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Abstract

The authors investigate k-colorings of the positive integers ≤ n for which the triples
(a, b, c), where a, b and c are positive integers with a2 + b2 = c2 and c ≤ n, satisfy the
condition that a, b and c are colored differently. In particular, they establish for ε > 0 and n

sufficiently large, if k ≥
√

3
(1+ε) logn/ log logn

, then a k-coloring exists such that every triple
(a, b, c) as above has a, b and c colored differently. They also consider the problem of finding
a similar lower bound on the k for which a k-coloring must exist such that, for all but a small
proportion of triples (a, b, c) as above, a, b and c are colored differently.
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1 Introduction
An ordered triple of positive integers (a, b, c) is called a Pythagorean triple if a, b and c satisfy the
equation a2 + b2 = c2. As suggested, with any such triple (a, b, c), we take the third component c
to be larger than the other two components a and b. We also order a and b by the largest power of 2
that divides each as follows. An argument modulo 4 can be used to show that the largest power of
2 dividing a cannot equal the largest power of 2 dividing b. We adopt the convention then that in a
Pythagorean triple (a, b, c), the largest power of 2 dividing b is greater than the largest power of 2
dividing a . If gcd(a, b, c) = 1, then we say the Pythagorean triple is primitive. For fixed positive
integers k and n and a fixed k-coloring of the positive integers ≤ n, we say a Pythagorean triple
(a, b, c) is monochromatic if a, b and c are colored the same and we say the triple is 2-colored (or
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3-colored) if exactly 2 (or none, respectively) of a, b and c are colored the same. We also note that
when using the big-oh notation and Landau’s� notation in this paper, all implied constants will
be absolute.

Fix an integer n > 1. Then one may construct O(log n)-colorings of [n] = {1, 2, . . . , n} such
that no Pythagorean triple with elements ≤ n is monochromatic. A simple argument is given for
this coloring at the beginning of Section 4. Such a bound may be crude, as it is not even known
if just 2 colors suffice to color [n] so that every Pythagorean triple has this property. Cooper and
Poirel [3], and later Kay [4], have in fact constructed such 2-colorings for n as large as 1344 and
1514, respectively.

The main results of this paper are as follows.

Theorem 1. Fix ε > 0. Let k and n be positive integers with k ≥
√

3
(1+ε) logn/ log logn

and n ≥ n0,
where n0 = n0(ε) is sufficiently large as a function of ε. Then there exist k-colorings of [n] such
that every Pythagorean triple with elements ≤ n is 3-colored.

Theorem 2. Let ξ(x) be an arbitrary positive increasing function that tends to infinity. Let k
and n be positive integers with k ≥ c ξ(n) log2 n/ log log n and n ≥ N , where c and N are
sufficiently large absolute constants. Then there exist k-colorings of [n] such that the proportion of
Pythagorean triples with elements ≤ n which are not 3-colored is� max{2−ξ(n), 1/ log n}.

Theorem 3. Let ξ(x) be any positive, increasing function that tends to infinity, and let n be suffi-
ciently large. There exist bξ(n)c-colorings of [n] such that the proportion of Pythagorean triples
with elements ≤ n which are not 3-colored is

� max

{
1√

log ξ(n)
,

1√
log log log log n

}
.

The emphasis on this last result is that to obtain a coloring with almost all triples being 3-
colored only bξ(n)c colors are needed for any function ξ(x) increasing to infinity. For this, we
give a simple sieve of Eratosthenes argument. A different sieve approach, using the Brun sieve or
the Selberg sieve, would easily allow for an improvement on the proportion above for the number
of triples which are not 3-colored.

The above results concern general Pythagorean triples. The following addresses the case of
primitive Pythagorean triples.

Theorem 4. There exists a 3-coloring of N such that, for every sufficiently large positive integer
n, the proportion of primitive Pythagorean triples with elements ≤ n which are not 3-colored is
� 1/

√
log log n.

