P (Y ≥ 11) = 1− P (Y ≤ 10)︸ ︷︷ ︸
Table 3

= 1− 0.901 = 0.099.

Question 2: What about the probability that, in a given year, we have two or more

months with 11 or more defectives?

Solution. First, we assume that the 12 months are independent (is this reasonable?),

and call the event B = {11 or more defects in a month} a “success.” Thus, under our

independence assumptions and viewing each month as a “trial,” we have a sequence of 12

Bernoulli trials with “success” probability p = P (B) = 0.099. Let X denote the number

of months where we observe 11 or more defects. Then, X ∼ b(12, 0.099), and

P (X ≥ 2) = 1− P (X = 0)− P (X = 1)

= 1−
(

12

0

)
(0.099)0(1− 0.099)12 −

(
12

1

)
(0.099)1(1− 0.099)11

= 1− 0.2862− 0.3774 = 0.3364. ¤

POISSON PROCESSES OF ARBITRARY LENGTH : If events or occurrences in a Pois-

son process occur at a rate of λ per unit time or space, then the number of occurrences

in an interval of length t also follows a Poisson distribution with mean λt.

Example 2.26. Phone calls arrive at a switchboard according to a Poisson process, at a

rate of λ = 3 per minute. Thus, if Y represents the number of calls received in 5 minutes,

we have that Y ∼ Poisson(15). The probability that 8 or fewer calls come in during a

5-minute span is given by

P (Y ≤ 8) =
8∑

y=0

15ye−15

y!
= 0.037,

from Table 3. ¤

POISSON-BINOMIAL LINK : We have seen that the hypergeometric and binomial mod-

els are related; as it turns out, so are the Poisson and binomial models. This should not be

surprising because we derived the Poisson pmf by appealing to a binomial approximation.
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RELATIONSHIP : Suppose that Y ∼ b(n, p). If n is large and p is small, then

pY (y) =

(
n

y

)
py(1− p)n−y ≈ λye−λ

y!
,

for y ∈ R = {0, 1, 2, ..., n}, where λ = np.

Example 2.27. Hepatitis C (HCV) is a viral infection that causes cirrhosis and cancer

of the liver. Since HCV is transmitted through contact with infectious blood, screening

donors is important to prevent further transmission. The World Health Organization has

projected that HCV will be a major burden on the US health care system before the year

2020. For public-health reasons, researchers take a sample of n = 1875 blood donors and

screen each individual for HCV. If 3 percent of the entire population is infected, what is

the probability that 50 or more are HCV-positive?

Solution. Let Y denote the number of HCV-infected individuals in our sample. We

compute this probability P (Y ≥ 50) using both the binomial and Poisson models.

• Binomial: Here, n = 1875 and p = 0.03. Thus,

P (Y ≥ 50) =
1875∑
y=50

(
1875

y

)
(0.03)y(0.97)1875−y ≈ 0.818783.

• Poisson: Here, λ = np = 1875(0.03) ≈ 56.25. Thus,

P (Y ≥ 50) =
∞∑

y=50

(56.25)ye−56.25

y!
≈ 0.814932.

As we can see, the Poisson approximation is quite good. ¤

RELATIONSHIP : One can see that the hypergeometric, binomial, and Poisson models

are related in the following way:

hyper(N, n, r) ←→ b(n, p) ←→ Poisson(λ)

The first link results when N is large and r/N → p. The second link results when n is

large and p is small so that λ/n → p. When these situations are combined, as you might

suspect, one can approximate the hypergeometric model with a Poisson model!!
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3 Continuous Distributions

Complementary reading from WMS: Chapter 4 (omit § 4.11).

3.1 Introduction

RECALL: In the last chapter, we focused on discrete random variables. Recall that

a discrete random variable is one that can assume only a finite or countable number of

values. We also learned about probability mass functions (pmfs). Loosely speaking,

these were functions that told us how to assign probabilities and to which points we

assign probabilities.

TERMINOLOGY : A random variable is said to be continuous if its support set is

uncountable (i.e., the random variable can assume an uncountably infinite number of

values). We will present an alternate definition shortly.

3.2 Cumulative distribution functions

NEW : We now introduce a new function associated with any random variable (discrete

or continuous).

TERMINOLOGY : The cumulative distribution function (cdf) of a random variable

Y , denoted by FY (y), is given by

FY (y) = P (Y ≤ y), for all y ∈ R.

Note that the cdf is defined for all y ∈ R, not just for those values of y ∈ R, the support

set of Y .

REMARK : Every random variable, discrete or continuous, has a cdf. We’ll start by

computing some cdfs for discrete random variables.
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Example 3.1. Let the random variable Y have pmf

pY (y) =





1
6
(3− y), y = 0, 1, 2

0, otherwise.

Consider the following probability calculations:

FY (0) = P (Y ≤ 0) = P (Y = 0) =
3

6

FY (1) = P (Y ≤ 1) = P (Y = 0) + P (Y = 1) =
3

6
+

2

6
=

5

6

FY (2) = P (Y ≤ 2) = P (Y = 0) + P (Y = 1) + P (Y = 2) =
3

6
+

2

6
+

1

6
= 1.

Furthermore,

• for any y < 0, P (Y ≤ y) = 0

• for any 0 < y < 1, P (Y ≤ y) = P (Y = 0) = 3
6

• for any 1 < y < 2, P (Y ≤ y) = P (Y = 0) + P (Y = 1) = 3
6

+ 2
6

= 5
6

• for any y > 2, P (Y ≤ y) = P (Y = 0) + P (Y = 1) + P (Y = 2) = 3
6

+ 2
6

+ 1
6

= 1.

Putting this all together, we get

FY (y) =





0, y < 0

3
6
, 0 ≤ y < 1

5
6
, 1 ≤ y < 2

1, y ≥ 2.

Note that we have defined FY (y) for all y ∈ R. Some points are worth mentioning

concerning the graphs of the pmf and cdf :

• PMF

– The height of the bar above y is the probability that Y assumes that value.

– For any y not equal to 0, 1, or 2, pY (y) = 0.
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• CDF

– FY (y) is a nondecreasing function; see theoretical properties below.

– 0 ≤ FY (y) ≤ 1; this makes sense since FY (y) is a probability!!

– The height of the “jump” at a particular point is equal to the probability

associated with that point.

THEORETICAL PROPERTIES : Let Y be a random variable (discrete or continuous)

and suppose that FY (y) is the cdf for Y . Then

(i) limy→−∞ FY (y) = 0,

(ii) limy→+∞ FY (y) = 1,

(iii) FY (y) is a right continuous function; that is, for any real a, limy→a+ FY (y) =

FY (a), and

(iv) FY (y) is a non-decreasing function; that is, for any y1 ≤ y2, FY (y1) ≤ FY (y2).

Exercise: Graph the cdf for the b(5, 0.2) and Poisson(2) distributions.

3.3 Continuous random variables

ALTERNATE DEFINITION : A random variable is said to be continuous if its cdf

FY (y) is a continuous function of y.

RECALL: The cdfs associated with discrete random variables are step-functions. Such

functions are certainly not continuous; however, they are still right continuous.

TERMINOLOGY : Let Y be a continuous random variable with cdf FY (y). The prob-

ability density function (pdf) for Y , denoted by fY (y), is given by

fY (y) =
d

dy
FY (y),

PAGE 67



CHAPTER 3 STAT/MATH 511, J. TEBBS

provided that d
dy

FY (y) ≡ F ′
Y (y) exists. Furthermore, appealing to the Fundamental

Theorem of Calculus, we know that

FY (y) =

∫ y

−∞
fY (t)dt.

REMARK : These equations illustrate key relationships linking pdfs and cdfs for con-

tinuous random variables!!

PROPERTIES OF CONTINUOUS PDFs : Suppose that Y is a continuous random vari-

able with pdf fY (y) and support R. Then

(1) fY (y) > 0, for all y ∈ R;

(2)
∫

R
fY (y)dy = 1; i.e., the total area under the pdf equals one;

(3) The probability of an event B is computed by integrating the pdf fY (y) over B;

i.e., P (Y ∈ B) =
∫

B
fY (y)dy, for any B ⊂ R.

REMARK : Compare these to the analogous results for the discrete case (see page 28

in the notes). The only difference is that in the continuous case, integrals replace sums.

Example 3.2. Suppose that Y has the pdf

fY (y) =





1
2
, 0 < y < 2

0, otherwise.

This pdf is depicted in Figure 3.9. We want to find the cdf FY (y). To do this, we need

to compute FY (y) = P (Y ≤ y) for all y ∈ R. There are three cases:

• when y ≤ 0, we have

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

−∞
0dt = 0;

• when 0 < y < 2, we have

FY (y) =

∫ y

−∞
fY (t)dt =

∫ 0

−∞
0dt +

∫ y

0

1

2
dt

= 0 +
t

2

∣∣∣∣
y

0

= y/2;
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Figure 3.9: Probability density function, fY (y), in Example 3.2.

• when y ≥ 2, we have

FY (y) =

∫ y

−∞
fY (t)dt =

∫ 0

−∞
0dt +

∫ 2

0

1

2
dt +

∫ y

2

0dt

= 0 +
t

2

∣∣∣∣
2

0

+ 0 = 1.

Putting it all together, we have

FY (y) =





0, y < 0

y/2, 0 ≤ y < 2

1, y ≥ 2.

Example 3.3. Remission times for a certain group of leukemia patients (Y , measured

in months) has cdf

FY (y) =





0, y < 0

1− e−y/3, y ≥ 0.
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Figure 3.10: Cumulative distribution function, FY (y), in Example 3.3.

This cdf is depicted in Figure 3.10. Let’s calculate the pdf of Y . Again, we need to

consider all possible cases:

• when y < 0,

fY (y) =
d

dy
FY (y) =

d

dy
0 = 0;

• when y ≥ 0,

fY (y) =
d

dy
FY (y) =

d

dy

(
1− e−y/3

)
=

1

3
e−y/3.

Thus, putting it all together we get

fY (y) =





1
3
e−y/3, y ≥ 0

0, otherwise.

This pdf is depicted in Figure 3.11. ¤

Exercise: For the cdfs in Examples 3.2 and 3.3, verify that these functions satisfy the

four theoretical properties for any cdf.
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Figure 3.11: Probability density function, fY (y), in Example 3.3. This is a probability

model for leukemia remission times.

UBIQUITOUS RESULT : Recall that one of the properties of a continuous pdf is that

P (Y ∈ B) =

∫

B

fY (y)dy,

for any B ⊂ R. If B = {y : a ≤ y ≤ b}; i.e., B = [a, b], then

P (a ≤ Y ≤ b) =

∫ b

a

fY (y)dy = FY (b)− FY (a).

Example 3.4. In Example 3.3, what is the probability that a randomly selected patient

will have a remission time between 2 and 5 months? That is, what is P (2 ≤ Y ≤ 5)?

Solution. We can attack this two ways: one using the cdf, one with the pdf.

• CDF (refer to Figure 3.10).

P (2 ≤ Y ≤ 5) = FY (5)− FY (2)

= (1− e−5/3)− (1− e−2/3)

= e−2/3 − e−5/3

≈ 0.325.
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• PDF (refer to Figure 3.11).

P (2 ≤ Y ≤ 5) =

∫ 5

2

1

3
e−y/3dy

=
1

3
× (−3)e−y/3

∣∣∣∣
5

2

= e−2/3 − e−5/3

≈ 0.325. ¤

FACT : If Y is a continuous random variable with pdf fY (y), then P (Y = a) = 0 for

any real constant a. This follows since

P (Y = a) = P (a ≤ Y ≤ a) =

∫ a

a

fY (y)dy = 0.

Thus, for continuous random variables, probabilities are assigned to single points with

zero probability. This is the key difference between discrete and continuous random

variables. An immediate consequence of the above fact is that for any continuous

random variable Y ,

P (a ≤ Y ≤ b) = P (a ≤ Y < b) = P (a < Y ≤ b) = P (a < Y < b),

and the common value is
∫ b

a
fY (y)dy.

Example 3.5. Suppose that Y represents the time (in seconds) until a certain chemical

reaction takes place (in a manufacturing process, say), and varies according to the pdf

fY (y) =





cye−y/2, y ≥ 0

0, otherwise.

(a) Find the c that makes this a valid pdf.

(b) Compute P (3.5 ≤ Y < 4.5).

Solution.

(a) To find c, recall that
∫∞
0

fY (y)dy = 1. Thus,

c

∫ ∞

0

ye−y/2dy = 1.
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Figure 3.12: Probability density function, fY (y), in Example 3.5. This is a probability

model for chemical reaction times.

Using an integration by parts argument with u = y and dv = e−y/2dy, we have that

∫ ∞

0

ye−y/2dy = −2ye−y/2

∣∣∣∣
∞

y=0

+

∫ ∞

y=0

2e−y/2dy

= (0 + 0) +

[
2(−2)e−y/2

∣∣∣∣
∞

y=0

]

= (−4)(0− 1) = 4.

Solving for c, we get c = 1/4. This pdf is depicted in Figure 3.12.

(b) Using integration by parts again, we get

P (3.5 ≤ Y < 4.5) =

∫ 4.5

3.5

1

4
ye−y/2dy ≈ 0.135.

Thus, the probability that the chemical reaction takes place between 3.5 and 4.5 seconds

is about 0.14. ¤

DISCLAIMER: We will use integration by parts repeatedly in this course!!
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3.4 Mathematical expectation

3.4.1 Expected values

TERMINOLOGY : Let Y be a continuous random variable with pdf fY (y) and support

R. The expected value (or mean) of Y is given by

E(Y ) =

∫

R

yfY (y)dy.

