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Abstract

In this note, we show how to obtain a “characteristic power series”
of graphons – infinite limits of dense graphs – as the limit of normalized
reciprocal characteristic polynomials. This leads to a new characterization
of graph quasi-randomness and another perspective on spectral theory for
graphons, a complete description of the function in terms of the spectrum
of the graphon as a self-adjoint kernel operator. Interestingly, while we
apply a standard regularization to classical determinants, it is unclear how
necessary this is.

1 Introduction

A research direction began in the 1980’s with graph quasi-randomness, extended
through the 1990’s and early 2000’s with generalizations to non-uniform graph
distributions and other combinatorial objects, became graph limit theory in the
mid-2000’s, and culminated in Lovász’s now-canonical text [13]. The central
idea is that, if a sequence of graphs Gn with number of vertices tending to infin-
ity has the property that the density of any particular subgraph tends to a limit,
then Gn itself tends to a limit object G, called a “graphon”. There are several
mutually (though non-obviously) equivalent ways to view graphons, and a cen-
tral one is as a self-adjoint kernel operator from L1([0, 1]) to L∞([0, 1]), an object
type for which a well-established spectral theory exists. In particular, a graphon,
when thought of as this kernel, is a symmetric function [0, 1]× [0, 1]→ [0, 1], up
to composition of both coordinates with a measure-preserving bijection of [0, 1]
and up to modification on a set of measure 0. Indeed, we use the same notation
throughout for G as well as (any representative of the equivalence class of) its
kernel. There is also a key notion of subgraph density for graphons, with the
property that densities in convergent sequences of graphs in a sequence converge
to their densities in the limit graphon, often referred to as “left-convergence”.
Furthermore, Szegedy ([18]) introduced a spectral theory of graphons by study-
ing the eigenpairs of their kernels and showed that it is a natural analogue of
the spectral theory of finite graph adjacency matrices. Here, we extend this
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perspective by showing that graphons are associated with a power series which
is a certain normalized limit of the characteristic polynomial of graphs. Fur-
thermore, we give an equivalent definition of this “characteristic power series”
ψG(z) of a graphon G via a regularized determinant of its corresponding kernel
function.

We also show that the characteristic power series can be used to character-
ize “quasi-randomness”. Suppose that {Gn}n≥1 is a sequence of graphs with
|V (Gn)| = n. (In truth, all that is needed is that |Gn| → ∞, but this is not
more general.) We write G = Gn for simplicity and (#H ⊆ G) for the number
of labelled, not-necessarily induced copies of H as subgraphs in G (i.e., injective
homomorphisms from H to G). Then, by a classic 1989 paper of Chung, Gra-
ham, and Wilson ([6]), there is a large set of random-like properties (properties
which hold asymptotically almost surely for graphs in the Erdős-Rényi model
G(n, p)) which are mutually equivalent, and are therefore collectively referred
to as (the sequence of graphs) G being “quasi-random”. Namely, let

• P1(s) denote the property that the number of labelled occurrences of each
graph on s vertices as an induced subgraph of G is (1+o(1))nsp|E(H)|(1−
p)(

s
2)−|E(H)|

• P ′1(s) denote the property that (#H ⊂ G) = (1 + o(1))nsp|E(H)| for each
graph H on s vertices

• P2(t) denote the property that |E(G)| ≥ (1 + o(1))pn and (#Ct ⊆ G) ≤
(1 + o(1))(np)t, where Ct is the t-cycle

• P3 denote the property that |E(G)| ≥ (1 + o(1))pn, λ1 = pn(1 + o(1)),
and λ2 = o(n), where |λ1| > · · · > |λn| are the complete set of adjacency
eigenvalues of G

• P4 denote the property that, for all S ⊆ V (G), E(G[S]) = p2|S|2 + o(n2),
where G[S] denotes the subgraph of G induced by S

• P5 denote the property that, for all S ⊆ V (G) with |S| = bn/2c, E(G[S]) =
p2|S|2/4 + o(n2), where G[S] denotes the subgraph of G induced by S

• P6 denote the property that∑
v,w∈V (G)

||NG(v)4NG(w)| − 2np(1− p)| = o(n3),

where 4 denotes symmetric difference

• P7 denote the property that∑
v,w∈V (G)