2 Preliminaries
In this section, we give some basic background. For results not specifically referenced, one can
consult [1] and [6] for more details.

Throughout this paper, we make use of the following classical result of Euclid.

Theorem 5. There exists a bijection from the ordered triples (k, s, t) of integers satisfying k ≥ 1,
gcd(s, t) = 1, s > t > 0 and exactly one of s and t is even and the Pythagorean triples (a, b, c)
given by a = k(s2 − t2), b = 2kst, and c = k(s2 + t2).
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Definition. We call the triple (k, s, t) the representation of the Pythagorean triple (a, b, c).

Writet n = 2hpe11 p
e2
2 . . . p

ey
y q

ey+1

1 . . . q
ey+`

` , where h is a non-negative integer, e1, . . . , ey+` are
positive integers, p1, . . . , py are distinct primes ≡ 1 (mod 4) and q1, . . . , q` are distinct primes
≡ 3 (mod 4). We will be interested in the number of Pythagorean triples (a, b, c) for which one of
a and b equals n and the number of Pythagorean triples (a, b, c) for which c = n. These next two
results can be found in Beiler [2].

Lemma 1. Given the prime factorization of a positive integer n as above, the number of Pythagorean
triples (a, b, c) for which either a = n or b = n is given by

PL(n) =
1

2

(
|2h− 1|

y+`∏
j=1

(2ej − 1)− 1

)
.

Lemma 2. Given the prime factorization of a positive integer n as above, the number of Pythagorean
triples (a, b, c) for which c = n is given by

PH(n) =
1

2

( y∏
j=1

(2ej − 1)− 1

)
.

The following consequence is immediate.

Theorem 6. The number of Pythagorean triples (a, b, c) for which one of a, b or c equals n is

P (n) = PL(n) + PH(n) =
1

2

(
|2h− 1|

y+`∏
j=1

(2ej − 1)− 1

)
+

1

2

( y∏
j=1

(2ej − 1)− 1

)
.

We will want to make use of some elementary notions and results from graph theory. All
graphs referenced in this paper are taken to be undirected and simple. The chromatic number of a
graph G is the least number of colors required to color the vertex set V (G) such that no adjacent
vertices share the same color. We let χ(G) denote this number. Let E(G) denote the set of edges
of G, the elements of which may be represented uniquely as a two element set {vi, vj}, for vertices
vi, vj ∈ V (G). For v ∈ V (G), the degree of v is the number of edges {vi, vj} ∈ E(G) for which
one of vi and vj is v. We denote this degree by deg(v). Define ∆(G) to be maxv∈V (G){deg(v)}.

Lemma 3. For any graph G as above, χ(G) ≤ ∆(G) + 1.

Proof. We color the vertices v1, . . . , vn of G using the following algorithm.

1. Let j = 0.

2. Let j ← j + 1.

3. If j > n, then terminate.

4. Define α(vj) to be the minimal element of [1 + ∆(G)] \
⋃

(vi,vj)∈E(G),i<j{α(vi)}.

5. Go to step 2.
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Note that α(vj) is well-defined for each j ≤ n since no vertex has more than ∆(G) neighbors. By
the definition of α, no adjacent vertices are the same color. This completes the proof.

The following result of Wigert [8] gives the maximal growth rate of the divisor function.

Theorem 7. For m a positive integer, define d(m) as the number of divisors of m. Then

lim sup
m→∞

log d(m)

logm/ log logm
= log 2.

We will make use of covering systems when proving Theorem 2. A covering system (or simply
a covering) C is a set of residue classes {ri (mod mi)}i∈I , where I is a finite indexing set, such
that every integer is contained in at least one residue class in C. We say that a covering system C is
exact if each integer resides in exactly one residue class in C.

Let Ω(x) be the number of Pythagorean triples (a, b, c) with c ≤ x. The following is due to
Sierpiński [7].

Theorem 8. There is a constant B such that

Ω(x) =
4

π
x log x+Bx+O(x2/3).

For primitive Pythagorean triples, we have the following corresponding result of D. H. Lehmer
[5].

