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Abstract

We show that two duelers with similar, lousy shooting skills (a.k.a. Ga-
lois duelers) will choose to take turns firing in accordance with the famous
Thue-Morse sequence if they greedily demand their chances to fire as soon
as the other’s a priori probability of winning exceeds their own. This con-
trasts with a result from the approximation theory of complex functions
that says what more patient duelers would do, if they really cared about
being as fair as possible. We note a consequent interpretation of the Thue-
Morse sequence in terms of certain expansions in fractional bases close to,
but greater than, 1.

Two players, Alice and Bob, are in a duel. They take turns firing at each
other. However, both are Galois1 duelers, i.e., terrible shots, and equally so. On
the other hand, they are deeply committed to fairness, and therefore they make
the following deal. Before a single firearm is discharged, they draw up a firing
sequence, i.e., the sequence of turns they will take, according to the following
“greedy” rules. Alice shoots first. Bob then shoots as many times as he needs
to obtain a probability of winning that exceeds the probability that Alice has
won so far. Then Alice shoots again, until her a priori probability of having
won exceeds Bob’s. Bob shoots next following the same rule, and so on until
someone finally shuffles off his/her mortal coil.

To illustrate, suppose the duelers’ hitting probability is 1/3. Alice shoots
first, so her probability of winning by the end of round 0 is 1/3. Bob’s probability
of winning so far is zero, so he shoots next. For Bob to win in round 1, Alice
has to have missed in round 0, and Bob has to hit. Therefore, Bob’s probability
of having won by the end of round 1 is (2/3)(1/3) = 2/9. This is still less than
1/3, so Bob shoots again in round 2. For Bob to win in round 2, he must survive
Alice’s initial shot, miss in round 1, and hit in round 2. Hence his probability of

∗This work was funded in part by NSF grant DMS-1001370.
1Famously, the prodigal algebraist and Republican Radical Évariste Galois lost a duel over

a lover on May 30, 1832, dying the next day.
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winning by the end of round 2 is (1/3)(2/3)+(1/3)(2/3)2 = 10/27. This is more
than Alice’s probability of 1/3 (= 9/27), so Alice gets to go next. In round three,
Alice adds (1/3)(2/3)3 to her probability of winning, since 1/3 is the probability
she succeeds in round 3, and (2/3)3 is the probability that everyone missed in the
previous 3 rounds. If we define Sn,X = {i ≤ n | player X shoots in round i},
then the probability of player X = A(lice) or B(ob) winning by the end of round
n is given by

1

3

∑
i∈Sn,X

(
2

3

)i
.

The following is a table for p = 1/3, showing the probability of success for each
player as well as the sequence of shooters.

Round P(A) P(B) Shooter
0 1/3 0 A
1 1/3 2/9 B
2 1/3 10/27 B
3 35/81 10/27 A
4 35/81 106/243 B
5 347/729 106/243 A
6 347/729 1018/2187 B
7 347/729 3182/6561 B
8 9625/19683 3182/6561 A
9 9625/19683 29150/59049 B
10 87649/177147 29150/59049 A

For arbitrary probability p, we can determine the sequence {ai}ni=0 of players
inductively. Let q = 1 − p, let an = 1 mean that Alice shoots in round n, and
an = −1 means that Bob shoots in round n. Let An be the event that Alice
wins by round n, and define Bn similarly. Since Alice shoots first, a0 = 1. Write

fn(q) = an

 n∑
j=0

ajq
j

 .

