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Abstract

We ask, for which n does there exists a k, 1 < k <n and (k,n) = 1, so that k/n has
a continued fraction whose partial quotients are bounded in average by a constant
B? This question is intimately connected with several other well-known problems,
and we provide a lower bound in the case of B = 2.

1. Introduction

An important question in the theory of quasirandom permutations, uniform distri-
bution of points, and diophantine approximation is the following: For which n € Z
is it true that there exists an integer k, 1 < k < n and (k,n) = 1, so that k/n has a
continued fraction whose partial quotients are bounded in average by a constant B?
That is, if we write k/n = [0; a1, as, ..., ay], we wish to find k so that
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for all ¢t with 1 < ¢t < m. Denote by F(B) the set of all n for which such a k
exists. These sets are discussed at length in [2] and the related matter of partial
quotients bounded wuniformly by a constant appears as an integral part of [6]. This
latter question is closely connected with Zaremba’s Conjecture ([8]), which states that
such a k exists for all n > 1 if we take B = 5.

Define the continuant K(ay,as,...,ay) to be the denominator of the continued
fraction k/n = [0;ay,aq,...,ay,]. In [3], it is proven that, if S, (B) is the number of



sequences a = (ay, . .., ay,) bounded uniformly by B with K(a) < n and H(B) is the
Hausdorftf dimension of the set of continued fractions with partial quotients bounded
uniformly by B, then
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Then, in [4], H(2) is calculated with a great deal of accuracy: H(2) =~ 0.53128.
Therefore, S,,(2), and thus the number of p/q with ¢ < n whose partial quotients are
bounded by 2, is n!-%62>+() " (This improves the previous best known lower bound,

n~07 computed in [3], slightly.)

— 2H(B).

Define S, (B) to be the number of sequences a = (ay,...,a,) < n with partial
quotients bounded in average by B so that K(a) < n. Clearly, S,(B) > S,(B), so
S,(2) > n'9%2  In the next section, we prove something much stronger, however —
an exponent of &~ 1.5728394 — thus providing a lower bound in the first nontrivial
case. Section discusses the implications for the density of F(2) and a number of open

questions.

2. The Proof

Theorem 1. For any € > 0, S, (2) > n2los/los(+v2)—

Proof. The proof consists of two parts: computing the number of positive sequences
of length m bounded in average by 2, and then computing the smallest possible m so
that K(ay,...,a,) > n and the a; are bounded in average by 2.

First, we wish to know how many sequences (as, ..., a,,) there are with a; > 1 for
each j € [m] and }7_, a; < 2r for each 7 € [m]. Call this number 7'(m). By writing
b; = a; — 1, we could equivalently ask for sequences (b1, ...,b,,) with b; > 0 for each
j € [m]and 377  a; < r for each r € [m]. This is precisely the number of lattice
paths from (0,0) to (m,m) which do not cross the line y = z, and so T'(m) is the n'®
Catalan number, or (m + 1)71(*") = 4n(i=o(D),

In the following lemmas, we show that K(ay,...,a,) < nif m < logn(l —
o(1))/log(1 4+ v/2). Therefore, setting m as large as possible, we have at least

logn(1-0(1))/log(14+/2) _ ,,2log2/log(1++v2)~o(1)

sequences with partial quotients bounded in average by 2 and continuant <n . [



We must show that the size of a continuant with partial quotients bounded in

average by B is at most the largest size of a continuant with partial quotients bounded
by B.

Lemma 2. If the sequence (aq,...,a,) of positive integers is bounded in average by
B > 1, then K(ay,...,a,) < K(B,...,B).
——
m

Proof. We prove the Lemma by a “shifting” argument. That is, we perform induction
on the size of the entry a; such that a; > B and j is as small as possible. If
a = (ay,...,a,) contains no a; > B, we are done, because increasing the partial
quotients can only increase the continuant. If there is some a; > B, let t > 2 be the
smallest such index. We consider two cases: (i) a; > B+ 2 or a;—; < B, and (ii)
a=B+1,a,=Bfors<k<t—1forsome2<s<t—1,and a,_; < B. (Clearly,

a#(B,B,...,B,B+1,a;41,...,ay), since this sequence is not bounded in average
by B. Therefore we may assume s > 2.)
Case (i):

Let b = (by,...,bn) = (a1,...,a4—1 + 1,0, — 1,...,ap). We show that K(b) >
K(a). First, note that

1+>a; ifr=t—1
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Since a; > B+1, (Y0 aj) —a; < (t—1)B—1,50 1+ 3 _1b; < (t—1)B, and b is

j=1

bounded in average by B. Second, note that it suffices to consider the case of t = m,
since, if K(by,...,b;) > K(ay,...,a;) for 1 < j <t then K(b) > K(a). (That is,
K (-) is monotone increasing.)