∣∣|NG(v) ∩NG(w)| − np2
∣∣ = o(n3)

2



Theorem 1 (Chung-Graham-Wilson [6]). For s ≥ 4 and t ≥ 4 even, and any
fixed p ∈ [0, 1],

P2(4)⇔ P2(t)⇔ P1(s)⇔ P ′1(s)⇔ P3 ⇔ P4 ⇔ P5 ⇔ P6 ⇔ P7

If a graph sequence G has these properties, it is called p-quasi-random, and
these properties and any others also equivalent to them are known as (p-)quasi-
random properties. Many other quasi-random properties have been added since
to the list above, such as other families F of graphs whose occurrence as sub-
graphs at the “random-like rate” implies these properties (note that {K2, C4} is
the “forcing” family given by P2(4)), and also that Gn converges to a constant
graphon.

Here, we propose to add another property. First, given a left-convergent se-
quence of graphs G, let G be their limit, and let φn ∈ C[x] denote the (adjacency)
characteristic polynomials of Gn. Recall that the characteristic polynomial of
a graph G with adjacency matrix A is defined to be φ(x) = det(Ix − A); it is
easy to see that φ is monic and has only real roots. Define

ψG(z) =

{
limn→∞ (x−nφn(x))

∣∣∣
x=n/z

if z 6= 0

1 otherwise ,

if the (pointwise) limit exists. We call ψG(z) the “characteristic power series” of
the graphon G, and it is essentially a normalized limit of the reciprocal polyno-
mials of the characteristic functions of G. In Theorem 3 below, we show that ψG
is indeed well-defined, i.e., independent of the sequence of graphs left-converging
to G.

2 Characteristic Power Series of Graphons

The following classical result will be useful in describing the coefficients of ψG(z).

Theorem 2 (Harary-Sachs [12]). Suppose G is a graph on n vertices, and k ≥ 0
is an integer. The coefficient of xn−k in φG(x) is∑

H∈Hk

(−1)c(H)2z(H)[#H ⊆ G]

where c(H) is the number of components of H, z(H) is the number of cycles
of H, and Hk is the family of all unlabelled graphs on k vertices each of whose
components is an edge or a cycle, and [#H ⊆ G] denotes the number of subsets
of edges of G which are isomorphic to H. (When k = 0, Hk is the singleton
consisting only of the empty graph ε; take c(ε) = z(ε) = 0.)

Clearly, if H ∈ Hk, then |E(H)| = k − c(H) + z(H). Also,

(#H ⊆ G) = [#H ⊆ G] · 2z(H)
∏
i

ami
i mi!
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where H has mi components of size ai for each i. For simplicity, for a partition
λ where part bi occurs mi times for each i (the bi all distinct), the quantity η(λ)
is defined by

η(λ) :=
∏
i

bmi
i mi!

and we write η(H) = η(λ(H)) where λ(H) is the integer partition of |E(H)|
given by the component cardinalities of H. If λ is a partition of n, then the
number of partitions of an n-set with structure λ (a partition with mi parts of
distinct sizes bi) is given by

n!

b1!m1 · · · bt!mtm1! · · ·mt!
=

n!

η(λ)
∏t
i=1(bi − 1)!mi

Denote by Λ′n,k the set of partitions of n into k parts, each of which is of size
at least 2; for λ ∈ Λ′n,k, denote its i-th largest part by λi, its i-th largest part
size by bi, and the multiplicity of bi by mi.

Letting z = n/x, we have by Theorem 2,

x−nφGn(x) = x−n
n∑
k=0

xn−k
∑
H∈Hk

(−1)c(H)2z(H)[#H ⊆ G]

=

n∑
k=0

∑
λ∈Λ′

n,k

x−k(−1)k
(#
⋃
i Cλi

⊆ G)

η(λ)

=

n∑
k=0

∑
λ∈Λ′

n,k

zk(−1)k
(#
⋃
i Cλi

⊆ G)

nk
∏
i b
mi
i mi!

.