Then

fn(q) = an

 n∑
j=0

ajq
j


=
an
p

p ∑
i∈Sn,A

qi − p
∑

i∈Sn,B

qi


=
an
p
· (P(An)− P(Bn)) (1)

Since an is negative whenever Bob is the shooter, we see that (up to the posi-
tive factor 1/p) the polynomial fn(q) records the current player’s probability of
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success minus the opposing player’s probability of success. Therefore, the next
player is completely determined by the value of fn(q). Specifically,

an+1 =

{
−an if fn(q) > 0

an otherwise.
(2)

It is easy to see that regardless of the value of p, the first three terms of the
sequence {ai} are 1, −1, −1. To determine the fourth term, we consider f2(q) =

q2 + q − 1. The unique positive root of this polynomial is −1+
√
5

2 = 1
φ ≈ 0.618

where φ is the Golden ratio. Since f2(q) is increasing after this, we have that
for any q ≥ 1/φ, the fourth term of the sequence is a3 = 1.

The above is a special case of the following.

Proposition 1.1. For each n ∈ N, there is an ε > 0 so that the sequence
{ai}ni=0 is the same for all q ∈ (1− ε, 1).

Proof. We proceed by induction, noting that the base case is trivial. Assume
by induction that for all q ∈ (1− ε0, 1), the sequence {ai}ni=0 is the same. Recall
that an+1 is determined by the sign of fn(q), which is now a fixed polynomial,
since the coefficients are exactly the ai. Since fn has degree n, it has at most
n roots. Thus we can find ε1 > 0 so that none of the roots occur in (1− ε1, 1).
Setting ε = min{ε0, ε1}, we have that fn(q) does not change sign or become zero
for q ∈ (1 − ε, 1). Therefore, an+1 does not depend on q inside this interval,
completing the induction, and proving the proposition.

One could continue along the lines above, and for each n, attempt to find the
threshold value of q so that the first n terms of the sequence stabilize. Indeed,
the authors have done this for some small values of n, although none of the
threshold values other than 1/φ appear to be numbers of independent interest.
Computer experimentation reveals that some of the fn(q) have no roots inside
[0, 1], some have a single root, and some have a root at q = 1 and for some other
q ∈ (0, 1). For those fn(q) with a single root, and with this root lying in (0, 1),
let αn denote the root. The following table shows the first thirty values of n
and αn.

n αn n αn n αn
2 0.61803 42 0.88482 82 0.92119
4 0.66099 44 0.88631 84 0.92176
8 0.73564 50 0.89543 88 0.92383
14 0.80016 52 0.89660 94 0.92724
16 0.80650 56 0.90071 98 0.92910
22 0.83787 62 0.90720 100 0.92954
26 0.85202 64 0.90805 104 0.93115
28 0.85493 70 0.91341 110 0.93382
32 0.86435 74 0.91629 112 0.93418
38 0.87798 76 0.91695 118 0.93657

Based on our computational data, we are willing to conjecture that (1 − αn)
behaves essentially like n−1/2. More formally, we conjecture the following.
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Conjecture 1.2. The sequence αn is increasing, and furthermore,

lim
n→∞

log(1− αn)

log n
= −1

2
.

Figure 1: Support for Conjecture 1.2. Blue dots indicate points of the form
(n, n1/2(1− αn)). The red curve is x1/2 − .3, and the green curve is x1/2 − .9.

2 Convergence of the Firing Sequence

While these thresholds are interesting, we are concerned here with a different
question. As q tends to 1 (i.e., p → 0), what does the sequence of players
tend to? A quick calculation with q = 0.9 reveals the following 21 turns in the
sequence of players.

ABBABAABBAABABBABAABB.

At first glance, this appears to be the same as the famous (Prouhet-)Thue-
Morse(-Euwe)2 sequence, one definition of which is the sequence of parities of
the number of 1’s in the binary expansions of n, n = 1, 2, . . .. In fact, the

2Prouhet used this sequence in 1851 to solve what is now known as the Prouhet-Tarry-
Escott problem, although he did not make the sequence explicit. Thue introduced it in 1906
to devise cube-free words, and Morse applied it to differential geometry in 1921. Euwe, not
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sequence above differs only in the last position. This disagreement can be fixed
by raising the value of q very slightly (setting q = 0.902 is sufficient). That
our sequence bears such close resemblance to the Thue-Morse sequence is no
coincidence, as evidenced by the following.