Theorem 9. The number of primitive Pythagorean triples (a, b, c) with c ≤ x is ∼ x/(2π).

Let s be a positive integer. For the proof of Theorem 3, we introduce a completely multiplica-
tive function ρs which we define for a prime p by

ρs(p) =

{
2 if p - s
1 if p | s.

In particular, we make use of the following estimate.

Lemma 4. Let s and d be positive integers, with d square-free. The number of positive integers
t ≤ s such that d divides s2 − t2 is

ρs(d)s

d
+O(ρs(d)).

Proof. The definition of ρs(p), for a prime p, is the number of incongruent t modulo p satisfying
t ≡ ±s (mod p). Since d is square-free, the Chinese Remainder Theorem implies that there are
exactly ρs(d) incongruent t modulo d satisfying t ≡ ±s (mod d). Thus, in every block of d
consecutive integers, there are exactly ρs(d) integers t for which t ≡ ±s (mod d). It follows that
the number of positive integers t ≤ s such that d divides s2 − t2 is

ρs(d)
⌊s
d

⌋
+O(ρs(d)) =

ρs(d)s

d
+O(ρs(d)),

completing the proof.
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An indispensable tool used throughout our arguments is the Prime Number Theorem, stated
below.

Theorem 10. Let π(x) denote the number of primes ≤ x. Then π(x) ∼ x/ log x. Equivalently,∑
p≤x

log p ∼ x.

Here and throughout, sums over p as above are understood to be sums over primes p. That the
two assertions in the above theorem are equivalent is not completely trivial, but the proof of their
equivalence is elementary and typically done in proofs of the Prime Number Theorem. Another
asymptotic we will use is a form of Dirichlet’s theorem on primes in arithmetic progressions.

Theorem 11. Let a and m be positive integers satisfying gcd(a,m) = 1. Then∑
p≤x

p≡a (mod m)

1

p
∼ log log x

ϕ(m)
.

3 The Proof of Theorem 1
Let n be a positive integer. We define a graph Gn on n vertices vj with 1 ≤ j ≤ n by setting
the edge set to be the {vi, vj} for which there exists a Pythagorean triple (a, b, c) with c ≤ n
and with i and j distinct elements of the set {a, b, c}. Observe that χ(Gn) is the least number of
colors required to color [n] so that each Pythagorean triple ≤ n is 3-colored. From Theorem 6 and
Lemma 3, we obtain

χ(Gn) ≤ 1 + ∆(Gn)

= 1 + max
m∈[n]
{P (m)}

= 1 +
1

2
max
m∈[n]

{
|2h− 1|

y+`∏
j=1

(2ej − 1) +

y∏
j=1

(2ej − 1)

}
(1)

where h, y, ` and the ej’s are dependent on m as in Lemmas 1 and 2. The above is less than

max
m≤n

{
(2h+ 2)

y+`∏
j=1

(2ej + 2)

}
= max

m≤n

{
2ω(m)+1d(m)

}
≤ max

m≤n
{2d(m)2}.

A direct application of Theorem 7 implies χ(Gn) ≤ 4(1+o(1)) logn/ log logn.
This bound, however, can be improved with a revised argument. Let n be sufficiently large.

For an m ≤ n, we consider the factorization

m = αγ11 . . . αγu
u β

γu+1

1 . . . βγu+v
v ,

where the γi are all positive integers and the αi and βi are u+ v distinct primes satisfying

αi ≤
log n

(log log n)2
and βi >

log n

(log log n)2
.
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Note that the expressions αi, βi, γi, u and v appearing here all depend on m. From Theorem 10,
the bound on αi implies that

u ≤ π

(
log n

(log log n)2

)
≤ 2 log n

(log log n)3
. (2)

The bound on βi gives(
log n

(log log n)2

)γu+1+···+γu+v

≤
v∏
i=1

β
γu+i

i ≤ m ≤ n

=⇒ γu+1 + · · ·+ γu+v ≤
(1 + o(1)) log n

log log n
.