Note that (treating this as a polynomial to avoid defining 00), when z = 0, the
above expression equals 1 because φG(x) is monic. Denote this polynomial by
ψn(z). Write t(H,G) for the “homomorphism density” of the k-vertex graph H
in the n-vertex G, i.e., the number of (not necessarily injective) homomorphisms
from H to G over nk. Writing λi for the i-th eigenvalue of A(G)/n, we may
bound

|ψn(z)| ≤
n∑
k=0

zk
∑

λ∈Λ′
n,k

t(
⋃
i Cλi

, G)∏
i b
mi
i mi!

=

n∑
k=0

∑
λ∈Λ′

n,k

k∏
i=1

zmit(Cbi , G)mi

bmi
i mi!

=
∏
b≥2

exp

(
zt(Cb, G)

b

)
= exp

∑
b≥2

zt(Cb, G)

b


= exp

∑
b≥2

z
∑
i λ

b
i

b

 = exp

(
−z
∑
i

[log(1− λi) + λi]

)
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=

[∏
i

(1− λi)

]−z
· exp

(
−z
∑
i

λi

)
=

[∏
i

(1− λi)

]−z
since

∑
i λi = trA(G)/n = 0. The above product converges if

∑
i |λi| does,

which is n−1 times the so-called “energy” E(G) of G, the sum of its adjacency
singular values. Since E(G) can be as large as Cn3/2, we should not hope for
φn(z) always to converge. Indeed, n3/2 tends to be the order of magnitude
of the energy of dense graphs, i.e., graphs with Ω(n2) edges, the only graphs
converging to a nontrivial graphon; see, for example, [14]. However, this is not
always the case: indeed, E(Kn) = 2n− 2.

Therefore, we must introduce the so-called “regularized characteristic deter-
minant” det(p)(A) of a linear operator A:

Definition 1. The regularized characteristic determinant of a linear operator
A is defined as

(p)

det(I − zA) =
∏
j

[
(1− λj(A)z) exp

(
p−1∑
k=1

λkj z
k/k

)]

where λj varies over the eigenvalues of A.

We then use this definition – albeit only the p = 2 case, a.k.a. the Hilbert-
Carleman determinant – for reasons which will be apparent below, to define a
characteristic power series of graphons:

Definition 2. The characteristic power series of a graphon G is defined by

ψG(z) =
(2)

det(I − zG) exp

(
z2 · ‖G‖

2
2 − ‖G‖1

2

)
.

By [10] (Chapter IV, Section 2), the function det(p)(I − zA) is well-defined
and entire (of genus p−1) for operators A in Sp, the operators which are Schat-
ten p-class, i.e., for which the Schatten p-norm (

∑
i σ

p
i )1/p is finite, where σi are

the singular values of A, defined to be the eigenvalues of
√
A∗A. Since graphons

give rise to self-adjoint operators, we will have throughout that σi = |λi|. Note
that Schatten 2-class bounded operators are the same as Hilbert-Schmidt oper-
ators, which all graphons’ corresponding integral transforms are; and Schatten
1-class are the nuclear or trace-class operators, in which case det(1)(A) is the
classical Fredholm determinant and tr(A) =

∑
j λj is the (signed) trace. It

also follows from [10] (see Theorem IV.2.1) that det(p)(I − zA) is continuous
(uniform convergence on compact sets) with respect to convergence in p-norm
of A.

We now present our main theorem, demonstrating that ψG is indeed well-
defined and is an entire function of Laguerre-Pólya class, i.e., a holomorphic
function which is locally the limit of a series of polynomials whose roots are all
real. Laguerre-Pólya functions have played a prominent role in the study of dis-
tributions of zeros of real polynomials and real entire functions (e.g., [2]), early
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20th-century attempts to prove the Riemann hypothesis and a recent revival of
such methods (see [11]), and classical complex analysis. The fact that ψG(z) is
Laguerre-Pólya class implies that it has a Hadamard product expression (see,
e.g., [3] Theorem 2.7.1):

ψG(z) = zm exp(a+ bz + cz2)
∏
r

(
1− z

r

)
exp

(z
r

)
(1)

where m is a nonnegative integer; b and c are real with c ≤ 0; and r ranges over
the nonzero zeros of ψG(z). Note that the definition of ψG(z) is almost in this
form already. In particular, m = a = b = 0, and c = (‖G‖22 − ‖G‖1)/2, and the
product ranges over the reciprocals r of the nonzero eigenvalues of G.