If E(Y ) = ∞, we say that the expected value does not exist.

RECALL: When Y is a discrete random variable with pmf pY (y), the expected value of

Y is

E(Y ) =
∑
y∈R

ypY (y).

So again, we have the obvious similarities between the continuous and discrete cases.

Example 3.6. Suppose that Y has a pdf given by

fY (y) =





2y, 0 < y < 1

0, otherwise.

This pdf is depicted in Figure 3.13. Here, the expected value of Y is given by

E(Y ) =

∫ 1

0

yfY (y)dy

=

∫ 1

0

2y2dy

= 2

(
y3

3

∣∣∣∣
1

0

)
= 2

(
1

3
− 0

)
= 2/3. ¤

EXPECTATIONS OF FUNCTIONS OF Y : Let Y be a continuous random variable with

pdf fY (y) and support R, and suppose that g is a real-valued function. Then, g(Y ) is a

random variable and

E[g(Y )] =

∫

R

g(y)fY (y)dy.

If E[g(Y )] = ∞, we say that the expected value does not exist.

PAGE 74



CHAPTER 3 STAT/MATH 511, J. TEBBS

0.0 0.2 0.4 0.6 0.8 1.0

y

0.
0

0.
5

1.
0

1.
5

2.
0

f(y
)

Figure 3.13: Probability density function, fY (y), in Example 3.6.

Example 3.7. With the pdf in Example 3.6, compute E(Y 2) and E(ln Y ).

Solutions.

E(Y 2) =

∫ 1

0

2y3dy = 2

(
y4

4

∣∣∣∣
1

0

)
= 1/2.

Using integration by parts, with u = ln y and dv = ydy,

E(ln Y ) = 2

∫ 1

0

y ln ydy = 2

(
1

2
y2 ln y

∣∣∣∣
1

0

−
∫ 1

0

1

2
y2 × 1

y
dy

)
= −2

[
1

2

(
y2

2

∣∣∣∣
1

0

)]
= −1

2
. ¤

PROPERTIES OF EYPECTATIONS : Let Y be a continuous random variable with pdf

fY (y) and support R, suppose that g, g1, g2, ..., gk are real-valued functions, and let c be

any real constant. Then

(a) E(c) = c

(b) E[cg(Y )] = cE[g(Y )]

(c) E[
∑k

j=1 gj(Y )] =
∑k

j=1 E[gj(Y )].

These properties are identical to those we discussed in the discrete case.
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3.4.2 Variance

A SPECIAL EXPECTATION : Let Y be a continuous random variable with pdf fY (y),

support R, and mean µ. The variance of Y is given by

σ2 ≡ V (Y ) ≡ E[(Y − µ)2] =

∫

R

(y − µ)2fY (y)dy.

Example 3.8. With the pdf in Example 3.6,

fY (y) =





2y, 0 < y < 1

0, otherwise,

compute σ2 = V (Y ).

Solutions. Recall that µ = E(Y ) = 2/3, from Example 3.6. Using the definition above,

the variance of Y is

σ2 = V (Y ) =

∫ 1

0

(
y − 2

3

)2

× 2ydy =
1

18
.

Alternatively, we could use the variance computing formula; i.e.,

V (Y ) = E(Y 2)− [E(Y )]2.

We know E(Y ) = 2/3 and E(Y 2) = 1/2 (from Example 3.7). Thus,

σ2 = V (Y ) = (1/2)− (2/3)2 = 1/18. ¤

3.4.3 Moment generating functions

ANOTHER SPECIAL EXPECTATION : Let Y be a continuous random variable with

pdf fY (y) and support R. The moment generating function (mgf) for Y , denoted

by mY (t), is given by

mY (t) = E(etY ) =

∫

R

etyfY (y),

provided E(etY ) < ∞ for t in an open neighborhood about 0; i.e., there exists some

h > 0 such that E(etY ) < ∞ for all t ∈ (−h, h). If E(etY ) does not exist in an open

neighborhood of 0, we say that the moment generating function does not exist.
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Example 3.9. Suppose that Y has a pdf given by

fY (y) =





e−y, y > 0

0, otherwise.

Find the moment generating function of Y and use it to compute E(Y ) and V (Y ).

Solution.

mY (t) = E(etY ) =

∫ ∞

0

etyfY (y)dy

=

∫ ∞

0

e−y(1−t)dy

= −
(

1

1− t

)
e−y(1−t)

∣∣∣∣∣

∞

y=0

=

(
1

1− t

)
,

for values of t < 1. With the mgf, we can calculate the mean and variance. Differentiating

the mgf, we get

M ′
Y (t) ≡ d

dt
mY (t) =

d

dt

(
1

1− t

)
=

(
1

1− t

)2

.

Thus,

E(Y ) =
d

dt
mY (t)

∣∣∣∣
t=0

=

(
1

1− 0

)2

= 1.

To find the variance, we first find the second moment:

d2

dt2
mY (t) =

d

dt

(
1

1− t

)2

︸ ︷︷ ︸
M ′

Y (t)

= 2

(
1

1− t

)3

.

Thus, the second moment is

E(Y 2) = 2

(
1

1− 0

)3

= 2.

The computing formula gives

σ2 = V (Y ) = E(Y 2)− [E(Y )]2 = 2− 12 = 1. ¤

Exercise. Find E(Y ) and V (Y ) directly (i.e., do not use the mgf). Are your answers

the same as above?
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3.5 Uniform distribution

TERMINOLOGY : A random variable Y is said to have a uniform distribution from

θ1 to θ2 (θ1 < θ2) if its pdf is given by

fY (y) =





1
θ2−θ1

, θ1 < y < θ2

0, otherwise.

Shorthand notation is Y ∼ U(θ1, θ2). That the U(θ1, θ2) pdf integrates to one is obvious

since ∫ θ2

θ1

1

θ2 − θ1

dy =
y

θ2 − θ1

∣∣∣∣
θ2

θ1

=
θ2 − θ1

θ2 − θ1

= 1.

REMARKS : Sometimes, we call θ1 and θ2 the model parameters. A popular member

of the U(θ1, θ2) family is the U(0, 1) distribution; i.e., a uniform distribution with θ1 = 0

and θ2 = 1; this model is used extensively in computer programs to simulate random

numbers. The pdf for a U(0, 2) random variable is depicted in Figure 3.9.

UNIFORM CDF : The cdf FY (y) for a U(θ1, θ2) distribution is given by

FY (y) =





0, y ≤ θ1

y−θ1

θ2−θ1
, θ1 < y < θ2

1, y ≥ θ2.

Example 3.10. In a sedimentation experiment, the size of particles studied are uniformly

distributed between 0.1 and 0.5 millimeters. What proportion of particles are less than

0.4 millimeters?

Solution. Let Y denote the size of a randomly selected particle. Then, Y ∼ U(0.1, 0.5)

and

P (Y < 0.4) =

∫ 0.4

0.1

1

0.5− 0.1
dy =

y

0.4

∣∣∣∣
0.4

0.1

=
0.3

0.4
= 0.75. ¤

MEAN AND VARIANCE : If Y ∼ U(θ1, θ2), then

E(Y ) =
θ1 + θ2

2
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and

V (Y ) =
(θ2 − θ1)

2

12
.

These values can be computed using the pdf directly (try it!) or by using the mgf below.

MOMENT GENERATING FUNCTION : Suppose that Y ∼ U(θ1, θ2). The mgf of Y is

given by

mY (t) =





eθ2t−eθ1t

t(θ2−θ1)
, t 6= 0

1, t = 0

3.6 Normal distribution

TERMINOLOGY : A random variable Y is said to have a normal distribution if its

pdf is given by

fY (y) =





1√
2πσ

e−
1
2

(
y−µ

σ

)2

, −∞ < y < ∞
0, otherwise.

Shorthand notation is Y ∼ N (µ, σ2). There are two parameters in the normal distrib-

ution: the mean µ and the variance σ2.

FACTS ABOUT ANY NORMAL DISTRIBUTION :

(a) The pdf is symmetric about µ; that is, for any a ∈ R, fY (µ− a) = fY (µ + a).

(b) The points of inflection are located at y = µ± σ.

(c) Any normal distribution can be transformed to a “standard” normal distribution.

(d) limy→±∞ fY (y) = 0.

TERMINOLOGY : A normal distribution with mean µ = 0 and variance σ2 = 1 is called

the standard normal distribution. It is conventional to let Z denote a random variable

that follows a standard normal distribution; we often write Z ∼ N (0, 1).

IMPORTANT : Tabled values of the standard normal probabilities are given in Ap-

pendix III (Table 4, pp 792) of WMS. This table turns out to be very helpful since the
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integral

FY (y) =

∫ y

−∞

1√
2πσ

e−
1
2

(
t−µ

σ

)2

dt

does not exist in closed form! Specifically, the table provides values of

1− FZ(z) = P (Z > z) =

∫ ∞

z

1√
2πσ

e−u2/2du.

As mentioned, any normal distribution can be transformed to a “standard” normal dis-

tribution (we’ll see how later), so there is only a need for one table of probabilities. Of

course, probabilities like P (Z > z) can be obtained using software too.

VALIDITY : To show that the N (µ, σ2) pdf integrates to one, let z = y−µ
σ

. Then,

dz = 1
σ
dy and dy = σdz. Now, define

I =

∫ ∞

−∞

1√
2πσ

e−
1
2

(
y−µ

σ

)2

dy

=

∫ ∞

−∞

1√
2π

e−z2/2dz.

Since I > 0, it suffices to show that I2 = 1. However, note that

I2 =

∫ ∞

−∞

1√
2π

e−
x2

2 dx×
∫ ∞

−∞

1√
2π

e−
y2

2 dy

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
exp

[
−

(
x2 + y2

2

)]
dxdy.

Now, switching to polar coordinates; i.e., letting x = r cos θ and y = r sin θ, we get x2 +

y2 = r2(cos2 θ +sin2 θ) = r2, and dxdy = rdrdθ; i.e., the Jacobian of the transformation

from (x, y) space to (r, θ) space. Thus, we write

I2 =

∫ 2π

θ=0

∫ ∞

r=0

1

2π
e−r2/2rdrdθ

=
1

2π

∫ 2π

θ=0

[∫ ∞

r=0

re−r2/2dr

]
dθ

=
1

2π

∫ 2π

θ=0

[
− e−r2/2

∣∣∣∣
∞

r=0

]
dθ

=
1

2π

∫ 2π

θ=0

dθ =
θ

2π

∣∣∣
2π

θ=0
= 1. ¤
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MOMENT GENERATING FUNCTION : Suppose that Y ∼ N (µ, σ2). The mgf of Y ,

defined for all t, is given by

mY (t) = exp

(
µt +

σ2t2

2

)
.

Proof.

mY (t) = E(etY ) =

∫ ∞

−∞
ety 1√

2πσ
e−

1
2

(
y−µ

σ

)2

dy

=
1√
2πσ

∫ ∞

−∞
ety− 1

2

(
y−µ

σ

)2

dy.

Define b = ty − 1
2

(
y−µ

σ

)2
, the exponent in the last integral. Then,

b = ty − 1

2

(
y − µ

σ

)2

= ty − 1

2σ2
(y2 − 2µy + µ2)

= − 1

2σ2
(y2 − 2µy − 2σ2ty + µ2)

= − 1

2σ2

[
y2 − 2(µ + σ2t)y︸ ︷︷ ︸
complete the square

+µ2
]

= − 1

2σ2

[
y2 − 2(µ + σ2t)y + (µ + σ2t)2 − (µ + σ2t)2

︸ ︷︷ ︸
add and subtract

+µ2
]

= − 1

2σ2

{
[y − (µ + σ2t)]2

}
+

1

2σ2

[
(µ + σ2t)2 − µ2

]

= − 1

2σ2
(y − a)2 +

1

2σ2
(µ2 + 2µσ2t + σ4t2 − µ2)

︸ ︷︷ ︸
=c, say

,

where a = µ + σ2t. Thus, the last integral above is equal to
( ∫ ∞

−∞

1√
2πσ

e−
1

2σ2 (y−a)2

︸ ︷︷ ︸
N (a,σ2) density

dy

)
× ec

Now, finally note ec ≡ exp(c) = exp(µt + σ2t2/2). Thus, the result follows. ¤
Exercise: Use the mgf to verify that E(Y ) = µ and V (Y ) = σ2.

IMPORTANT : Suppose that Y ∼ N (µ, σ2). Then, the random variable

Z =
Y − µ

σ

has a normal distribution with mean 0 and variance 1. That is, Z ∼ N (0, 1).
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Proof. Let Z = 1
σ
(Y − µ). The mgf of Z is given by

mZ(t) = E(etZ) = E[exp(tZ)]

= E

{
exp

[
t

(
Y − µ

σ

)]}

= E

[
exp(−µt/σ) exp

(
t

σ
Y

)]

= exp(−µt/σ) E

[
exp

(
t

σ
Y

)]

︸ ︷︷ ︸
mY (t/σ)

= exp(−µt/σ)× exp

[
µ(t/σ) +

σ2(t/σ)2

2

]
= et2/2,

which is the mgf of a N (0, 1) random variable. Thus, by the uniqueness of moment

generating functions, we know that Z ∼ N (0, 1). ¤

USEFULNESS : From the last result, we know that if Y ∼ N (µ, σ2), then

{y1 < Y < y2} =

{
y1 − µ

σ
<

Y − µ

σ
<

y2 − µ

σ

}
=

{
y1 − µ

σ
< Z <

y2 − µ

σ

}
.