Theorem 2.1. The sequence {ai}∞i=0 tends to the Thue-Morse sequence (on
the alphabet {1,−1}) as q → 1−.

Our proof will use the following well-known facts about the Thue-Morse
sequence, which can found, for example, in [3].

Proposition 2.2. The Thue-Morse sequence {ti}∞i=0 on alphabet {1,−1} is
defined by the following recurrences.

t0 = 1

t2i = ti

t2i+1 = (−1)t2i.

Proposition 2.3. The sequence {(t2i, t2i+1)}∞i=0 is the Thue-Morse sequence
on alphabet {(1,−1), (−1, 1)}.

We note a simple consequence of Proposition 2.3 which we will also use.

Corollary 2.4. For any n ∈ N, we have
∑2n+1
i=0 ti = 0.

Proof of Theorem 2.1. In light of Proposition 1.1, q can be taken arbitrarily
close to 1. We proceed by induction. We have already shown that ai = ti for
i = 0, 1, 2, 3, so the base cases hold. We assume n > 2, and by induction that
the two sequences agree for all i ≤ n.

Case 1: n = 2m is even. Consider g(q) =
∑n−1
i=0 aiq

i. Since the ai are the
Thue-Morse sequence, Corollary 2.4 implies that g(1) = 0. Since q can be taken
arbitrarily close to 1 and g is continuous, we can ensure −1/2 < g(q) < 1/2 for
all q under consideration. We may also assume that q > (1/2)1/n. Then note
that fn(q) = qn ± g(q), so that for all of our q,

fn(q) = qn ± g(q) > 1/2− 1/2 ≥ 0.

Thus (2) gives that an+1 = (−1)an. Since n is even, induction and the recurrence
for Thue-Morse give that

an+1 = (−1)an = (−1)tn = tn+1.

Case 2: n = 2m+1 is odd. Since n is odd, Corollary 2.4 implies that fn(1) = 0.
Hence we can write

fn(q) = (q − 1)g(q)

knowing about these previous works, used the sequence in 1929 to show the existence of
infinitely long chess games, despite the rule designed to prevent this: any three-fold repetition
of a sequence of moves ends the game in a draw. The reader is directed to the delightful
survey [1] for more of this sequence’s interesting history.
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for some monic degree 2m polynomial g.
We claim that g(q) = fm(q2). We know by induction that sequence {ai}

matches Thue-Morse up to n, whence a2i+1 = (−1)a2i and a2i = ai for all of
the coefficients in our polynomial. We can write

fn(q) = a2m+1

2m+1∑
i=0

aiq
i

= a2m+1

m∑
i=0

(
a2iq

2i + a2i+1q
2i+1

)
= (−1)a2m

m∑
i=0

(
a2iq

2i − a2iq2i+1
)

= (−1)a2m(1− q)
m∑
i=0

a2iq
2i

= (q − 1)am

m∑
i=0

ai(q
2)i

= (q − 1)fm(q2),

proving the claim.
As q can be taken arbitrarily close to 1, we can assume that q and q2 are

past the threshold for stabilizing all coefficients up to an+1. Note also that
(q − 1) is negative, so one of fn(q) and fm(q2) is positive, and the other is
negative. Therefore, (2) says that for some j ∈ {0, 1}, an+1 = (−1)jan and
am+1 = (−1)j+1am. Then since we know the Thue-Morse relations hold up to
n, we have

an+1 = (−1)jan = (−1)ja2m+1 = (−1)j+1a2m = (−1)j+1am = am+1.

By the inductive hypothesis and Proposition 2.2, am+1 = tm+1 = t2m+2 =
tn+1, completing the proof.