Theorem 3. Suppose the graphs Gn converge to the graphon G. For the se-
quence of functions ψn(z) corresponding to the sequence of graphs Gn:

1. ψn(z) converges pointwise as n→∞.

2. ψn(z) converges uniformly on compact sets as n→∞.

3. Each coefficient of ψn(z) converges as n→∞.

Furthermore, the limit is ψG(z), is entire of Laguerre-Pólya class, and its roots
are the reciprocals of the nonzero eigenvalues of G (as a self-adjoint kernel op-
erator) with multiplicity.

Proof. Let A′ = A(G)/n, so that

ψn(z) =
(
x−n det(xI −A(G))

)∣∣
x=n/z

=
(
det(I −A(G)x−1)

)∣∣
x=n/z

= det(I −A′z).

As shown in [18] (Section 1.4), the (modulus-ordered) spectrum of A′ converges
to that of G in `4. Therefore, denoting the eigenvalues of A′ by {λi}ni=1,

∏
j

(
1− λj(A)z

n

)
exp

(
3∑
k=1

λj(A)kzk

k

)
→
∏
j

(1− zλj(G)) exp

(
3∑
k=1

λj(G)kzk

k

)
(2)

uniformly on compact sets. Since G is S2-class, the function det(2)(G) is defined
and entire, so the right-hand side of (2) can be written

(2)

det(I − zG)
∏
j

exp

(
λj(G)2z2

2
+
λj(G)3z3

3

)
Similarly, the left-hand side of (2) can be written

ψn(z)
∏
j

exp

(
λj(A)2z2

2
+
λj(A)3z3

3

)
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because
∑
j λj = tr(A′) = 0. There is a natural definition of the homomorphism

densities t(F,G) in terms of a certain integral which is standard for graphons,
and [13] (Theorem 7.22) shows that

∑
j λ

k
j = t(Ck,G) for k ≥ 2 and that

t(Ck, Gn) → t(Ck,G) for k ≥ 3. Thus, the cubic terms can be cancelled in
(2) and the quadratic terms behave predictably, because

∑
j λ

2
j = ‖G‖22 (the

Hilbert-Schmidt norm) and t(C2, Gn) = 2|E(Gn)|/n2:

ψn(z) exp

(
z2|E(Gn)|

n2

)
→

(2)

det(I − zG) exp

(
z2‖G‖22

2

)
Since the edge density

∑
j λj(A

′)2 = t(C2, Gn) = 2‖E(Gn)‖/n2 converges to
‖G‖1, this can be rewritten as

lim
n→∞

ψn(z) =
(2)

det(I − zG) exp

(
z2 · ‖G‖

2
2 − ‖G‖1

2

)
= ψG(z)

where the limit can be interpreted as uniform convergence on compact subsets
of C or pointwise.

Then (1) and (2) follow, and, since (2) holds, Cauchy’s integral formula
implies that (3) holds as well. Since ψn(z) has only real roots (being the char-
acteristic polynomial of a real symmetric matrix), the limit is of Laguerre-Pólya
class. That the roots of ψG(z) are the eigenvalues of the kernel operator cor-
responding to G is a consequence of Corollary 6.3 of [16], which states that

det(p)(I +A) 6= 0 iff I +A is invertible.

Theorem 3 has immediate consequences from various properties of determi-
nants, for example the following result. Here we introduce the notation G ⊕pH
for the p-disjoint union of G and H, the graphon whose kernel W is given by

W (x, y) =

 G
(
x
p ,

y
p

)
if x ∈ [0, p)

H
(
x−p
1−p ,

y−p
1−p

)
if y ∈ [p, 1]

.

Corollary 1. Given two graphons G and H, the graphon G ⊕pH which is their
disjoint union has the property that

ψG⊕H(z) = ψG(pz)ψH((1− p)z).