As a result,

P (y1 < Y < y2) = P

(
y1 − µ

σ
< Z <

y2 − µ

σ

)

≡ Φ

(
y2 − µ

σ

)
− Φ

(
y1 − µ

σ

)
,

where Φ(·) denotes the cdf of the N (0, 1) distribution. Note also that Φ(−z) = 1−Φ(z),

for z > 0.

Example 3.11. In Florida, young large-mouth bass were studied to examine the level

of mercury contamination, Y (measured in parts per million), which varies according to

a normal distribution with mean µ = 18 and variance σ2 = 16. This model is depicted

in Figure 3.14.

(a) What proportion of contamination levels are between 11 and 21 parts per million?

(b) For this model, ninety percent of all contamination levels will be above what mercury

level?
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Figure 3.14: Probability density function, fY (y), in Example 3.11. A model for mercury

contamination in large-mouth bass.

Solutions: (a) In this part, we want P (11 < Y < 21). By standardizing, we see that

P (11 < Y < 21) = P

(
11− 18

4
<

Y − 18

4
<

21− 18

4

)

= P

(
11− 18

4
< Z <

21− 18

4

)

= P (−1.75 < Z < 0.75)

= Φ(0.75)− Φ(−1.75) = 0.7734− 0.0401 = 0.7333.

For (b), we want to find the 10th percentile of the Y ∼ N (18, 16) distribution; i.e., we

want the value y such that 0.90 = P (Y > y) = 1− FY (y). To find y, first we’ll find the

z so that 0.90 = P (Z > z) = 1− Φ(z), then we’ll “unstandardize” y. From Table 4, we

see z = −1.28 so that
y − 18

4
= −1.28 =⇒ y = 12.88.

Thus, 90 percent of all contamination levels are larger that 12.88 parts per million. ¤
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3.7 The gamma family of pdfs

THE GAMMA FAMILY : In this section, we examine an important family of probability

distributions; namely, those in the gamma family. There are three “named distribu-

tions” in particular:

• exponential distribution

• gamma distribution

• χ2 distribution

NOTE : The exponential and gamma distributions are popular models for lifetime ran-

dom variables; i.e., random variables that record “time to event” measurements, such as

the lifetimes of an electrical component, death times for human subjects, etc. Other life-

time distributions include the lognormal, Weibull, and loggamma probability models.

3.7.1 Exponential distribution

TERMINOLOGY : A random variable Y is said to have an exponential distribution

with parameter β > 0 if its pdf is given by

fY (y) =





1
β
e−y/β, y > 0

0, otherwise.

NOTATION : Shorthand notation is Y ∼ exponential(β). The value β determines the

scale of the distribution (it is sometimes called the scale parameter). That the expo-

nential density function integrates to one is easily shown (verify!).

MOMENT GENERATING FUNCTION : Suppose that Y ∼ exponential(β). The mgf of

Y is given by

mY (t) =
1

1− βt
,

for values of t < 1/β.
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Proof. Let β = η(1 + ηt)−1 so that η = β(1− βt)−1 and ty − y/β = −y/η. Then,

mY (t) = E(etY ) =

∫ ∞

0

ety 1

β
e−y/βdy

=
1

β

∫ ∞

0

e−y/ηdy

= −η

β
e−y/η

∣∣∣
∞

y=0

=
1

1− βt
.

Note that for the last expression to be correct, we need η > 0; i.e., we need t < 1
β
. ¤

MEAN AND VARIANCE : Suppose that Y ∼ exponential(β). The mean and variance

of Y are given by

E(Y ) = β

and

V (Y ) = β2.

Proof: Exercise. ¤

Example 3.12. The lifetime of a certain electrical component has an exponential dis-

tribution with mean β = 500 hours. Engineers using this component are particularly

interested in the probability until failure. What is the probability that a randomly se-

lected component fails before 100 hours? lasts between 250 and 750 hours?

Solution. With β = 500, the pdf for Y is given by

fY (y) =





1
500

e−y/500, y > 0

0, otherwise.

This pdf is depicted in Figure 3.15. Thus, the probability of failing before 100 hours is

given by

P (Y < 100) =

∫ 100

0

1

500
e−y/500dy ≈ 0.181.

Similarly, the probability of failing between 250 and 750 hours is

P (250 < Y < 750) =

∫ 750

250

1

500
e−y/500dy ≈ 0.383. ¤
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Figure 3.15: Probability density function, fY (y), in Example 3.12. A model for electrical

component lifetimes.

CUMULATIVE DISTRIBUTION FUNCTION : Suppose that Y ∼ exponential(β).

Then, the cdf of Y exists in closed form and is given by

FY (y) =





0, y ≤ 0

1− e−y/β, y > 0.

The cdf for the exponential random variable in Example 3.12 is depicted in Figure 3.16.

THE MEMORYLESS PROPERTY : Suppose that Y ∼ exponential(β), and suppose

that r and s are both positive constants. Then

P (Y > r + s|Y > r) = P (Y > s).

That is, given that the lifetime Y has exceeded r, the probability that Y exceeds r+s (i.e.,

an additional s units) is the same as if we were to look at Y unconditionally lasting until

time s. Put another way, that Y has actually “made it” to time r has been forgotten!

The exponential random variable is the only continuous random variable that enjoys the

memoryless property.
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Figure 3.16: Cumulative distribution function, FY (y), in Example 3.12. A model for

electrical component lifetimes.

RELATIONSHIP WITH A POISSON PROCESS : Suppose that we are observing events

according to a Poisson process with rate λ = 1/β, and let the random variable W denote

the time until the first occurrence. Then, W ∼ exponential(β).

Proof: Clearly, W is a continuous random variable with nonnegative support. Thus, for

w ≥ 0, we have

FW (w) = P (W ≤ w) = 1− P (W > w)

= 1− P ({no events in [0, w]})
= 1− e−λw(λw)0

0!

= 1− e−λw.

Substituting λ = 1/β, we find that

FW (w) = 1− e−w/β,

the cdf of an exponential random variable with mean β. Thus, the result follows. ¤
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3.7.2 Gamma distribution

THE GAMMA FUNCTION : The gamma function is a function of t, defined for all

t > 0 as

Γ(t) =

∫ ∞

0

yt−1e−ydy

FACTS ABOUT THE GAMMA FUNCTION :

(1) A simple argument shows that Γ(α) = (α− 1)Γ(α− 1), for all α > 1.

(2) If α is an integer, Γ(α) = (α− 1)!. For example, Γ(5) = 4! = 24.

TERMINOLOGY : A random variable Y is said to have a gamma distribution with

parameters α > 0 and β > 0 if its pdf is given by

fY (y) =





1
Γ(α)βα yα−1e−y/β, y > 0

0, otherwise.

Shorthand notation is Y ∼ gamma(α, β).

REMARK : This model is indexed by two parameters. We call α the shape parameter

and β the scale parameter. The gamma probability model is extremely flexible! By

changing the values of α and β, the gamma pdf can assume many shapes. Thus, the

gamma model is very popular for modeling lifetime data.

IMPORTANT NOTE : When α = 1, the gamma pdf reduces to the exponential(β) pdf!

REMARK : To see that the gamma pdf integrates to one, consider the change of variable

u = y/β. Then, du = 1
β
dy and

∫ ∞

0

1

Γ(α)βα
yα−1e−y/βdy =

1

Γ(α)

∫ ∞

0

uα−1e−udu =
Γ(α)

Γ(α)
= 1. ¤

MGF FOR THE GAMMA DISTRIBUTION : Suppose that Y ∼ gamma(α, β). Then,

for values of t < 1/β, the mgf of Y is given by

mY (t) =

(
1

1− βt

)α

.
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Proof. Let β = η(1 + ηt)−1 so that η = β(1− βt)−1 and ty − y/β = −y/η.

mY (t) = E(etY ) =

∫ ∞

0

ety 1

Γ(α)βα
yα−1e−y/βdy

=
1

βα

∫ ∞

0

1

Γ(α)
yα−1e−y/ηdy

=
ηα

βα

∫ ∞

0

1

Γ(α)ηα
yα−1e−y/η

︸ ︷︷ ︸
gamma(α,η) density

dy

=

(
η

β

)α

=

(
1

1− βt

)α

. ¤

MEAN AND VARIANCE : If Y ∼ gamma(α, β), then

E(Y ) = αβ and V (Y ) = αβ2.

Proof. Exercise. ¤

TERMINOLOGY : When talking about the gamma(α, β) density function, it is often

helpful to think of the formula in two parts:

• the kernel: yα−1e−y/β

• the constant: [Γ(α)βα]−1

Example 3.13. Suppose that Y has pdf given by

fY (y) =





cy2e−y/4, y > 0

0, otherwise.

(a) What is the value of c that makes this a valid pdf?

(b) Give an integral expression that equals P (Y < 8)? How could we solve this equation?

(c) What is the mgf of Y ?

(d) What is the mean and standard deviation of Y ?

RELATIONSHIP WITH A POISSON PROCESS : Suppose that we are observing events

according to a Poisson process with rate λ = 1/β, and let the random variable W denote

the time until the αth occurrence. Then, W ∼ gamma(α, β).
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Figure 3.17: Probability density function, fY (y), in Example 3.13.

Proof: Clearly, W is continuous with nonnegative support. Thus, for w ≥ 0, we have

FW (w) = P (W ≤ w) = 1− P (W > w)

= 1− P ({fewer than α events in [0, w]})

= 1−
α−1∑
j=0

e−λw(λw)j

j!
.

The pdf of W , fW (w), is equal to F ′
W (w), provided that this derivative exists. For w > 0,

fW (w) = F ′
W (w) = λe−λw − e−λw

α−1∑
j=1

[
j(λw)j−1λ

j!
− (λw)jλ

j!

]

︸ ︷︷ ︸
telescoping sum

= λe−λw − e−λw

[
λ− λ(λw)α−1

(α− 1)!

]

=
λ(λw)α−1e−λw

(α− 1)!
=

λα

Γ(α)
wα−1eλw.

Substituting λ = 1/β,

fW (w) =
1

Γ(α)βα
wα−1e−w/β,

for w > 0, which is the pdf for the gamma(α, β) distribution. ¤
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3.7.3 χ2 distribution

TERMINOLOGY : In the gamma(α, β) family, when α = ν/2, for any integer ν, and

β = 2, we call the resulting distribution a χ2 distribution with ν degrees of freedom. If

Y has a χ2 distribution with ν degrees of freedom, we write Y ∼ χ2(ν).

NOTE : At this point, it suffices to know that the χ2 distribution is really just a “spe-

cial” gamma distribution. However, it should be noted that the χ2 distribution is used

extensively in applied statistics. Many statistical procedures used in the literature are

valid because of this model!

PROBABILITY DENSITY FUNCTION : If Y ∼ χ2(ν), then the pdf of Y is given by

fY (y) =





1
Γ( ν

2
)2ν/2 y

(ν/2)−1e−y/2, y > 0

0, otherwise.

MOMENT GENERATING FUNCTION : Suppose that Y ∼ χ2(ν). Then, for values of

t < 1/2, the mgf of Y is given by

mY (t) =

(
1

1− 2t

)ν/2

.

Proof. Take the gamma(α, β) mgf and put in α = ν/2 and β = 2. ¤

MEAN AND VARIANCE OF THE χ2 DISTRIBUTION : If Y ∼ χ2(ν), then

E(Y ) = ν and V (Y ) = 2ν.

Proof. Take the gamma(α, β) formulae and substitute α = ν/2 and β = 2. ¤

TABLED VALUES FOR CDF : Because the χ2 distribution is so pervasive in applied

statistics, tables of probabilities are common. Table 6 (WMS, pp 794-5) provides values

of y which satisfy

P (Y > y) =

∫ ∞

y

1

Γ(ν
2
)2ν/2

u(ν/2)−1e−u/2du

for different values of y and degrees of freedom ν.
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3.8 Beta distribution

TERMINOLOGY : A random variable Y is said to have a beta distribution with

parameters α > 0 and β > 0 if its pdf is given by

fY (y) =





1
B(α,β)

yα−1(1− y)β−1, 0 < y < 1

0, otherwise.

Since the support of Y is 0 < y < 1, the beta distribution is a popular probability model

for proportions. Shorthand notation is Y ∼ beta(α, β). The constant B(α, β) is given

by

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
.

TERMINOLOGY : When talking about the beta(α, β) density function, it is often helpful

to think of the formula in two parts:

• the kernel: yα−1(1− y)β−1

• the constant: 1
B(α,β)

THE SHAPE OF THE BETA PDF : The beta pdf is very flexible. That is, by changing

the values of α and β, we can come up with many different pdf shapes. See Figure 3.18

for examples.

• When α = β, the pdf is symmetric about the line y = 1
2
.

• When α < β, the pdf is skewed right (i.e., smaller values of y are more likely).

• When α > β, the pdf is skewed left (i.e., larger values of y are more likely).

• When α = β = 1, the beta pdf reduces to the U(0, 1) pdf!

MOMENT GENERATING FUNCTION : The mgf of a beta(α, β) random variable exists,

but not in a nice compact formula. Hence, we’ll compute moments directly.
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Figure 3.18: Four different beta probability models.

MEAN AND VARIANCE OF THE BETA DISTRIBUTION : If Y ∼ beta(α, β), then

E(Y ) =
α

α + β
and V (Y ) =

αβ

(α + β)2(α + β + 1)
.