Let ¢j = K(a1,...,a;) and ¢; = K(by,...,b;). (We use the convention that ¢; = 0
when j < 0 and gy = 1.) Clearly, ¢; = ¢; if j <t —1. When j =t — 1, we have
q,_1 > q;—1 by monotonicity. When j = t,

G = Q-1+ G2 = @ (@—1q—2 + @—3) + Q—2 = (a1 + 1)q—2 + arqe—3,
and
g = (bibe—1 +1)q;_o + begy_
= ((ar — 1)(az—1 +1) + 1)g—2 + (@ — 1)g—3
=q + q2(a — a1 — 1) — qi_s.



Since a; > a;—1 + 2 and ¢;_» > ¢;_3, we have

Q> G+ QG o— G 3> .

Case (ii).

Now, assume that a; = B+ 1, ap, = B for s < k <t —1 for some 2 < s <t—1,
and a;_1 < B. Then define b = (by,...,b,,) by letting b; = a; if j # s — 1 and j # t;
bs_1 =as_1+1; and by = a; — 1. Again, we may assume that £ = m. Then
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Therefore, > 7%, b; < Br for all r € [t], and we may conclude that b is bounded in
average by B

Define F'(k) as follows: F(0) =0, F'(1) =1, and, for k > 1, F\(k) = BF(k—1) +
F(k —2). Then it is easy to see by induction that

K(B,...,B,z) = Flk+ 1)z + F(k),

since we have
K(y,c1,...,¢) =yK(cr,..., )+ K(coy ..., cp). (1)
Therefore,
K(as—1,...,a;) =as1(B+1)F(k+1)+ F(k))+ (B+1)F(k)+ F(k—1),
and

K(bs—1,...,b)) = (as—1 + 1)(BF(k+ 1)+ F(k))+ BF (k) + F(k — 1)
= K(as_1,...,a;) + BF(k+ 1)+ F(k) — F(k)
> K(as-1,...,a1).



This fact and (1) imply that K (b) > K(a), because b; = a; with j < s —1. All other
continuants of initial segments of b are no smaller than the ones of a by virtue of the
monotonicity of K(-).

By repeating cases (i) and (ii) as appropriate, we will eventually reach a sequence
of partial quotients bounded by B, and at each stage we have increased the corre-
sponding continuant. The result therefore follows. O

It remains to find a bound on K (B, ..., B).

Lemma 3. If B> 1, K(B,...,B) < [%(B_F\/m)]m—&-l‘
N——

m

Proof. We proceed by induction. The case m = 0 is trivial. Suppose it is true for all
m < M. Then, by (1),

K(B,...,B)=BK(B,...,B)+ K(B,...,B)
T W \H,_/
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3. The Density of F(2)

Corollary 4. There is a constant C' and a subset S of the positive integers such that
log |S N [n]|/logn > log2/log(1 + v/2) — o(1) = 0.786 and, for each n € S, there
erists a k € [n], (k,n) =1 so that k/n has partial quotients bounded in average by 2.

Proof. Let U be the set of all reduced fractions p/q, 1 < p < ¢, whose partial quotients
a = (a,as,...,an,) are bounded in average by 2 and such that a’ = (ag,...,a,) is
bounded in average by 2. The number of such a with K (a) < n is at least twice the



number of sequences a’ = (ag,...,a,) bounded in average by 2 with K(a') < n/3,
because, if [a'] = p/q, then K(a) = a1¢ +p < 3K(a') < n. (The fact that a’ is
bounded in average by 2 implies that [a,a’] is, also, where a; = 1 or 2.) Then, since
every rational has at most two representations as a continued fraction, the number
of elements of U whose denominator is < n is at least S, 3(2), which is at least
n2los2/log(14+v2)~o(1) - Pyrthermore, if p/q = [a] is in U, then [a'] = (¢ — aip)/p, so
p is the continuant of a sequence whose partial quotients are bounded in average
by 2. If we denote by T, the number of ¢ < n such that there exists a p € [
with (p,q) = 1 and p/q having partial quotients bounded in average by 2, then
Sn/3(2) < T2. Therefore, log T,/ logn > log 2/ log(1 + v/2) — o(1). O

Attempts by the author to find a generalization of the above result to F(B) by
applying much more careful counting arguments to the cases B > 2 have failed thus
far. It would be desirable, of course, to show that, as B — oo, the number of integers
less than n for which there exists a k, (k,n) = 1, such that k/n has partial quotients
bounded by B is > n'~¢, but another idea is needed before this is possible. The largest
known exponent is ~ 0.8368294437 in the case of strict boundedness by B = 5 (which
is of particular interest because of Zaremba’s conjecture), due to Hensley ([4]).

It would also be interesting to (i), calculate the Hausdorff dimension of the set
of reals in [0, 1) whose partial quotients are bounded in average by B, and (ii), draw
a connection, similar to that of the “uniform” case, between this quantity and the
asymptotic density of F(B).
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