Proof. The kernel of G ⊕p H is G′ + H′, where G′(x, y) = G(x/p, y/p) and
H′(x, y) = H((x − p)/(1 − p), (x − p)/(1 − p)) (interpreting functions to be
zero outside [0, 1] × [0, 1]). By [10] (Section VI.2) and the fact that G′H′ = 0
(multiplication interpreted as composition), the Hilbert-Carleman determinant
satisfies

(2)

det(I−zG⊕H) =
(2)

det((I−zG′)(I−zH′)) =
(2)

det(I−zG)
(2)

det(I−zH)e−z
∑

i λi(G′H′).

But G′H′ = 0, so
∑
i λi(G′H′) = 0. Then

ψG⊕H(z) =
(2)

det(I − zG ⊕H) exp

(
z2 · ‖G ⊕ H‖

2
2 − ‖G ⊕H‖11

2

)
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=
(2)

det(I − zG′)
(2)

det(I − zH′)

· exp

[
z2

2

(
p2‖G′‖22 + (1− p)2‖H′‖22 − p2‖G′‖1 − (1− p)2‖H′‖1

)]
= ψG′(z)ψH′(z) = ψG(pz)ψH((1− p)z).

We now apply our main result to give another characterization of quasi-
random graphs.

Theorem 4. The property of a sequence of graphs Gn that ψn(z) converges
pointwise to a function with only one root (of multiplicity one) at z = 1/p is a
p-quasi-random property for p ∈ (0, 1]. For p = 0, it is equivalent to p-quasi-
randomness that ψn(z) converges to the constant function 1.

Proof. Suppose p > 0. Let G be the p-constant graphon, i.e., the limit of a p-
quasirandom graph sequence. By Theorem 3 and Hurwitz’s Theorem, coefficient
convergence implies root convergence, in the sense that every ε ball, for ε > 0
sufficiently small, about a zero of ψG(z) of multiplicity m will contain exactly
m roots of φn(z) for sufficiently large n, including for roots at infinity. If G is
p-quasirandom, then by P3 the eigenvalues of Gn are pn+ o(n) (once) and o(n)
(with multiplicity n− 1), so the roots of ψn(z) are 1/p+ o(1) (once) and some
n− 1 roots the smallest modulus of which tends to infinity. Thus, ψG(z) has a
root of multiplicity one at 1/p and no other roots.

Conversely, suppose ψn(z) converges pointwise to a function with exactly
one root at z = 1/p. Note that applying Cauchy’s Integral Formula gives
that the coefficients of ψn(z) converge to the coefficients of the limit function
f(z) = limn→∞ ψn(z). Then f has the form

f(z) = exp(bz + cz2)(1− pz)

by (1) and the fact that ψn is monic. Note that the coefficient of the linear term
in this expression is b − p; that ψn has linear coefficient 0 implies that b = p.
Thus, the z2 coefficient of f is c − p2/2. Since the z2 coefficient of ψn(z) is
−|E(Gn)|/n2, we have that c = p2/2− β/2 where β = limn→∞ 2|E(Gn)|/n2 is
the limiting edge density. This implies that the z4 coefficient of f is β2/8−p4/4.
On the other hand, by Theorem 2, the z4 coefficient of ψn(z) is n−4 times the
number (#2K2 ⊆ Gn) of matchings of size 2 in Gn minus twice the number

(#C4 ⊆ Gn) of C4 subgraphs. But, (#2K2 ⊆ Gn) =
(|E(G)|

2

)
= n4β2/8 + o(n4),

so
β2

8
− p4

4
=
β2

8
− lim
n→∞

2(#C4 ⊆ Gn)

n4

from which it follows that t(C4, Gn) + o(1) = |Aut(C4)| · p4/8 = p4 since
Aut(C4) ∼= D8. On the other hand, the z3 coefficient of f(z) with b = p
and c = p2/2− β/2 is −p3/3. The z3 coefficient of ψn(z) is −2(#C3 ⊆ Gn)/n3,
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which implies that

p3n3

6
+ o(n3) = (#C3 ⊆ Gn) ≤ β3n3

6
+ o(n3)

since it is easy to see that a complete graph maximizes the number of triangles
for a given number of edges. Then β ≥ p and so t(C4, Gn) ≤ β4 +o(1), implying
the p-quasirandomness of the sequence Gn, by property P2 in Theorem 1.