Proof. Exercise. ¤

Example 3.14. A small filling station is supplied with premium gasoline once per day

(and can supply at most 1000 gallons). Its daily volume of sales (in 1000s of gallons) is

a random variable, say Y , which has the beta distribution

fY (y) =





5(1− y)4, 0 < y < 1

0, otherwise.

(a) What is are the parameters in this distribution; i.e., what are α and β?

(b) What is the average daily sales?

(c) What need the capacity of the tank be so that the probability of the supply being

exhausted in any day is 0.01?

(d) Treating daily sales as independent (from day to day), what is the probability that

during any given 7-day span, there are exactly 2 days where sales exceed 200 gallons?
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Solutions. (a) α = 1 and β = 5.

(b) E(Y ) = 1
1+5

= 1/6. Thus, the average sales is about 166.66 gallons.

(c) We want to find the capacity, say c, such that P (Y > c) = 0.01. This means that

P (Y > c) =

∫ 1

c

5(1− y)4dy = 0.01,

and we need to solve this equation for c. Using a change of variable u = 1− y,
∫ 1

c

5(1− y)4dy =

∫ 1−c

0

5u4dy = u5
∣∣∣
1−c

0
= (1− c)5.

Thus, we have (1 − c)5 = 0.01 ⇒ 1 − c = (0.01)1/5 ⇒ c = 1 − (0.01)1/5 ≈ 0.602, and so

there must be about 602 gallons in the tank.

(d) First, we compute

P (Y > 0.2) =

∫ 1

0.2

5(1− y)4dy =

∫ 0.8

0

5u4du = u5
∣∣∣
0.8

0
= (0.8)5 = 0.328.

This is the probability that sales exceed 200 gallons on any given day. Now, treat each

day as a “trial,” and let X denote the number of days where “sales exceed 200 gallons”

(i.e., a “success”). Because days are assumed independent, X ∼ b(7, 0.328) and

P (X = 2) =

(
7

2

)
(0.328)2(1− 0.328)5 = 0.310. ¤

3.9 Chebyshev’s Inequality

MARKOV’S INEQUALITY : Suppose that X is a nonnegative random variable with

pdf (pmf) fX(x), and let c be any positive constant. Then,

P (X > c) ≤ E(X)

c
.

Proof. First, define the event B = {x : x > c}. We know that

E(X) =

∫ ∞

0

xfX(x)dx =

∫

B

xfX(x)dx +

∫

B

xfX(x)dx

≥
∫

B

xfX(x)dx

≥
∫

B

cfX(x)dx

= cP (X > c). ¤
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SPECIAL CASE : Let Y be any random variable, discrete or continuous, with mean

µ and variance σ2 < ∞. Then, for k > 0,

P (|Y − µ| > kσ) ≤ 1

k2
.

This is known as Chebyshev’s Inequality.

Proof. Apply Markov’s Inequality with X = (Y − µ)2 and c = k2σ2. With these

substitutions, we have

P (|Y − µ| > kσ) = P [(Y − µ)2 > k2σ2] ≤ E[(Y − µ)2]

k2σ2
=

1

k2
. ¤

REMARK : The beauty of Chebyshev’s result is that it applies to any random variable

Y . In words, P (|Y − µ| > kσ) is the probability that the random variable Y will differ

from the mean µ by more than k standard deviations. If we do not know how Y is

distributed, we can not compute P (|Y − µ| > kσ) exactly, but, at least we can put an

upper bound on this probability; this is what Chebyshev’s result allows us to do. Note

that

P (|Y − µ| > kσ) = 1− P (|Y − µ| ≤ kσ) = 1− P (µ− kσ ≤ Y ≤ µ + kσ).

Thus, it must be the case that

P (|Y − µ| ≤ kσ) = P (µ− kσ ≤ Y ≤ µ + kσ) ≥ 1− 1

k2
.

Example 3.15. Suppose that Y represents the amount of precipitation (in inches)

observed annually in Barrow, AK. The exact probability distribution for Y is unknown,

but, from historical information, it is posited that µ = 4.5 and σ = 1. What is a lower

bound on the probability that there will be between 2.5 and 6.5 inches of precipitation

during the next year?

Solution: We want to compute a lower bound for P (2.5 ≤ Y ≤ 6.5). Note that

P (2.5 ≤ Y ≤ 6.5) = P (|Y − µ| ≤ 2σ) ≥ 1− 1

22
= 0.75.

Thus, we know that P (2.5 ≤ Y ≤ 6.5) ≥ 0.75. The chances are good that, in fact, Y

will be between 2.5 and 6.5 inches.
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4 Multivariate Distributions

Complementary reading from WMS: Chapter 5.

4.1 Introduction

REMARK : So far, we have only discussed univariate (single) random variables (their

probability distributions, moment generating functions, means and variances, etc). In

practice, however, investigators are often interested in probability statements concerning

two or more random variables. Consider the following examples:

• In an agricultural field trial, we might to understand the relationship between yield

(Y , measured in bushels/acre) and the nitrogen content of the soil (X).

• In an educational assessment program, we might want to predict a student’s

posttest score (Y2) from her pretest score (Y1).

• In a clinical trial, physicians might want to characterize the concentration of a drug

(Y ) in one’s body as a function of the time (X) from injection.

• In a marketing study, the goal is to forecast next month’s sales, say Yn, based on

sales figures from the previous n− 1 periods, say Y1, Y2, ..., Yn−1.

GOAL: In each of these examples, our goal is to describe the relationship between (or

among) the random variables that are recorded. As it turns out, these relationships can

be described mathematically through a probabilistic model.

TERMINOLOGY : If Y1 and Y2 are random variables, then (Y1, Y2) is called a bivariate

random vector. If Y1, Y2, ..., Yn denote n random variables, then Y = (Y1, Y2, ..., Yn)

is called an n-variate random vector. For much of this chapter, we will consider the

n = 2 bivariate case. However, all ideas discussed herein extend naturally to higher

dimensional settings.
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4.2 Discrete random vectors

TERMINOLOGY : Let Y1 and Y2 be discrete random variables. Then, (Y1, Y2) is called

a discrete random vector, and the joint probability mass function (pmf) of Y1

and Y2 is given by

pY1,Y2(y1, y2) = P (Y1 = y1, Y2 = y2),

for all (y1, y2) ∈ RY1,Y2 . The set RY1,Y2 ⊆ R2 is the two dimensional support of (Y1, Y2).

The function pY1,Y2(y1, y2) has the following properties:

(1) 0 ≤ pY1,Y2(y1, y2) ≤ 1, for all (y1, y2) ∈ RY1,Y2

(2)
∑

RY1,Y2
pY1,Y2(y1, y2) = 1

(3) P [(Y1, Y2) ∈ B] =
∑

B pY1,Y2(y1, y2), for any set B ⊂ R2.

Example 4.1. An urn contains 3 red balls, 4 white balls, and 5 green balls. Let (Y1, Y2)

denote the bivariate random vector where, out of 3 randomly selected balls,

Y1 = number of red balls

Y2 = number of white balls.

Consider the following calculations:

pY1,Y2(0, 0) =

(
3
0

)(
4
0

)(
5
3

)
(
12
3

) =
10

220

pY1,Y2(0, 1) =

(
3
0

)(
4
1

)(
5
2

)
(
12
3

) =
40

220

pY1,Y2(0, 2) =

(
3
0

)(
4
2

)(
5
1

)
(
12
3

) =
30

220

pY1,Y2(0, 3) =

(
3
0

)(
4
3

)(
5
0

)
(
12
3

) =
4

220

pY1,Y2(1, 0) =

(
3
1

)(
4
0

)(
5
2

)
(
12
3

) =
30

220

pY1,Y2(1, 1) =

(
3
1

)(
4
1

)(
5
1

)
(
12
3

) =
60

220
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Table 4.2: Joint pmf pY1,Y2(y1, y2) for Example 4.1 displayed in tabular form.

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 y2 = 3

y1 = 0 10
220

40
220

30
220

4
220

y1 = 1 30
220

60
220

18
220

y1 = 2 15
220

12
220

y1 = 3 1
220

and similarly,

pY1,Y2(1, 2) =
18

220

pY1,Y2(2, 0) =
15

220

pY1,Y2(2, 1) =
12

220

pY1,Y2(3, 0) =
1

220
.

Here, the support is

RY1,Y2 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (3, 0)}.

Table 4.2 depicts the joint pmf. It is straightforward to see that
∑

RY1,Y2
pY1,Y2(y1, y2) = 1.

Question: What is the probability that, among the three balls chosen, there is at most

1 red ball and at most 1 white ball? That is, what is P (Y1 ≤ 1, Y2 ≤ 1)?

Solution. Here, we want to compute P (B), where the set B = {(0, 0), (0, 1), (1, 0), (1, 1)}.
From the properties associated with the joint pmf, this calculation is given by

P (B) = P (Y1 ≤ 1, Y2 ≤ 1) = pY1,Y2(0, 0) + pY1,Y2(0, 1) + pY1,Y2(1, 0) + pY1,Y2(1, 1)

=
10

220
+

40

220
+

30

220
+

60

220

=
140

220
.

Question: What is the probability that, among the three balls chosen, there are at

least 2 red balls? That is, what is P (Y1 ≥ 2)?
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4.3 Continuous random vectors

TERMINOLOGY : Let Y1 and Y2 be continuous random variables. Then, (Y1, Y2) is called

a continuous random vector, and the joint probability density function (pdf)

of Y1 and Y2 is denoted by fY1,Y2(y1, y2). The function fY1,Y2(y1, y2) has the following

properties:

(1) fY1,Y2(y1, y2) > 0, for all (y1, y2) ∈ RY1,Y2 (the two-dimensional support set)

(2)
∫∞
−∞

∫∞
−∞ fY1,Y2(y1, y2)dy1dy2 = 1

(3) P [(Y1, Y2) ∈ B] =
∫

B
fY1,Y2(y1, y2)dy1dy2, for any set B ⊂ R2.

REMARK : Of course, we realize that

P [(Y1, Y2) ∈ B] =

∫

B

fY1,Y2(y1, y2)dy1dy2

is really a double integral since B is a two-dimensional set in the (y1, y2) plane; thus,

P [(Y1, Y2) ∈ B] represents the volume under fY1,Y2(y1, y2) over B.

TERMINOLOGY : Suppose that (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2). The joint cumulative distribution function (cdf) for (Y1, Y2) is given

by

FY1,Y2(y1, y2) ≡ P (Y1 ≤ y1, Y2 ≤ y2) =

∫ y2

−∞

∫ y1

−∞
fY1,Y2(r, s)drds,

for all (y1, y2) ∈ R2. It follows upon differentiation that the joint pdf is given by

fY1,Y2(y1, y2) =
∂2

∂y1∂y2

FY1,Y2(y1, y2),

wherever these mixed partial derivatives are defined.

Example 4.2. Suppose that in a controlled agricultural experiment, we observe the

random vector (Y1, Y2), where Y1 = temperature (in Celcius) and Y2 = precipitation level

(in inches), and suppose that the joint pdf of (Y1, Y2) is given by

fY1,Y2(y1, y2) =





cy1y2, 10 < y1 < 20, 0 < y2 < 3

0, otherwise.
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(a) What is the value of c?

(b) Compute P (Y1 > 15, Y2 < 1).

(c) Compute P (Y2 > Y1/5).

Solutions: (a) We know that
∫ 20

y1=10

∫ 3

y2=0

cy1y2 dy2dy1 = 1

since fY1,Y2(y1, y2) must integrate to 1 over RY1,Y2 = {(y1, y2) : 10 < y1 < 20, 0 < y2 < 3};
i.e.,

1 =

∫ 20

y1=10

∫ 3

y2=0

cy1y2 dy2dy1 = c

∫ 20

y1=10

y1

(
y2

2

2

∣∣∣∣
3

0

)
dy1 =

9c

2

(
y2

1

2

∣∣∣∣
20

10

)
=

9c

2
(150) = 675c.

Thus, c = 1/675.

(b) Let B = {(y1, y2) : y1 > 15, y2 < 1}. The value P [(Y1, Y2) ∈ B] = P (Y1 > 15, Y2 < 1)

represents the volume under fY1,Y2(y1, y2) over the set B; i.e.,

P [(Y1, Y2) ∈ B] = P (Y1 > 15, Y2 < 1) =

∫ 20

y1=15

∫ 1

y2=0

1

675
y1y2 dy2dy1

=
1

675

∫ 20

y1=15

y1

(
y2

2

2

∣∣∣∣
1

0

)
dy1

=
1

1350

(
y2

1

2

∣∣∣∣
20

15

)
=

1

1350

(
200− 225

2

)
≈ 0.065.

(c) Let D = {(y1, y2) : y2 > y1/5}. The quantity P [(Y1, Y2) ∈ D] = P (Y2 > Y1/5)

represents the volume under fY1,Y2(y1, y2) over the set D; i.e.,

P [(Y1, Y2) ∈ D] = P (Y2 > Y1/5) =

∫ 3

y2=2

∫ 5y2

y1=10

1

675
y1y2 dy1dy2

=
1

675

∫ 3

y2=2

y2

(
y2

1

2

∣∣∣∣
5y2

10

)
dy2

=
1

1350

∫ 3

y2=2

(25y3
2 − 100y2)dy2

=
1

1350

(
25y4

2

4
− 50y2

2

∣∣∣∣
3

2

)
≈ 0.116.