3 Approximation and β-Expansions

Not all of this gun violence is fun and games. Indeed, it bears on some se-
rious business in the approximation theory of complex functions. Specifically,
Güntürk ([4]) recounts the following question of S. Konyagin3:

There are two duelists A and B who will shoot at each other . . .
using a given ±1 sequence b = (bi)i≥0 which specifies whose turn
it is to shoot at time i. The shots are independent and identically
distributed random variables with outcomes hit or miss. Each shot

3Some of the notation has been slightly modified to align the text more closely with our
own exposition.
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hits (and therefore kills) its target with small unknown probability
ε, which is arbitrary but fixed throughout the duel. The “fair duel”
problem is to find an ordering b, which is independent of ε, and is
as fair as possible in the sense that the probability of survival for
each is as close to 1/2 as possible. We measure the fairness of an
ordering b by its bias function Db(ε), defined to be

Db(ε) = P(A survives)− P(B survives),

and ask that Db(ε)→ 0 as ε→ 0 as fast as possible.

As illustrated by the discussion above, this question amounts to finding a
sequence b = {bi}i≥0 of ±1’s so that the power series

∑∞
i=0 biz

i closely approx-
imates the zero function in the vicinity of z = 1. Indeed, by interpreting (1) for
the shooting sequence b, setting z = q = 1− p yields

p

∞∑
i=0

biq
i = p lim

n→∞
bnfn(q)

= lim
n→∞

[P(An)− P(Bn)]

= lim
n→∞

[P(Bob dies by round n)− P(Alice dies by round n)]

= lim
n→∞

[(1− P(Bob survives through round n))

−(1− P(Alice survives through round n)]

= lim
n→∞

[P(Alice survives through round n)

−P(Bob survives through round n)]

= P(Alice survives forever)− P(Bob survives forever)

= Db(p). (3)

Güntürk showed ([4]) that, in a sense, there is an even “fairer” sequence than
the Thue-Morse sequence, if only the shooters were not so greedy. Indeed, his
much more general result is the following, which says that, near (but to the
‘left’ of) z = 1 in the complex plane, it is possible to approximate surprisingly
well any analytic function whose Taylor coefficients lie in a small (real) interval
around zero.

Theorem 3.1. Let 0 ≤ µ < 1 ≤ M < ∞ be arbitrary and RM = {z ∈
C : |1 − z| ≤ M(1 − |z|)}. There exist constants C1 = C1(µ,M) > 0 and
C2 = C2(µ,M) > 0 such that, for any power series

f(z) =

∞∑
n=0

rnz
n, rn ∈ [−µ, µ], ∀n,

there exists a power series with ±1 coefficients, i.e.,

Q(z) =

∞∑
n=0

bnz
n, bn ∈ {−1,+1}, ∀n,
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which satisfies
|f(z)−Q(z)| < C1e

−C2/|1−z|

for all z ∈ Rm \ {1}.

Figure 2: Graph showing the boundary of RM from Theorem 3.1 in the complex
plane, for M = 5/4, 5/2, 5, 10, 20, and 40 in order from inner-most to outer-
most. The point z = 1 is labeled with a blue point.

Furthermore, this result is the best possible in a certain precise sense by a
theorem of Borwein-Erdélyi-Kós ([2]). Setting µ = 0 (so that rn = 0 for all n
and f(z) ≡ 0) and M = 2 (for example), we obtain the corollary that one can
approximate the constant 0 function (of p) within exp(−c/p) by a power series
with coefficients in {1,−1}. The author goes on to show that the Thue-Morse
sequence only obtains an approximation of exp(−c(log p)2). It pays to have
patience!

By (3), p
∑∞
n=0 bnq

n = Db(p). Suppose that instead of simply approaching
zero as p → 0, we required the right-hand side of this equation to be exactly
zero. Letting S ⊆ N be the set of i ∈ N for which bi = 1 and T be the set of
i ∈ N for which bi = −1, we would have

p
∑
i∈S

qi = p
∑
i∈T

qi.

The following lemma shows that our greedy dueling sequence has this property,
provided the hitting probability is at most 50%.