If Gn is 0-quasirandom, then Gn left-converges to the constant 0 graphon,
whence ψn(z) → 1 by Theorem 3 because all subgraph densities converge to
0 according to P1. Conversely, if ψn(z) → 1, then all coefficients converge to
0, so the edge density and C4 density converge to zero, which gives 0-quasi-
randomness by P2.

3 Special Cases

Recall that trG =
∑
j λj , the sum of the eigenvalues of (the kernel of) G, and

that G is “trace class” (aka “nuclear”) if this sum converges absolutely. When
G is trace class, we may write

ψG(z) = exp

(
(‖G‖22 − ‖G‖11)z2

2
+ z trG

)∏
s∈S

(1− sz) , (3)

a factorization of the characteristic power series into a monic polynomial-like
product whose roots are the reciprocals of the nonzero eigenvalues of G and an
exponential term. The quantity trG is zero if G is bipartite: in particular, the
eigenvalues comes in pairs ±λj . (For more on the spectra of bipartite graphs,
see [9], in particular Theorem 8.) In this case, ψG(z) has no monomials of odd
degree:

ψG(z) = exp
[
(‖G‖22 − ‖G‖11)z2/2

] ∏
s∈S∩R+

(
1− s2z2

)
,

Furthermore, ‖G‖22 = ‖G‖11 iff G is a 0-1 function except for a set of measure
zero, as with a simple blow-up of a graph (sometimes called a “pixel diagram”),
so the quadratic term vanishes in the exponential, resulting in

ψG(z) = exp (z trG)
∏
s∈S

(1− sz) .

We can also use (3) to obtain a simple expression for the characteristic power
series of p-quasi-random graphons.

Proposition 1. G is p-quasirandom iff

ψG(z) =

∞∑
k=0

zk
∑

λ∈Λ(k;i,j)

(−1)jpk−i

η(λ)
= (1− pz) exp

(
pz − p(1− p)

2
z2

)
(4)

where Λ(k; i, j) is the set of integer partitions of k into j parts of size at least
2, of which i are of size exactly 2.
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Proof. By Theorem 4, G is p-quasirandom iff

ψG(z) = lim
n→∞

n∑
k=0

∑
H∈Hk

zk(−1)c(H) (#H ⊆ G)

nkη(H)

=

∞∑
k=0

∑
H∈Hk

zk(−1)c(H) p
|E(H)|

η(H)

=

∞∑
k=0

zk
∑

λ∈Λ(k;i,j)

(−1)jpk−i

η(λ)

because partitions of k into parts of size at least 2 correspond bijectively to
elements ofHk. That this equals the right-hand side of (4) follows from Theorem
4. However, we show the result directly here.

If α(z) = exp(β(z)) is a power series, where the zn coefficient of α is ak
and the zk coefficient of β is bk, then (by standard facts about exponential
generating functions, see, e.g., [4]), letting λ be an integer partition with mi

parts of distinct sizes ci, i = 1 to t,

ak =
1

k!

∑
π∈Π

∏
B∈π

b|B||B|!

=
1

k!

∑
λ`k

k!

η(λ)
∏t
i=1(ci − 1)!mi

t∏
i=1

bmi
i ci!

mi

=
∑
λ`k

∏t
i=1 b

mi
i cmi

i

η(λ)

where Π is the set of (set) partitions of an k-set. Thus, if

β(z) = pz − z2p(1− p)/2 + log(1− pz)

= pz +
z2(p2 − p)

2
− pz − (pz)2

2
− (pz)3

3
− · · ·

= −z2 · p
2
− z3 · p

3

3
− z4 · p

4

4
· · ·

and α(z) = exp(β), then

ak =
∑
λ`k

∏t
i=1 b

mi
i cmi

i

η(λ)

=
∑

λ∈Λ(k;r,s)

p−r
∏t
i=1(−1/ci)

micmi
i pmi

η(λ)

=
∑

λ∈Λ(k;r,s)

p−r
∏t
i=1(−p)mi

η(λ)
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=
∑

λ∈Λ(k;r,s)

(−1)spk−r
1

η(λ)
.