NOTE : The key thing to remember that, in parts (b) and (c), the probability is simply

the volume under the density fY1,Y2(y1, y2) over a particular set. It is helpful to draw a

picture to get the limits of integration correct!
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4.4 Marginal distributions

RECALL: The joint pmf of (Y1, Y2) in Example 4.1 is depicted below in Table 4.3. You

see that by summing out over the values of y2 in Table 4.3, we obtain the row sums

P (Y1 = 0) =
84
220

P (Y1 = 1) =
108
220

P (Y1 = 2) =
27
220

P (Y1 = 3) =
1

220

This represents the marginal distribution of Y1. Similarly, by summing out over the

values of y1, we obtain the column sums

P (Y2 = 0) P (Y2 = 1) P (Y2 = 2) P (Y2 = 3)
56
220

112
220

48
220

4
220

This represents the marginal distribution of Y2.

Table 4.3: Joint pmf pY1,Y2(y1, y2) displayed in tabular form.

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 y2 = 3 Row Sum

y1 = 0 10
220

40
220

30
220

4
220

84
220

y1 = 1 30
220

60
220

18
220

108
220

y1 = 2 15
220

12
220

27
220

y1 = 3 1
220

1
220

Column sum 56
220

112
220

48
220

4
220

1

TERMINOLOGY : Let (Y1, Y2) be a discrete random vector with pmf pY1,Y2(y1, y2).

Then the marginal pmf of Y1 is

pY1(y1) =
∑

all y2

pY1,Y2(y1, y2)

and the marginal pmf of Y2 is

pY2(y2) =
∑

all y1

pY1,Y2(y1, y2).
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MAIN POINT : In the two-dimensional discrete case, marginal pmfs are obtained by

“summing out” over the other variable.

TERMINOLOGY : Let (Y1, Y2) be a continuous random vector with pdf fY1,Y2(y1, y2).

Then the marginal pdf of Y1 is

fY1(y1) =

∫ ∞

−∞
fY1,Y2(y1, y2)dy2

and the marginal pdf of Y2 is

fY2(y2) =

∫ ∞

−∞
fY1,Y2(y1, y2)dy1.

MAIN POINT : In the two-dimensional continuous case, marginal pdfs are obtained by

“integrating out” over the other variable.

Example 4.3. In a simple genetics model, the proportion, say Y1, of a population with

Trait 1 is always less than the proportion, say Y2, of a population with trait 2, and the

random vector (Y1, Y2) has joint pdf

fY1,Y2(y1, y2) =





6y1, 0 < y1 < y2 < 1

0, otherwise.

(a) Find the marginal distributions fY1(y1) and fY2(y2).

(b) Find the probability that the proportion of individuals with trait 2 exceeds 1/2.

(c) Find the probability that the proportion of individuals with trait 2 is at least twice

that of the proportion of individuals with trait 1.

Solutions: (a) To find the marginal distribution of Y1, i.e., fY1(y1), we integrate out

over y2. For values of 0 ≤ y1 ≤ 1, we have

fY1(y1) =

∫ 1

y2=y1

6y1dy2 = 6y1(1− y1).

Thus, the marginal distribution of Y1 is given by

fY1(y1) =





6y1(1− y1), 0 < y1 < 1

0, otherwise.
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Of course, we recognize this as a beta distribution with α = 2 and β = 2. That is,

marginally, Y1 ∼ beta(2, 2). To find the marginal distribution of Y2, i.e., fY2(y2), we

integrate out over y1. For values of 0 ≤ y2 ≤ 1, we have

fY2(y2) =

∫ y2

y1=0

6y1dy1 = 3y2
1

∣∣∣
y2

0
= 3y2

2.

Thus, the marginal distribution of Y2 is given by

fY2(y2) =





3y2
2, 0 < y2 < 1

0, otherwise.

Of course, we recognize this as a beta distribution with α = 3 and β = 1. That is,

marginally, Y2 ∼ beta(3, 1).

(b) Here, we want to find P (B), where the set B = {(y1, y2) : 0 < y1 < y2, y2 > 1/2}.
This probability can be computed two different ways:

(i) using the joint distribution fY1,Y2(y1, y2) and computing

P [(Y1, Y2) ∈ B] =

∫ 1

y2=0.5

∫ y2

y1=0

6y1 dy1dy2.

(ii) using the marginal distribution fY2(y2) and computing

P (Y2 > 1/2) =

∫ 1

y2=0.5

3y2
2dy2.

Either way, you will get the same answer! Notice that in (i), you are computing the

volume under fY1,Y2(y1, y2) over the set B. In (ii), you are finding the area under

fY2(y2) over the set {y2 : y2 > 1/2}.

(c) Here, we want to compute P (Y2 ≥ 2Y1); i.e., we want to compute P (D), where the

set D = {(y1, y2) : y2 ≥ 2y1}. This equals

P [(Y1, Y2) ∈ D] =

∫ 1

y2=0

∫ y2/2

y1=0

6y1dy1dy2 = 0.25.

This is the volume under fY1,Y2(y1, y2) over the set D. ¤
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4.5 Conditional distributions

RECALL: For events A and B in a non-empty sample space S, we defined

P (A|B) =
P (A ∩B)

P (B)
,

for P (B) > 0. Now, suppose that (Y1, Y2) is a discrete random vector. If we let B =

{Y2 = y2} and A = {Y1 = y1}, we obtain

P (A|B) =
P (Y1 = y1, Y2 = y2)

P (Y2 = y2)
=

pY1,Y2(y1, y2)

pY2(y2)
.

TERMINOLOGY : Suppose that (Y1, Y2) is a discrete random vector with joint pmf

pY1,Y2(y1, y2). We define the conditional probability mass function (pmf) of Y1,

given Y2 = y2, as

pY1|Y2(y1|y2) =
pY1,Y2(y1, y2)

pY2(y2)
,

whenever pY2(y2) > 0. Similarly, the conditional probability mass function of Y2, given

Y1 = y1, as

pY2|Y1(y2|y1) =
pY1,Y2(y1, y2)

pY1(y1)
,

whenever pY1(y1) > 0.

Example 4.4. In Example 4.1, we computed the joint pmf for (Y1, Y2). The table below

depicts this joint pmf as well as the marginal pmfs.

Table 4.4: Joint pmf pY1,Y2(y1, y2) displayed in tabular form.

pY1,Y2(y1, y2) y2 = 0 y2 = 1 y2 = 2 y2 = 3 Row Sum

y1 = 0 10
220

40
220

30
220

4
220

84
220

y1 = 1 30
220

60
220

18
220

108
220

y1 = 2 15
220

12
220

27
220

y1 = 3 1
220

1
220

Column sum 56
220

112
220

48
220

4
220

1

Question: What is the conditional pmf of Y1, given Y2 = 1?
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Solution. Straightforward calculations show that

pY1|Y2(y1 = 0|y2 = 1) =
pY1,Y2(y1 = 0, y2 = 1)

pY2(y2 = 1)
=

40/220

112/220
= 40/112

pY1|Y2(y1 = 1|y2 = 1) =
pY1,Y2(y1 = 1, y2 = 1)

pY2(y2 = 1)
=

60/220

112/220
= 60/112

pY1|Y2(y1 = 2|y2 = 1) =
pY1,Y2(y1 = 2, y2 = 1)

pY2(y2 = 1)
=

12/220

112/220
= 12/112.

Thus, the conditional pmf of Y1, given Y2 = 1, is given by

y1 0 1 2

pY1|Y2(y1|y2 = 1) 40/112 60/112 12/112

This conditional pmf tells us how Y1 is distributed if we are given that Y2 = 1.

Exercise. Find the conditional pmf of Y2, given Y1 = 0. ¤

THE CONTINUOUS CASE : When (Y1, Y2) is a continuous random vector, we have to

be careful how we define conditional distributions since the quantity

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)

has a zero denominator. As it turns out, this expression is the correct formula for the

continuous case; however, we have to motivate its construction in a slightly different way.

ALTERNATE MOTIVATION : Suppose that (Y1, Y2) is a continuous random vector. For

dy1 and dy2 small,

fY1|Y2(y1|y2)dy1 =
fY1,Y2(y1, y2)dy1dy2

fY2(y2)dy2

≈ P (y1 ≤ Y1 ≤ y1 + dy1, y2 ≤ Y2 ≤ y2 + dy2)

P (y2 ≤ Y2 ≤ y2 + dy2)

= P (y1 ≤ Y1 ≤ y1 + dy1|y2 ≤ Y2 ≤ y2 + dy2).

Thus, we can think of fY1|Y2(y1|y2) in this way; i.e., for “small” values of dy1 and dy2,

fY1|Y2(y1|y2) represents the conditional probability that Y1 is between y1 and y1 + dy1,

given that Y2 is between y2 and y2 + dy2.
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TERMINOLOGY : Suppose that (Y1, Y2) is a continuous random vector with joint pdf

fY1,Y2(y1, y2). We define the conditional probability density function (pdf) of Y1,

given Y2 = y2, as

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
.

Similarly, the conditional probability density function of Y2, given Y1 = y1, is

fY2|Y1(y2|y1) =
fY1,Y2(y1, y2)

fY1(y1)
.

Example 4.5. Consider the bivariate pdf in Example 4.3:

fY1,Y2(y1, y2) =





6y1, 0 < y1 < y2 < 1

0, otherwise.

Recall that this probabilistic model summarized the random vector (Y1, Y2), where Y1, the

proportion of a population with Trait 1, is always less than Y2, the proportion of a pop-

ulation with trait 2. Derive the conditional distributions fY1|Y2(y1|y2) and fY2|Y1(y2|y1).

Solution. In Example 4.3, we derived the marginal pdfs to be

fY1(y1) =





6y1(1− y1), 0 < y1 < 1

0, otherwise

and

fY2(y2) =





3y2
2, 0 < y2 < 1

0, otherwise.

First, we derive fY1|Y2(y1|y2), so fix Y2 = y2. Remember, once we condition on Y2 = y2

(i.e., once we fix Y2 = y2), we then regard y2 as simply some constant. This is an

important point to understand. Then, for values of 0 < y1 < y2, it follows that

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
=

6y1

3y2
2

=
2y1

y2
2

,

and, thus, this is the value of fY1|Y2(y1|y2) when 0 < y1 < y2. Of course, for values of

y1 /∈ (0, y2), the conditional density fY1|Y2(y1|y2) = 0. Summarizing, the conditional pdf

of Y1, given Y2 = y2, is given by

fY1|Y2(y1|y2) =





2y1/y
2
2, 0 < y1 < y2

0, otherwise.
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Now, to derive the conditional pdf of Y2 given Y1, we fix Y1 = y1; then, for all values of

y1 < y2 < 1, we have

fY2|Y1(y2|y1) =
fY1,Y2(y1, y2)

fY1(y1)
=

6y1

6y1(1− y1)
=

1

1− y1

.

This is the value of fY2|Y1(y2|y1) when y1 < y2 < 1. When y2 /∈ (y1, 1), the conditional

pdf is fY2|Y1(y2|y1) = 0. Remember, once we condition on Y1 = y1, then we regard y1

simply as some constant. Thus, the conditional pdf of Y2, given Y1 = y1, is given by

fY2|Y1(y2|y1) =





1
1−y1

, y1 < y2 < 1

0, otherwise.

That is, conditional on Y1 = y1, Y2 ∼ U(y1, 1). ¤

RESULT : The use of conditional densities allows us to define conditional probabilities of

events associated with one random variable when we know the value of another random

variable. If Y1 and Y2 are jointly discrete, then for any set B ⊂ R,

P (Y1 ∈ B|Y2 = y2) =
∑
B

pY1|Y2(y1|y2).

If Y1 and Y2 are jointly continuous, then for any set B ⊂ R,

P (Y1 ∈ B|Y2 = y2) =

∫

B

fY1|Y2(y1|y2)dy1.

Example 4.6. A small health-food store stocks two different brands of grain. Let Y1

denote the amount of brand 1 in stock and let Y2 denote the amount of brand 2 in stock

(both Y1 and Y2 are measured in 100s of lbs). The joint distribution of Y1 and Y2 is given

by

fY1,Y2(y1, y2) =





24y1y2, y1 > 0, y2 > 0, 0 < y1 + y2 < 1

0, otherwise.

(a) Find the conditional pdf fY1|Y2(y1|y2).

(b) Compute P (Y1 > 0.5|Y2 = 0.3).

(c) Find P (Y1 > 0.5).
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Solutions: (a) To find the conditional pdf fY1|Y2(y1|y2), we first need to find the mar-

ginal pdf of Y2. The marginal pdf of Y2, for 0 < y2 < 1, is

fY2(y2) =

∫ 1−y2

y1=0

24y1y2 dy1 = 24y2

(
y2

1

2

∣∣∣∣
1−y2

0

)
= 12y2(1− y2)

2,

and 0, otherwise. Of course, we recognize this as a beta(2, 3) pdf; i.e., Y2 ∼ beta(2, 3).

The conditional pdf of Y1, given Y2 = y2, is

fY1|Y2(y1|y2) =
fY1,Y2(y1, y2)

fY2(y2)
=

24y1y2

12y2(1− y2)2

=
2y1

(1− y2)2
,

for 0 < y1 < 1− y2, and 0, otherwise. Summarizing,

fY1|Y2(y1|y2) =





2y1

(1−y2)2
, 0 < y1 < 1− y2

0, otherwise.

(b) To compute P (Y1 > 0.5|Y2 = 0.3), we work with the conditional pdf fY1|Y2(y1|y2),

which for y2 = 0.3, is given by

fY1|Y2(y1|y2) =





(
200
49

)
y1, 0 < y1 < 0.7

0, otherwise.

Thus,

P (Y1 > 0.5|Y2 = 0.3) =

∫ 0.7

0.5

(
200

49

)
y1dy1

≈ 0.489.