From our previous argument, we know

χ(Gn) ≤ 1 + max
m∈[n]

{ u∏
j=1

(2γj − 1)
u+v∏
j=u+1

(2γj − 1)

}
. (3)

A direct computation gives 2γ − 1 ≤ 3γ/2 for γ ∈ {1, 2}. If γ ≥ 2 is replaced by γ + 1, then the
left-hand side of this inequality increases by 2 and the right-hand side increases by 3γ/2

(√
3−1

)
≥

3
(√

3− 1
)
> 2. Hence, 2γ − 1 ≤

√
3
γ

holds for every positive integer γ. We deduce then that

u+v∏
j=u+1

(2γj − 1) ≤
√

3
γu+1+···+γu+v ≤

√
3

(1+o(1)) logn/ log logn
. (4)

Now, we bound the first product in (3). For every j ≤ u, we have 2γj ≤ n so that

2γj − 1 ≤ 2 log2 n ≤ 3 log n ≤ exp(2 log log n).

From (2), we obtain

u∏
j=1

(2γj − 1) ≤
u∏
j=1

exp(2 log log n) = exp(2u log log n)

≤ exp

(
4 log n

(log log n)2

)
≤ 34 logn/(log logn)2

(5)

Since (4) and (5) hold for every m ≤ n, we obtain from (3) the desired bound on χ(Gn).

4 The Beginning of the Proof of Theorems 2 and 3
Let n be a positive integer and ξ(x) be some positive, increasing function tending to infinity. Define
ν2(m) to be the exponent in the largest power of 2 dividing m. For clarification, ν2(n) = h in the
context of Lemma 1.

We will assign to each positive integer m ≤ n an ordered pair (u, v) =
(
u(m), v(m)

)
. This

will represent our coloring of the positive integers ≤ n. For example, if we assign the ordered pair
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(ν2(m), 1) to each integer m ≤ n, then we see that we have a coloring that uses at most O(log n)
colors. Observe that in Theorem 5, since s and t have opposite parity, we have ν2(b) > ν2(a) =
ν2(c), so this coloring of the positive integers ≤ n has the property that no Pythagorean triple
(a, b, c) with c ≤ n is monochromatic.

To prove Theorems 2 and 3, we begin in a similar way by letting u be ν2(m) if ν2(m) ≤ ξ(n)
and ξ(n) + 1 otherwise. As we will see, Theorem 5 then implies that most Pythagorean triples
(a, b, c) with c ≤ n have a and c colored differently from b. We turn now to clarifying what we
mean by “most” here.

Observe that u(a) = u(c) 6= u(b) for every Pythagorean triple (a, b, c) with c ≤ n and ν2(c) ≤
ξ(n). We consider now the case that c ≤ n and ν2(c) > ξ(n). For the moment fix such a triple
(a, b, c). Let α = ν2(c). Since 2α ≤ c ≤ n, we deduce

ξ(n) < α ≤ log2 n.

Let (k, s, t) be the representation of the Pythagorean triple (a, b, c) given in Theorem 5. Since s
and t have opposite parity, we deduce 2α|k. It follows that (k/2α, s, t) is the representation of the
Pythagorean triple (a/2α, b/2α, c/2α) where the last component c/2α is at most n/2α. In other
words, the number of Pythagorean triples (a, b, c) with c ≤ n and ν2(c) = α is bounded above
by the number of Pythagorean triples (a, b, c) with c ≤ n/2α. We sum over the possible values of
α and apply Theorem 8 to get an upper bound on the number of Pythagorean triples (a, b, c) with
c ≤ n and ν2(c) > ξ(n). This upper bound is

blog2 nc∑
α=dξ(n)e

Ω
( n

2α

)
� n

blog2 nc∑
α=dξ(n)e

log(n/2α)

2α
� n log n

2ξ(n)
.