4 Questions

It is tempting to define instead a characteristic power series without the regular-
ization, i.e., det(I−zG) =

∏
j(1−λjz), the “Fredholm determinant”. However,

this product may not converge. Using Fourier series, it is straightforward to
show that, for the graphon G(x, y) defined by

G(x, y) =

{
1 if x+ y ≤ 1
0 otherwise

we have

G(x, y) =

∞∑
n=0

4(−1)n

(2n+ 1)π
cos

(
(2n+ 1)πx

2

)
cos

(
(2n+ 1)πy

2

)
Since {fn}∞n=0 with fn(t) = 2 cos[(2n + 1)πt/2]} is an orthonormal family of

functions on [0, 1], this shows that the spectrum of G is
{

(−1)n

(2n+1)π

}∞
n=0

. Since

the (odd) harmonic series diverges, it follows that G is not trace-class, i.e.,∑
i λi does not converge absolutely. However, it still converges conditionally, so

det(I − zG) is well-defined.
One can also construct a function from [0, 1]×[0, 1]→ R2 by setting G(x, y) =∑∞
n=0

1
n (−1)εn(x)+εn(y) where εn(x) is the n-th digit of x in binary. Since

{(−1)εn}∞n=0 is the orthonormal Rademacher system, the spectrum of G is the
harmonic series. Thus det(I − zG) is undefined, but because random harmonic
series have full support on the real line, the function G is not a graphon (and
cannot be linearly scaled to become one).

Thus, we are led to the following question.

Question 1. Does there exist a graphon G for which the Fredholm determinant
det(I − zG) does not exist?

The characteristic polynomial of the p-quasirandom graphon has some pos-
sible connections with its probabilistic interpretations, as follows.

Question 2. Let G be the p-quasirandom graphon. The function

ψG(z) = (1− pz) exp(pz − z2p(1− p)/2)

has some unexplained connections with Gaussian probability distributions. If
M(z) is the moment generating function of a normal distribution of mean p
and variance p(1 − p) – the normalized limit of a 0-1 random walk with bias p
– then ψG(z) = (1− pz)/M(−z). Why?

11



Our next question concerns to what extent some of the above approach can
be applied to the many other well-known graph polynomials: matching polyno-
mial, Laplacian characteristic polynomial, chromatic polynomial, etc. When is
it the case that, given some notion of graph convergence, such as left-convergence
leading to graphons as above or Benjamini-Schramm convergence of very sparse
graphs, these polynomials when suitably normalized converge to some power
series? One motivation for asking this is a related, growing body of work
on limits of measures supported on the roots of natural graph polynomials.
For example, building off of work by Sokal [17] and Borgs-Chayes-Kahn-Lovász
[5], Abért-Hubai [1] showed the convergence of harmonic moments (quantities∫
K
f dν for holomorphic functions f and certain regions K ⊂ C) of the uni-

form probability distribution over the chromatic roots of Benjamini-Schramm-
convergence graph sequences; subsequently, Csikvári-Frenkel [7] generalized this
to a wide class of graph polynomials (including the characteristic polynomial)
and Csikvári-Frenkel-Hladký-Hubai [8] showed that it holds even for dense graph
(i.e., graphon) convergence with suitable normalization. From a different per-
spective, [19] empirically showed that chromatic roots of Erdős-Rényi random
graphs appear to have a scaling limit.

Question 3. For which other graph polynomials and graph limit process can
the above type of analysis be carried out? How about for hypergraphs?

Finally, we mention a question that arose in the context of experimentally
computing the coefficients of the characteristic power series of that simplest of
graphons, the uniform quasirandom graphon.

Question 4. It is straightforward to show (by, for example, applying Turán’s In-
equalities; see [15]) that the coefficients ck of ψG are log-concave for any graphon
G, but the consequences of this for unimodality are unclear because we do not
know the sign pattern of the coefficients of ψG(z). For example, the character-
istic power series of a p = 1/2 quasi-random graphon has sign pattern

+, 0,−,+,+,−,−,+,+,+,−,−,+,+,−,−, . . .

More specifically, can ck = 0 if k 6= 1?
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