(c) To compute P (Y1 > 0.5), we can either use the marginal pdf fY1(y1) or the joint pdf

fY1,Y2(y1, y2). Marginally, it turns out that Y1 ∼ beta(2, 3) as well (verify!). Thus,

P (Y1 > 0.5) =

∫ 1

0.5

12y1(1− y1)
2dy1 ≈ 0.313.

REMARK : Notice how P (Y1 > 0.5|Y2 = 0.3) 6= P (Y1 > 0.5); that is, knowledge of the

value of Y2 has affected the way that we assign probability to events involving Y1. Of

course, one might expect this because of the support in the joint pdf fY1,Y2(y1, y2). ¤
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4.6 Independent random variables

TERMINOLOGY : Suppose that (Y1, Y2) is a random vector (discrete or continuous) with

joint cdf FY1,Y2(y1, y2), and denote the marginal cdfs of Y1 and Y2 by FY1(y1) and FY2(y2),

respectively. We say that the random variables Y1 and Y2 are independent if and only

if

FY1,Y2(y1, y2) = FY1(y1)FY2(y2)

for all values of y1 and y2. Otherwise, we say that Y1 and Y2 are dependent.

RESULT : Suppose that (Y1, Y2) is a random vector (discrete or continuous) with joint

pdf (pmf) fY1,Y2(y1, y2), and denote the marginal pdfs (pmfs) of Y1 and Y2 by fY1(y1) and

fY2(y2), respectively. Then, Y1 and Y2 are independent if and only if

fY1,Y2(y1, y2) = fY1(y1)fY2(y2)

for all values of y1 and y2. Otherwise, Y1 and Y2 are dependent.

Example 4.7. Suppose that the pmf for the discrete random vector (Y1, Y2) is given by

pY1,Y2(y1, y2) =





1
18

(y1 + 2y2), y1 = 1, 2, y2 = 1, 2

0, otherwise.

The marginal distribution of Y1, for values of y1 = 1, 2, is given by

pY1(y1) =
2∑

y2=1

pY1,Y2(y1, y2) =
2∑

y2=1

1

18
(y1 + 2y2) =

1

18
(2y1 + 6),

and pY1(y1) = 0, otherwise. Similarly, the marginal distribution of Y2, for values of

y2 = 1, 2, is given by

pY2(y2) =
2∑

y1=1

pY1,Y2(y1, y2) =
2∑

y1=1

1

18
(y1 + 2y2) =

1

18
(3 + 4y2),

and pY2(y2) = 0, otherwise. Note that, for example,

3

18
= pY1,Y2(1, 1) 6= pY1(1)pY2(1) =

8

18
× 7

18
=

14

81
;

thus, the random variables Y1 and Y2 are dependent. ¤
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Example 4.8. Let Y1 and Y2 denote the proportions of time (out of one workday) during

which employees I and II, respectively, perform their assigned tasks. Suppose that the

random vector (Y1, Y2) has joint pdf

fY1,Y2(y1, y2) =





y1 + y2, 0 < y1 < 1, 0 < y2 < 1

0, otherwise.

It is straightforward to show (verify!) that

fY1(y1) =





y1 + 1
2
, 0 < y1 < 1

0, otherwise

and

fY2(y2) =





y2 + 1
2
, 0 < y2 < 1

0, otherwise.

Thus, since fY1,Y2(y1, y2) = y1 + y2 6= (y1 + 1
2
)(y2 + 1

2
) = fY1(y1)fY2(y2), for 0 < y1 < 1

and 0 < y2 < 1, Y1 and Y2 are dependent. ¤

Example 4.9. Suppose that Y1 and Y2 represent the death times (in hours) for rats

treated with a certain toxin. Marginally, each death time follows an exponential distrib-

ution with mean θ, and Y1 and Y2 are independent.

(a) Write out the joint pdf of (Y1, Y2).

(b) Compute P (Y1 ≤ 1, Y2 ≤ 1).

Solutions: (a) Because Y1 and Y2 are independent, the joint pdf of (Y1, Y2), for y1 > 0

and y2 > 0, is given by

fY1,Y2(y1, y2) = fY1(y1)fY2(y2) =
1

θ
e−y1/θ × 1

θ
e−y2/θ =

1

θ2
e−(y1+y2)/θ,

and fY1,Y2(y1, y2) = 0 otherwise.

(b) Because Y1 and Y2 are independent,

P (Y1 ≤ 1, Y2 ≤ 1) = FY1,Y2(1, 1) = FY1(1)FY2(1)

= (1− e−1/θ)(1− e−1/θ)

= (1− e−1/θ)2. ¤
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A CONVENIENT RESULT : Let (Y1, Y2) be a random vector (discrete or continuous)

with pdf (pmf) fY1,Y2(y1, y2), If the support set RY1,Y2 does not constrain y1 by y2 (or y2 by

y1), and additionally, we can factor the joint pdf (pmf) fY1,Y2(y1, y2) into two nonnegative

expressions

fY1,Y2(y1, y2) = g(y1)h(y2),

then Y1 and Y2 are independent. Note that g(y1) and h(y2) are simply functions; they

need not be pdfs (pmfs), although they sometimes are. The only requirement is that

g(y1) is a function of y1 only, h(y2) is a function of y2 only, and that both are nonnegative.

If the support involves a constraint, the random variables are automatically dependent.

Example 4.10. In Example 4.6, Y1 denoted the amount of brand 1 grain in stock and

Y2 denoted the amount of brand 2 grain in stock. Recall that the joint pdf of (Y1, Y2)

was given by

fY1,Y2(y1, y2) =





24y1y2, y1 > 0, y2 > 0, 0 < y1 + y2 < 1

0, otherwise.

Here, the support is RY1,Y2 = {(y1, y2) : y1 > 0, y2 > 0, 0 < y1 + y2 < 1}. Since

knowledge of y1 (y2) affects the value of y2 (y1), the support involves a constraint, and

Y1 and Y2 are dependent. ¤

Example 4.11. Suppose that the random vector (X, Y ) has joint pdf

fX,Y (x, y) =





[Γ(α)Γ(β)]−1λe−λx(λx)α+β−1yα−1(1− y)β−1, x > 0, 0 < y < 1

0, otherwise.

for λ > 0, α > 0, and β > 0. Since the support RX,Y = {(x, y) : x > 0, 0 < y < 1} does

not involve a constraint, it follows immediately that X and Y are independent, since we

can write

fX,Y (x, y) = λe−λx(λx)α+β−1

︸ ︷︷ ︸
g(x)

× yα−1(1− y)β−1

Γ(α)Γ(β)︸ ︷︷ ︸
h(y)

.

Note that we are not saying that g(x) and h(y) are marginal distributions of X and Y ,

respectively (in fact, they are not the marginal distributions). ¤
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EXTENSION : We generalize the notion of independence to n-variate random vectors.

We use the conventional notation Y = (Y1, Y2, ..., Yn) and y = (y1, y2, ..., yn). Also, we

will denote the joint cdf of Y by FY (y) and the joint pdf (pmf) of Y by fY (y).

TERMINOLOGY : Suppose that the random vector Y = (Y1, Y2, ..., Yn) has joint cdf

FY (y), and suppose that the random variable Yi has cdf FYi
(yi), for i = 1, 2, ..., n. Then,

Y1, Y2, ..., Yn are independent random variables if and only if

FY (y) =
n∏

i=1

FYi
(yi);

that is, the joint cdf can be factored into the product of the marginal cdfs. Alternatively,

Y1, Y2, ..., Yn are independent random variables if and only if

fY (y) =
n∏

i=1

fYi
(yi);

that is, the joint pdf (pmf) can be factored into the product of the marginals.

Example 4.12. In a small clinical trial, n = 20 patients are treated with a new drug.

Suppose that the response from each patient is a measurement Y ∼ N (µ, σ2). Denot-

ing the 20 responses by Y = (Y1, Y2, ..., Y20), then, assuming independence, the joint

distribution of the 20 responses is, for y ∈ R20,

fY (y) =
20∏
i=1

1√
2πσ

e−
1
2(

yi−µ

σ )
2

︸ ︷︷ ︸
fYi

(yi)

=

(
1√
2πσ

)20

e−
1
2

P20
i=1(

yi−µ

σ )
2

.

What is the probability that every patient’s response is less than µ + 2σ?

Solution: The probability that Y1 is less than µ + 2σ is given by

P (Y1 < µ + 2σ) = P (Z < 2) = Φ(2) = 0.9772,

where Z ∼ N (0, 1) and Φ(·) denotes the standard normal cdf. Because the patients’

responses are independent random variables,

P (Y1 < µ + 2σ, Y2 < µ + 2σ, ..., Y20 < µ + 2σ) =
20∏
i=1

P (Yi < µ + 2σ)

= [Φ(2)]20 ≈ 0.630. ¤
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4.7 Expectations of functions of random variables

RESULT : Suppose that Y = (Y1, Y2, ..., Yn) has joint pdf fY (y), or joint pmf pY (y), and

suppose that g(Y ) = g(Y1, Y2, ..., Yn) is any real vector valued function of Y1, Y2, ..., Yn;

i.e., g : Rn →R. Then,

• if Y is discrete,

E[g(Y )] =
∑

all y1

∑

all y2

· · ·
∑

all yn

g(y)pY (y),

• and if Y is continuous,

E[g(Y )] =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(y)fY (y)dy.

If these quantities are not finite, then we say that E[g(Y )] does not exist.

Example 4.13. In Example 4.6, Y1 denotes the amount of grain 1 in stock and Y2

denotes the amount of grain 2 in stock. The joint distribution of Y1 and Y2 was given by

fY1,Y2(y1, y2) =





24y1y2, y1 > 0, y2 > 0, 0 < y1 + y2 < 1

0, otherwise.

What is the expected total amount of grain (Y1 + Y2) in stock?

Solution: Let the function g : R2 → R be defined by g(y1, y2) = y1 + y2. We would

like to compute E[g(Y1, Y2)] = E(Y1 + Y2). From the last result, we know that

E(Y1 + Y2) =

∫ 1

y1=0

∫ 1−y1

y2=0

(y1 + y2)24y1y2 dy2dy1

=

∫ 1

y1=0

[(
24y2

1

y2
2

2

∣∣∣∣
1−y1

0

)
+

(
24y1

y3
2

3

∣∣∣∣
1−y1

0

)]
dy1

=

∫ 1

y1=0

12y2
1(1− y1)

2dy1 +

∫ 1

y1=0

8y1(1− y1)
3dy1

= 12

[
Γ(3)Γ(3)

Γ(6)

]
+ 8

[
Γ(2)Γ(4)

Γ(6)

]
= 4/5.

The expected amount of grain in stock is 80 lbs. Recall that, marginally, Y1 ∼ beta(2, 3)

and Y2 ∼ beta(2, 3) so that E(Y1) = E(Y2) = 2
5

and E(Y1 + Y2) = 2
5

+ 2
5

= 4
5
. ¤
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Example 4.14. A process for producing an industrial chemical yields a product con-

taining two types of impurities (Type I and Type II). From a specified sample from this

process, let Y1 denote the proportion of impurities in the sample (of both types) and let

Y2 denote the proportion of Type I impurities among all impurities found. Suppose that

the joint pdf of the random vector (Y1, Y2) is given by

fY1,Y2(y1, y2) =





2(1− y1), 0 < y1 < 1, 0 < y2 < 1

0, otherwise.

Find the expected value of the proportion of Type I impurities in the sample.

Solution: Because Y1 is the proportion of impurities in the sample and Y2 is the

proportion of Type I impurities among the sample impurities, it follows that Y1Y2 is the

proportion of Type I impurities in the sample taken. Let the function g : R2 → R be

defined by g(y1, y2) = y1y2. We would like to compute E[g(Y1, Y2)] = E(Y1Y2). This is

given by

E(Y1Y2) =

∫ 1

0

∫ 1

0

y1y22(1− y1)dy1dy2 =
1

6
. ¤

PROPERTIES OF EXPECTATIONS : Let Y = (Y1, Y2, ..., Yn) be a discrete or con-

tinuous random vector with pdf (pmf) fY (y) and support R ⊂ Rn, suppose that

g, g1, g2, ..., gk are real vector valued functions from Rn → R, and let c be any real

constant. Then,

(a) E(c) = c

(b) E[cg(Y )] = cE[g(Y )]

(c) E[
∑k

j=1 gj(Y )] =
∑k

j=1 E[gj(Y )].

RESULT : Suppose that Y1 and Y2 are independent random variables, and consider the

functions g(Y1) and h(Y2), where g(Y1) is a function of Y1 only, and h(Y2) is a function

of Y2 only. Then,

E[g(Y1)h(Y2)] = E[g(Y1)]E[h(Y2)],

provided that all expectations exist.

Proof. Without loss, we will assume that (Y1, Y2) is a continuous random vector (the
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discrete case is analogous). Suppose that (Y1, Y2) has joint pdf fY1,Y2(y1, y2) with support

R ⊂ R2. Note that

E[g(Y1)h(Y2)] =

∫

R2

g(y1)h(y2)fY1,Y2(y1, y2)dy2dy1

=

∫

R

∫

R
g(y1)h(y2)fY1(y1)fY2(y2)dy2dy1

=

∫

R
g(y1)fY1(y1)dy1

[∫

R
h(y2)fY2(y2)dy2

]

= E[h(Y2)]

∫

R
g(y1)fY1(y1)dy1

= E[h(Y2)]E[g(Y1)]. ¤

Example 4.15. A point (Y1, Y2) ∈ R2 is selected at random, where Y1 ∼ N (µ1, σ
2),

Y2 ∼ N (µ2, σ
2), and Y1 and Y2 are independent. Define the random variables

T = Y1 + Y2

U = Y1Y2

Z = Y 2
1 + Y 2

2 .