Observe that Theorem 8 now implies that the proportion of Pythagorean triples (a, b, c) with c ≤ n
for which u(b) = u(a) (or, equivalently, u(b) = u(c)) is O(1/2ξ(n)). Since ξ(n) is an increasing
function tending to infinity, we see that this proportion tends to 0 as n tends to infinity.

The idea now is to define v(m) in such a way that typically we have v(a) 6= v(c) for Pythagorean
triples (a, b, c) with c ≤ n. In the next two sections, we give different values of v(m) that provide
us with the proofs needed for Theorems 2 and 3, respectively.

5 The Proof of Theorem 2
Fix ε > 0 sufficiently small; the choice ε = 1/3 will suffice. Set S =

{∏
x<p≤2x p : x > 2

}
. The

next lemma implies that every sufficiently large integer is between s and s1+ε for some s ∈ S.

Lemma 5. Fix ε > 0 as above. There exists an infinite sequence {si}∞i=1 with each si ∈ S such
that

si−1 < si < s1+ε
i−1 for i ∈ {2, 3, . . . }.

Proof. Let δ > 0 be sufficiently small that

(1 + δ)2(1 + ε/2)

(1− δ)2(1 + ε)
< 1.
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Let x1 be sufficiently large, and choose

xi = xi−1
1 + δ

1− δ
(1 + ε/2) for i ∈ {2, 3, . . . }.

Then

(1 + δ)xi−1 < (1 + δ)(1 + ε/2)xi−1 = (1− δ)xi

< (1 + δ)xi =
(1 + δ)2

1− δ
(1 + ε/2)xi−1 < (1− δ)(1 + ε)xi−1.

Hence,
e(1+δ)xi−1 < e(1−δ)xi < e(1+δ)xi < e(1−δ)(1+ε)xi−1 . (6)

From Theorem 10, if n =
∏

x<p≤2x p ∈ S, then

log n =
∑
p|n

log p =
∑

x<p≤2x

log p ∼ x. (7)

Thus, if x is sufficiently large, then

e(1−δ)x < n < e(1+δ)x.

Therefore, defining
si =

∏
xi<p≤2xi

p for i ∈ {1, 2, . . . },

and recalling that x1 is sufficiently large, we see from (6) that

si−1 < si < s1+ε
i−1 for i ∈ {2, 3, . . . },

finishing the proof.

Let n be sufficiently large, and let n0 be the largest element of S that is ≤ n. Then Lemma 5
implies that n ≤ n1+ε

0 . Since n0 ∈ S , we can write n0 =
∏r

i=1 pi where the prime factors are
indexed so that pi < pj for i < j. Since n is large, n0 is large and each pj is large. For each integer
` with 1 ≤ ` ≤ r, we define the following set of residue classes.

Kn0,` :=

{
λ
∏
i<`

pi (mod
∏
i≤`

pi) : λ ∈ {1, 2, . . . , p` − 1}
}

We have the following lemma.

Lemma 6. The collection of residue classes

Kn0 :=

( ⋃
1≤`≤r

Kn0,`

)
∪ {0 (mod n0)}

is an exact covering.
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Proof. Each integer is contained in λ (mod p1) for exactly one λ ∈ {1, 2, . . . , p1 − 1} except
for the integers which are divisible by p1. Each such integer divisible by p1 is contained in p1λ
(mod p1p2) for exactly one λ ∈ {1, 2, . . . , p2 − 1} except for those divisible by p1p2. Continuing
in this manner, we find that each integer is contained in exactly one residue class of exactly one
Kn0,` except for the integers divisible by n, which are contained in 0 (mod n0).

Now, for such a covering Kn0 , we define κ : N → Kn0 by sending each natural number to the
residue class in Kn0 that the natural number belongs to. Note κ is well-defined by Lemma 6. We
will show that taking v(m) = κ(m) in the previous section has the desired properties needed to
complete our proof of Theorem 2.

Consider a Pythagorean triple (a, b, c) with a representation (k, s, t) that satisfies the following
three conditions for some positive integer ` ≤ r:

(i)
∏`−1

i=1 pi | k,

(ii) p` - k,

(iii) p` - t.