Lemma 3.2. For any probability p ≤ 1/2, the sequence of coefficients {ai}∞i=0

obtained from the greedy Galois duel with hitting probability p satisfies

∞∑
i=0

aiq
i = 0.
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Proof. Let p ≤ 1/2, and so q ≥ p. We note that

lim
n→∞

(P(An) + P(Bn)) = lim
n→∞

p ∑
i∈Sn,A

qi + p
∑

i∈Sn,B

qi


= p

∞∑
i=0

qi

= 1.

Both P(An) and P(Bn) are monotone nondecreasing with n, and their sum tends
to 1. So to prove the lemma, it suffices to prove that neither player’s probability
exceeds 1/2 at any round.

Suppose toward a contradiction that some player’s probability first exceeds
1/2 in round n. The argument will be symmetric with respect to the player, so
without loss of generality we assume this player is Alice. Write P(An−1) = a,
and P(Bn−1) = b. Since Alice has to shoot in round n to have increased her
probability, the dueling rules imply b ≥ a. Then by assumption, P(An) =
a + pqn > 1/2. Bob’s probability can never exceed this, as the sum of the
two probabilities is 1. Hence Bob will shoot in round n + 1 and every round
afterward.

This gives that

lim
n→∞

P(Bn) = b+ p

∞∑
i=n+1

qi

= b+ p
qn+1

1− q
= b+ qn+1

≥ a+ pqn,

where the inequality follows from q ≥ p and b ≥ a. But then

1 = lim
n→∞

(P(An) + P(Bn)) ≥ 2(a+ pqn) > 1.

This provides a contradiction, and proves the lemma.

Let {di}i≥0 be the indicator function for Alice shooting in round n in the
greedy Galois duel with probability p ≤ 1/2. (That is, di = 1 if Alice shoots in
round i, and di = 0 if Bob shoots.) Let di denote boolean complement, so that
{di}i≥0 is the indicator for Bob shooting. The lemma says that

∞∑
i=0

diq
i =

∞∑
i=0

diq
i. (4)

Since
∑∞
i=0 diq

i+
∑∞
i=0 diq

i =
∑∞
i=0 q

i = 1/(1−q) = p−1, we can conclude that
both sides of equation (4) equal (2p)−1.

9



For example, if p = 1/5, then q = 4/5 and (2p)−1 = 5/2. The above
discussion implies that

∞∑
i=0

di

(
4

5

)i
=

5

2
.

In other words, the sequence d = {di}i≥0 is the positional numeral system
expansion of the number 5/2 in “base” 5/4, using only the digits 0 and 1. The
same is true for the sequence d̄ = {di}i≥0. To be more precise: An expansion
of x ∈ R+ in the base β ≥ 1 is any right-infinite string of the form

cncn−1 . . . c1c0.c−1c−2 . . . ,

where n is some nonnegative integer, for each k ≤ n, cn ∈ {0, 1, . . . , bβc}, and

x =

∞∑
k=0

cn−kβ
n−k.

If cj = 0 for all j < −N , one may write

cncn−1 . . . c1c0.c−1c−2 . . . c−N

for short. Such expansions were introduced by Rényi under the name “β-
expansions”4 ([7]). In light of the above argument, for any p ≤ 1/2, let
c = (ci)i≥0 be the digits of any expansion of (2p)−1 in the base 1/q, and let
a = (ai)i≥0 be defined as ai = (−1)ci . Then the generating function g(z) of
the sequence a satisfies g(q) = 0. Of course, the sequence a depends on q, so
this expansion does not answer Konyagin’s original “Fair Duel” problem. How-
ever, given this connection with nonstandard radix systems, we may reinterpret
Theorem 2.1 as follows.

Corollary 3.3. For each k ≥ 1 there is an N ≥ 1 so that the first k digits
of the Thue-Morse sequence (or its complement), expressed over the alphabet
{0, 1}, agrees with an expansion of n/2 in base β = n/(n− 1), for any n ≥ N .