Find E(T ), E(U), and E(Z).

Solutions. (a) Because E(·) is linear, we know

E(T ) = E(Y1 + Y2) = E(Y1) + E(Y2) = µ1 + µ2.

Because Y1 and Y2 are independent, we know that

E(U) = E(Y1Y2) = E(Y1)E(Y2) = µ1µ2.

To compute E(Z), first note that

E(Y 2
1 ) = V (Y1) + [E(Y1)]

2 = σ2 + µ2
1

and

E(Y 2
2 ) = V (Y2) + [E(Y2)]

2 = σ2 + µ2
2

so that

E(Z) = E(Y 2
1 + Y 2

2 ) = E(Y 2
1 ) + E(Y 2

2 ) = (σ2 + µ2
1) + (σ2 + µ2

2)

= 2σ2 + µ2
1 + µ2

2. ¤

Exercise: Compute E(TU), E(TZ), and E(UZ).
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4.8 Covariance and correlation

4.8.1 Covariance

TERMINOLOGY : Suppose that Y1 and Y2 are random variables with means µY1 and

µY2 , respectively. The covariance between Y1 and Y2 is given by

Cov(Y1, Y2) = E[(Y1 − µY1)(Y2 − µY2)].

The covariance gives us information about how Y1 and Y2 are linearly related.

THE COVARIANCE COMPUTING FORMULA: It is easy to show that

Cov(Y1, Y2) ≡ E[(Y1 − µY1)(Y2 − µY2)] = E(Y1Y2)− µY1µY2 .

This latter expression is sometimes easier to work with and is called the covariance

computing formula.

Example 4.16. Gasoline is stocked in a tank once at the beginning of each week and

then sold to customers. Let Y1 denote the proportion of the capacity of the tank that

is available after it is stocked. Let Y2 denote the proportion of the capacity of the bulk

tank that is sold during the week. Suppose that the random vector (Y1, Y2) has joint pdf

fY1,Y2(y1, y2) =





3y1, 0 < y2 < y1 < 1

0, otherwise.

To compute the covariance, first note that Y1 ∼ beta(3, 1) and Y2 ∼ fY2(y2), where

fY2(y2) =





3
2
(1− y2

2), 0 < y2 < 1

0, otherwise.

Thus, E(Y1) = 3/(3 + 1) = 0.75 and

E(Y2) =

∫ 1

0

y2 × 3

2
(1− y2

2)dy = 0.375.

Also,

E(Y1Y2) =

∫ 1

y1=0

∫ y1

y2=0

y1y2 × 3y1dy2dy1 = 0.30.
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Thus, the covariance is

Cov(Y1, Y2) = E(Y1Y2)− µY1µY2

= 0.30− (0.75)(0.375) = 0.01875. ¤

NOTES ON THE COVARIANCE :

• If Cov(Y1, Y2) > 0, then Y1 and Y2 are positively linearly related.

• If Cov(Y1, Y2) < 0, then Y1 and Y2 are negatively linearly related.

• If Cov(Y1, Y2) = 0, then Y1 and Y2 are not linearly related. This does not necessarily

mean that Y1 and Y2 are independent!

RESULT : If Y1 and Y2 are independent, then Cov(Y1, Y2) = 0.

Proof. Using the covariance computing formula, we have

Cov(Y1, Y2) = E(Y1Y2)− µY1µY2

= E(Y1)E(Y2)− µY1µY2 = 0. ¤

MAIN POINT : If two random variables are independent, then they have zero covariance;

however, zero covariance does not necessarily imply independence.

Example 4.17. An example of two dependent variables with zero covariance. Suppose

that Y1 ∼ U(−1, 1), and let Y2 = Y 2
1 . It is straightforward to show that E(Y1) = 0,

E(Y1Y2) = E(Y 3
1 ) = 0, and E(Y2) = E(Y 2

1 ) = V (Y1) = 1/3. Thus,

Cov(Y1, Y2) = E(Y1Y2)− µY1µY2 = 0− 0(1/3) = 0.

However, not only are Y1 and Y2 related, they are perfectly related! But, the relationship

is not linear (it is quadratic). The covariance only assesses linear relationships. ¤

IMPORTANT RESULT : Suppose that Y1 and Y2 are random variables. Then,

V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2)

V (Y1 − Y2) = V (Y1) + V (Y2)− 2Cov(Y1, Y2).
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Proof. Let Z = Y1 + Y2. Using the definition of variance, we have

V (Z) = E[(Z − µZ)2]

= E{[(Y1 + Y2)− E(Y1 + Y2)]
2}

= E[(Y1 + Y2 − µY1 − µY2)
2]

= E{[(Y1 − µY1) + (Y2 − µY2)]
2}

= E[(Y1 − µY1)
2 + (Y2 − µY2)

2 + 2 (Y1 − µY1)(Y2 − µY2)︸ ︷︷ ︸
cross product

]

= E[(Y1 − µY1)
2] + E[(Y2 − µY2)

2] + 2E[(Y1 − µY1)(Y2 − µY2)]

= V (Y1) + V (Y2) + 2Cov(Y1, Y2).

That V (Y1 − Y2) = V (Y1) + V (Y2)− 2Cov(Y1, Y2) is shown similarly. ¤

Example 4.18. A small health-food store stocks two different brands of grain. Let Y1

denote the amount of brand 1 in stock and let Y2 denote the amount of brand 2 in stock

(both Y1 and Y2 are measured in 100s of lbs). In Example 4.6, we saw that the joint

distribution of Y1 and Y2 was given by

fY1,Y2(y1, y2) =





24y1y2, y1 > 0, y2 > 0, 0 < y1 + y2 < 1

0, otherwise.

What is the variance for the total amount of grain in stock? That is, what is V (Y1 +Y2)?

Solution: Using the last result, we know that

V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2).

Marginally, Y1 and Y2 both have beta(2, 3) distributions (see Example 4.6). Thus,

E(Y1) = E(Y2) =
2

2 + 3
=

2

5
.

and

V (Y1) = V (Y2) =
2(3)

(2 + 3 + 1)(2 + 3)2
=

1

25
.

Recall that Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2), so we need to first compute E(Y1Y2):

E(Y1Y2) =

∫ 1

y1=0

∫ 1−y1

y2=0

y1y2 × 24y1y2 dy2dy1 =
2

15
.
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Thus,

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) =
2

15
−

(
2

5

)(
2

5

)
≈ −0.027.

Finally, the variance of Y1 + Y2 is given by

V (Y1 + Y2) =
1

25
+

1

25
+ 2(−0.027) ≈ 0.027. ¤

RESULT : Suppose that Y1 and Y2 are independent random variables. Then,

V (Y1 ± Y2) = V (Y1) + V (Y2).

Proof. In general, V (Y1 ± Y2) = V (Y1) + V (Y2) ± 2Cov(Y1, Y2). Since Y1 and Y2 are

independent, Cov(Y1, Y2) = 0. Thus, the result follows immediately. ¤

LEMMA: Suppose that Y1 and Y2 are random variables with means µY1 and µY2 , respec-

tively. Then,

(a) Cov(Y1, Y2) = Cov(Y2, Y1)

(b) Cov(Y1, Y1) = V (Y1).

(c) Cov(a + bY1, c + dY2) = bdCov(Y1, Y2), for constants a, b, c, and d.

Proof. Exercise. ¤

4.8.2 Correlation

GENERAL PROBLEM : Suppose that X and Y are random variables and that we want

to predict Y as a linear function of X. That is, we want to consider functions of the

form Y = β0 + β1X, for constants β0 and β1. In this situation, the “error in prediction”

is given by

Y − (β0 + β1X).

This error can be positive or negative, so in developing a “goodness measure” of prediction

error, we want one that maintains the magnitude of error but ignores the sign. Thus,
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consider the mean squared error of prediction given by

Q(β0, β1) ≡ E{[Y − (β0 + β1X)]2}.

A two-variable calculus argument shows that the mean squared error of prediction

Q(β0, β1) is minimized when

β1 =
Cov(X, Y )

V (X)

and

β0 = E(Y )−
[
Cov(X,Y )

V (X)

]
E(X).

However, note that the value of β1, algebraically, is equal to

β1 =
Cov(X,Y )

V (X)

=

[
Cov(X,Y )

σXσY

]
σY

σX

= ρX,Y

(
σY

σX

)
,

where

ρX,Y =
Cov(X, Y )

σXσY

.

The quantity ρX,Y is called the correlation coefficient between X and Y .

SUMMARY : The best linear predictor of Y , given X, is Y = β0 + β1X, where

β1 = ρX,Y

(
σY

σX

)

β0 = E(Y )− β1E(X).

NOTES ON THE CORRELATION COEFFICIENT :

(1) −1 ≤ ρX,Y ≤ 1 (this can be proven using the Cauchy-Schwartz Inequality, from

calculus).

(2) If ρX,Y = 1, then Y = β0 + β1X, where β1 > 0. That is, X and Y are perfectly

positively linearly related; i.e., the bivariate probability distribution of (X,Y )

lies entirely on a straight line with positive slope.
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(3) If ρX,Y = −1, then Y = β0 + β1X, where β1 < 0. That is, X and Y are perfectly

negatively linearly related; i.e., the bivariate probability distribution of (X,Y )

lies entirely on a straight line with negative slope.

(4) If ρX,Y = 0, then X and Y are not linearly related.

NOTE : If X and Y are independent random variables, then ρX,Y = 0. However, again,

the implication does not go the other way; that is, if ρX,Y = 0, this does not necessarily

mean that X and Y are independent.

NOTE : In assessing the strength of the linear relationship between X and Y , the cor-

relation coefficient is often preferred over the covariance since ρX,Y is measured on a

bounded, unitless scale. On the other hand, Cov(X,Y ) can be any real number.

Example 4.19. In Example 4.16, we considered the bivariate model

fY1,Y2(y1, y2) =





3y1, 0 < y2 < y1 < 1

0, otherwise.

for Y1, the proportion of the capacity of the tank after being stocked, and Y2, the pro-

portion of the capacity of the tank that is sold. What is ρY1,Y2?

Solution: In Example 4.16, we computed Cov(Y1, Y2) = 0.01875, so all we need is σY1

and σY2 . We also found that Y1 ∼ beta(3, 1) and Y2 ∼ fY2(y2), where

fY2(y2) =





3
2
(1− y2

2), 0 < y2 < 1

0, otherwise.

The variance of Y1 is

V (Y1) =
3(1)

(3 + 1 + 1)(3 + 1)2
=

3

80
=⇒ σY1 =

√
3

80
≈ 0.194.

Simple calculations using fY2(y2) show that E(Y 2
2 ) = 1/5 and E(Y2) = 3/8 so that

V (Y2) =
1

5
−

(
3

8

)2

= 0.059 =⇒ σY2 =
√

0.059 ≈ 0.244.

Thus,

ρY1,Y2 =
Cov(Y1, Y2)

σY1σY2

≈ 0.01875

0.194× 0.244
≈ 0.40. ¤
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4.9 Expectations and variances of linear functions of random

variables

TERMINOLOGY : Suppose that Y1, Y2, ..., Yn are random variables and that a1, a2, ..., an

are constants. The function

U =
n∑

i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn

is called a linear combination of the random variables Y1, Y2, ..., Yn.

EXPECTED VALUE OF A LINEAR COMBINATION :

E(U) = E

(
n∑

i=1

aiYi

)
=

n∑
i=1

aiE(Yi)

VARIANCE OF A LINEAR COMBINATION :

V (U) = V

(
n∑

i=1

aiYi

)
=

n∑
i=1

a2
i V (Yi) + 2

∑
i<j

aiajCov(Yi, Yj)

=
n∑

i=1

a2
i V (Yi) +

∑

i6=j

aiajCov(Yi, Yj)

COVARIANCE BETWEEN TWO LINEAR COMBINATIONS : Suppose that

U1 =
n∑

i=1

aiYi = a1Y1 + a2Y2 + · · ·+ anYn

U2 =
m∑

j=1

bjXj = b1X1 + b2X2 + · · ·+ bmXm.

Then, it follows that

Cov(U1, U2) =
n∑

i=1

m∑
j=1

aibjCov(Yi, Xj).

BIVARIATE CASE : Interest will often focus on situations wherein we have a linear

combination of n = 2 random variables. In this setting,

E(a1Y1 + a2Y2) = a1E(Y1) + a2E(Y2)

V (a1Y1 + a2Y2) = a2
1V (Y1) + a2

2V (Y2) + 2a1a2Cov(Y1, Y2).
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Similarly, when n = m = 2,

Cov(a1Y1 + a2Y2, b1X1 + b2X2) = a1b1Cov(Y1, X1) + a1b2Cov(Y1, X2)

+ a2b1Cov(Y2, X1) + a2b2Cov(Y2, X2).

Example 4.20. Achievement tests are usually seen in educational or employment set-

tings. These tests attempt to measure how much you know about a certain topic in a

particular area. Suppose that Y1, Y2, and Y3 represent scores for a particular different

parts of an exam. It is posited that Y1 ∼ N (12, 4), Y2 ∼ N (16, 9), Y3 ∼ N (20, 16),

Y1 and Y2 are independent, Cov(Y1, Y3) = 0.8, and Cov(Y2, Y3) = −6.7. Two different

summary measures are computed to assess a subject’s performance:

U1 = 0.5Y1 − 2Y2 + Y3 and U2 = 3Y1 − 2Y2 − Y3.