Proof. Proposition 1.1 and Theorem 2.1 together say that we can find N ≥ 0
so that the indicator sequence {d̄i}i≥0 for Bob shooting in the greedy Galois
duel with p = 1/n agrees with the Thue-Morse sequence over {0, 1} for the first
k digits, provided n ≥ N. Set q = (n − 1)/n, and β = 1/q = n/(n − 1). The
discussion following Lemma 3.2 implies that

−∞∑
i=0

d̄iβ
i =

∞∑
i=0

d̄iq
i = (2p)−1 = n/2,

and that the same holds for Alice’s indicator sequence {dn}.
4Actually, Rényi referred to them as “f -expansions”.
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Rényi referred to a greedily-constructed β-expansion as “the” β-expansion.
Specifically, one constructs the digit sequence {cj}nj=−∞ of x inductively as
follows: n = blogβ xc, and, given an integer m ≤ n,

cm = bβmx−
n∑

j=m+1

cjβ
j+mc.

Presently, we will refer to a greedily-constructed β-expansion that starts with
digits cj = 0 for j > 0 as the infrapotent5 β-expansion6. It is not difficult to see
now that the infrapotent β = 1 + 1/(n − 1) expansion of n/2 is exactly Alice
and Bob’s firing sequence, where Alice is associated with 1 and Bob with 0. So,
in fact, Corollary 3.3 can be strengthened slightly by changing “an expansion”
to “the infrapotent expansion.” For example, applying the p = 1/3 situation in
the introduction, the infrapotent (3/2)-expansion of 3/2 is

1.0010100101 . . .

This reinterpretation of the greedy firing sequence nicely illustrates the fact that
β-expansions need not be unique if β 6∈ N. By Corollary 3.3, switching 1 with 0
gives another representation of 3/2 in base 3/2. Furthermore, the string “10.” is
itself a (3/2)-representation of 3/2 (though not an infrapotent one)!

4 Conclusion

Our results add a new interpretation of the Thue-Morse sequence to the ever-
growing collection of known characterizations, many of which appear in [1] and
entry A010060 of the Online Encyclopedia of Integer Sequences ([6]). They also
reveal a connection between greedily played stochastic games, approximation
theory, and nonstandard radix representations. As a starting point for general-
izations, we conclude with three questions.

1. What happens in a Galois truel, i.e., a three-way duel between equally
terrible shots who are nonetheless fair-minded, optimally strategic, and
cannot deliberately miss? It is not immediately clear what the fairest
policy for turn-taking should be.

2. How does the game change if Alice and Bob make it fairer by imposing
‘less greedy’ demands on the turn sequence? For example, they might
remember only the last 87 rounds, or they may allow their opponent’s
a priori probability of success to exceed their own by up to 1% before
demanding a turn.

3. What is the connection of the present discussion with the following result
of Komornik and Loreti ([5]), which is strikingly redolent of multiple topics
discussed above?

5From L. infra (“below, underneath, beneath”) + potentia (“power”).
6Of course, such an expansion may not exist. In particular, it is possible to write x thusly

if and only if |x| ≤ bβcβ/(β − 1).
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Theorem 4.1. There is a smallest number 1 < q < 2 for which there is
precisely one choice of digit sequence d = {dj}∞j=1 so that 1 =

∑∞
j=1 djq

−j .
This q (= 1.787231650 . . .) is the unique positive solution to the equation

1 =

∞∑
j=0

ajq
−j ,

where aj is the jth digit of the Thue-Morse sequence over {0, 1}, i.e., aj
is the parity of the number of 1’s in the base 2 representation of j.
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[2] P. Borwein, T. Erdélyi and G. Kós, “Littlewood-type problems on [0, 1],”
Proc. London. Math. Soc. 79 (1999), 22–46.

[3] M. Lothaire, Algebraic combinatorics on words. Encyclopedia of Mathe-
matics and its Applications, 90. Cambridge University Press, Cambridge,
2002.
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