(a) E(U1) and V (U1).

(b) Find Cov(U1, U2).

Solutions: The mean of U1 is

E(U1) = E(0.5Y1 − 2Y2 + Y3) = 0.5E(Y1)− 2E(Y2) + E(Y3)

= 0.5(12)− 2(16) + 20 = −6.

The variance of U1 is

V (U1) = V (0.5Y1 − 2Y2 + Y3)

= (0.5)2V (Y1) + (−2)2V (Y2) + V (Y3)

+ 2(0.5)(−2)Cov(Y1, Y2) + 2(0.5)(1)Cov(Y1, Y3) + 2(−2)(1)Cov(Y2, Y3)

= (0.25)(4) + 4(9) + 16 + 2(0.5)(−2)(0) + 2(0.5)(0.8) + 2(−2)(−6.7) = 80.6.

The covariance between U1 and U2 is

Cov(U1, U2) = Cov(0.5Y1 − 2Y2 + Y3, 3Y1 − 2Y2 − Y3)

= (0.5)(3)Cov(Y1, Y1) + (0.5)(−2)Cov(Y1, Y2) + (0.5)(−1)Cov(Y1, Y3)

+ (−2)(3)Cov(Y2, Y1) + (−2)(−2)Cov(Y2, Y2) + (−2)(−1)Cov(Y2, Y3)

+ (1)(3)Cov(Y3, Y1) + (1)(−2)Cov(Y3, Y2) + (1)(−1)Cov(Y3, Y3)

= 28. ¤
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4.10 The multinomial model

RECALL: When we discussed the binomial model in Chapter 2, each Bernoulli trial

resulted in either a “success” or a “failure;” that is, on each trial, there were only two

outcomes possible (e.g., infected/not, germinated/not, defective/not, etc.).

TERMINOLOGY : A multinomial experiment is simply a generalization of a binomial

experiment. In particular, consider an experiment where

• the experiment consists of n trials (n is fixed),

• the outcome for any trial belongs to exactly one of k ≥ 2 classes,

• the probability that an outcome for a single trial falls into class i is given by pi, for

i = 1, 2, ..., k, where each pi remains constant from trial to trial, and

• trials are independent.

DEFINITION : In a multinomial experiment, let Yi denote the number of outcomes in

class i, so that Y1 + Y2 + · · · + Yk = n, and denote Y = (Y1, Y2, ..., Yk). We call Y a

multinomial random vector and write Y ∼ mult(n, p1, p2, ..., pk;
∑

i pi = 1).

NOTE : When k = 2, the multinomial random vector reduces to our well-known binomial

situation. When k = 3, Y would be called a trinomial random vector.

JOINT PMF : If Y ∼ mult(n, p1, p2, ..., pk;
∑

i pi = 1), the pmf for Y is given by

pY (y) =





n!
y1!y2!···yk!

py1

1 py2

2 · · · pyk

k , yi = 0, 1, ..., n;
∑

i yi = n

0, otherwise.

Example 4.21. In a manufacturing experiment, we observe n = 10 parts, each of which

can be classified as non-defective, defective, or reworkable. Define

Y1 = number of non-defective parts

Y2 = number of defective parts

Y3 = number of reworkable parts.
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Assuming that each part (i.e., trial) is independent of other parts, a multinomial model

applies and Y = (Y1, Y2, Y3) ∼ mult(10, p1, p2, p3;
∑

i pi = 1). Suppose that p1 = 0.90,

p2 = 0.03, and p3 = 0.07. What is the probability that a sample (of 10) contains 8

non-defective parts, 1 defective part, and 1 reworkable part?

Solution: We want to compute pY1,Y2,Y3(8, 1, 1). This equals

pY1,Y2,Y3(8, 1, 1) =
10!

8!1!1!
(0.90)8(0.03)1(0.07)1 ≈ 0.081. ¤

Example 4.22. At a number of clinic sites throughout Nebraska, chlamydia and gon-

orrhea testing is performed on individuals using urine or cervical-swab specimens. More

than 30,000 of these tests are done annually by the Nebraska Public Health Laboratory!

Suppose that on a given day, there are n = 280 subjects tested, and define

p1 = proportion of subjects with neither chlamydia nor gonorrhea

p2 = proportion of subjects with chlamydia but not gonorrhea

p3 = proportion of subjects with gonorrhea but not chlamydia

p4 = proportion of subjects with both chlamydia and gonorrhea.

Define Y = (Y1, Y2, Y3, Y4), where Yi counts the number of subjects in category i. As-

suming that subjects are independent, Y ∼ mult(280, p1, p2, p3, p4;
∑

i pi = 1). The pmf

of Y is given by

pY (y) =





280!
y1!y2!y3!y4!

py1

1 py2

2 py3

3 py4

4 , yi = 0, 1, ..., 280;
∑

i yi = 280

0, otherwise.

FACTS : If Y = (Y1, Y2, ..., Yk) ∼ mult(n, p1, p2, ..., pk;
∑

i pi = 1), then

• The marginal distribution of Yi is b(n, pi), for i = 1, 2, ..., k.

• E(Yi) = npi, for i = 1, 2, ..., k.

• V (Yi) = npi(1− pi), for i = 1, 2, ..., k.

• The joint distribution of (Yi, Yj) is trinomial(n, pi, pj, 1− pi − pj).

• Cov(Yi, Yj) = −npipj, for i 6= j.
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4.11 The bivariate normal distribution

TERMINOLOGY : The random vector (Y1, Y2) has a bivariate normal distribution

if its joint pdf is given by

fY1,Y2(y1, y2) =





1

2πσ1σ2

√
1−ρ2

e−Q/2, (y1, y2) ∈ R2

0, otherwise,

where

Q =
1

1− ρ2

[(
y1 − µ1

σ1

)2

− 2ρ

(
y1 − µ1

σ1

)(
y2 − µ2

σ2

)
+

(
y2 − µ2

σ2

)2]
.

We write (Y1, Y2) ∼ N2(µ1, µ2, σ
2
1, σ

2
2, ρ). There are 5 parameters associated with this

bivariate distribution: the marginal means (µ1 and µ2), the marginal variances (σ2
1 and

σ2
2), and the correlation ρ ≡ ρY1,Y2 .

FACTS ABOUT THE BIVARIATE NORMAL DISTRIBUTION :

1. Marginally, Y1 ∼ N (µ1, σ
2
1) and Y2 ∼ N (µ2, σ

2
2).

2. Y1 and Y2 are independent ⇐⇒ ρ = 0. This is only true for the bivariate normal

distribution (remember, this does not hold in general).

3. The conditional distribution

Y1|{Y2 = y2} ∼ N
[
µ1 + ρ

(
σ1

σ2

)
(y2 − µ2), σ

2
1(1− ρ2)

]
.

4. The conditional distribution

Y2|{Y1 = y1} ∼ N
[
µ2 + ρ

(
σ2

σ1

)
(y1 − µ1), σ

2
2(1− ρ2)

]
.

Exercise: Suppose that (Y1, Y2) ∼ N2(0, 0, 1, 1, 0.5). What is P (Y2 > 0.85|Y1 = 0.2)?

Answer: From the last result, note that, conditional on Y1 = y1 = 0.2, Y2 ∼
N (0.1, 0.75). Thus, P (Y2 > 0.85|Y1 = 0.2) = P (Z > 1) = 0.1587. Interpret this

value as an area.
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4.12 Conditional expectation

4.12.1 Conditional means and curves of regression

TERMINOLOGY : Suppose that X and Y are continuous random variables and that

g(X) and h(Y ) are functions of X and Y , respectively, Recall that the conditional dis-

tributions are denoted by fX|Y (x|y) and fY |X(y|x). Then,

E[g(X)|Y = y] =

∫

R
g(x)fX|Y (x|y)dx

E[h(Y )|X = x] =

∫

R
h(y)fY |X(y|x)dy.

If X and Y are discrete, then sums replace integrals.

IMPORTANT : It is important to see that, in general,

• E[g(X)|Y = y] is a function of y, and

• E[h(Y )|X = x] is a function of x.

CONDITIONAL MEANS : In the definition above, if g(X) = X and h(Y ) = Y , we get

(in the continuous case),

E(X|Y = y) =

∫

R
xfX|Y (x|y)dx

E(Y |X = x) =

∫

R
yfY |X(y|x)dy.

E(X|Y = y) is called the conditional mean of X, given Y = y; it is the mean of the

conditional distribution fX|Y (x|y). On the other hand, E(Y |X = x) is the conditional

mean of Y , given X = x; it is the mean of the conditional distribution fY |X(y|x).

Example 4.23. In a simple genetics model, the proportion, say X, of a population

with Trait 1 is always less than the proportion, say Y , of a population with trait 2. In

Example 4.3, we saw that the random vector (X, Y ) has joint pdf

fX,Y (x, y) =





6x, 0 < x < y < 1

0, otherwise.
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In Example 4.5, we derived the conditional distributions

fX|Y (x|y) =





2x/y2, 0 < x < y

0, otherwise
and fY |X(y|x) =





1
1−x

, x < y < 1

0, otherwise.

Thus, the conditional mean of X, given Y = y is

E(X|Y = y) =

∫ y

0

xfX|Y (x|y)dx

=

∫ y

0

x

(
2x

y2

)
dx =

2

y2

(
x3

3

∣∣∣∣
y

0

)
=

2y

3
.

Similarly, the conditional mean of Y , given X = x is

E(Y |X = x) =

∫ 1

x

yfY |X(y|x)dy

=

∫ 1

x

y

(
1

1− x

)
dy =

1

1− x

(
y2

2

∣∣∣∣
1

x

)
=

1

2
(x + 1).

That E(Y |X = x) = 1
2
(x + 1) is not surprising because Y |{X = x} ∼ U(x, 1). ¤

TERMINOLOGY : Suppose that (X, Y ) is a bivariate random vector.

• The graph of E(X|Y = y) versus y is called the curve of regression of X on Y .

• The graph of E(Y |X = x) versus x is called the curve of regression of Y on X.

The curve of regression of Y on X, from Example 4.23, is depicted in Figure 4.19.

4.12.2 Iterated means and variances

REMARK : In general, E(X|Y = y) is a function of y, and y is fixed (not random). Thus,

E(X|Y = y) is a fixed number. However, E(X|Y ) is a function of Y ; thus, E(X|Y ) is a

random variable! Furthermore, as with any random variable, it has a mean and variance

associated with it!!

ITERATED LAWS : Suppose that X and Y are random variables. Then the laws of

iterated expectation and variance, respectively, are given by

E(X) = E[E(X|Y )]
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Figure 4.19: The curve of regression E(Y |X = x) versus x in Example 4.23.

and

V (X) = E[V (X|Y )] + V [E(X|Y )].

NOTE : When considering the quantity E[E(X|Y )], the inner expectation is taken with

respect to the conditional distribution fX|Y (x|y). However, since E(X|Y ) is a function

of Y , the outer expectation is taken with respect to the marginal distribution fY (y).

Proof. We will prove that E(X) = E[E(X|Y )] for the continuous case. Note that

E(X) =

∫

R

∫

R
xfX,Y (x, y)dxdy

=

∫

R

∫

R
xfX|Y (x|y)fY (y)dxdy

=

∫

R

[∫

R
xfX|Y (x|y)dx

]

︸ ︷︷ ︸
E(X|Y =y)

fY (y)dy = E[E(X|Y )]. ¤

Example 4.24. Suppose that in a field experiment, we observe Y , the number of plots,

out of n, that respond to a treatment. However, we don’t know the value of p, the

probability of response, and furthermore, we think that it may be a function of location,
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temperature, precipitation, etc. In this situation, it might be appropriate to regard p as

a random variable! Specifically, suppose that the random variable P varies according

to a beta(α, β) distribution. That is, we assume a hierarchical structure:

Y |P = p ∼ binomial(n, p)

P ∼ beta(α, β).

The (unconditional) mean of Y can be computed using the iterated expectation rule:

E(Y ) = E[E(Y |P )] = E[nP ] = nE(P ) = n

(
α

α + β

)
.

The (unconditional) variance of Y is given by

V (Y ) = E[V (Y |P )] + V [E(Y |P )]

= E[nP (1− P )] + V [nP ]

= nE(P − P 2) + n2V (P )

= nE(P )− n{V (P ) + [E(P )]2}+ n2V (P )

= n

(
α

α + β

)
− n

[
αβ

(α + β)2(α + β + 1)
+

(
α

α + β

)2
]

+
n2αβ

(α + β)2(α + β + 1)

= n

(
α

α + β

)[
1−

(
α

α + β

)]
+

n(n− 1)αβ

(α + β)2(α + β + 1)︸ ︷︷ ︸
extra variation

.

Unconditionally, the random variable Y follows a beta-binomial distribution. This is

a popular probability model for situations wherein one observes binomial type responses

but where the variance is suspected to be larger than the usual binomial variance. ¤

BETA-BINOMIAL PMF : The probability mass function for a beta-binomial random

variable Y is given by

pY (y) =

∫ 1

0

fY,P (y, p)dp =

∫ 1

0

fY |P (y|p)fP (p)dp

=

∫ 1

0

(
n

y

)
py(1− p)n−y Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1dp

=

(
n

y

)
Γ(α + β)Γ(y + α)Γ(n + β − y)

Γ(α)Γ(β)Γ(n + α + β)
,

for y = 0, 1, ..., n, and pY (y) = 0, otherwise.
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