If κ(a) = κ(c), then k(s2− t2) ≡ k(s2 + t2) (mod p`). From (ii), one obtains p` | t, contradicting
(iii). Hence, if a representation (k, s, t) of a Pythagorean triple (a, b, c) satisfies (i), (ii) and (iii),
then κ(a) 6= κ(c).

We will bound the number of Pythagorean triples (a, b, c) with c ≤ n having a representation
(k, s, t) not satisfying (i), (ii) and (iii) for all ` ∈ {1, 2, . . . , r}. First, we estimate the number
of such triples that do not satisfy (i) and (ii) for all ` ∈ {1, 2, . . . , r}. By Lemma 6 or a direct
argument, we deduce n0 | k. Since (k, s, t) is a representation for (a, b, c), we have

a = k(s2 − t2), b = 2kst and c = k(s2 + t2).

Hence, k ≤ k(s2 + t2) = c ≤ n, so that there are at most n/n0 values of k divisible by n0.
Furthermore, (1, s, t) is a representation for the primitive Pythagorean triple

(
s2− t2, 2st, s2 + t2

)
,

and
s2 + t2 =

c

k
≤ n

n0

.

By Theorem 9, we deduce that there are at most n/n0 such primitive Pythagorean triples and,
hence, at most n/n0 possibilities for (1, s, t). We deduce then that there are at most(

n

n0

)2

≤
(
n1+ε

0

n0

)2

= n2ε
0 ≤ n2/3

Pythagorean triples (a, b, c) with c ≤ n having a representation (k, s, t) with k divisible by n0.
Suppose now that a Pythagorean triple (a, b, c) with c ≤ n has a representation (k, s, t) with

n0 - k. Lemma 6 implies that (i) and (ii) hold for a unique ` ∈ {1, 2, . . . , r}. We bound from above
the proportion of Pythagorean triples (a, b, c) with c ≤ n having representation (k, s, t) for which
some ` ∈ {1, 2, . . . , r} satisfies (i) and (ii) but not (iii). We will obtain a proportion that is� 1/p1.
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Lemma 7. Fix a positive integer k, and letA1, A2, . . . , Ak be non-negative real numbers satisfying∑k
i=1Ai ≤ 1. For arbitrary non-negative real numbers r1, r2, . . . rk, we have

k∑
i=1

riAi ≤ max
1≤i≤k

{ri}.

Proof. The proof of this lemma is immediate upon replacing each ri in the last sum above with
max1≤i≤k{ri}.

Fix n as above and ` ∈ {1, 2, . . . , r}. Let Ω = Ω(n). Let S be the set of Pythagorean triples
(a, b, c) with c ≤ n and with the corresponding representation (k, s, t) satisfying n0 - k and at least
one of (i), (ii) and (iii) does not hold for each ` ∈ {1, 2, . . . , r}. Let Ω′ = Ω′(n) be the size of the
set S, Ω` be the number of (a, b, c) ∈ S which have a representation (k, s, t) satisfying (i) and (ii),
and Ω′` be the number of (a, b, c) ∈ S which have a representation (k, s, t) satisfying (i) and (ii)
but not (iii). By Lemma 7, we have

Ω′

Ω
=

r∑
`=1

Ω′`
Ω

=
r∑
`=1

Ω′`
Ω`

· Ω`

Ω
≤ max

1≤`≤r

{
Ω′`
Ω`

}
. (8)

Thus, if we can find a uniform upper bound on Ω′`/Ω`, then this bound also serves as an upper
bound for Ω′(n)/Ω(n).

We first obtain an upper bound on Ω′`. We setM = n/P where P = P` =
∏`−1

i=1 pi. The implied
constants in our� notation for our arguments in this section depend only on M being sufficiently
large, so we observe that M is large since pr is large, pr | (n0/P ) and n0/P ≤ n/P = M . Since
each Pythagorean triple (a, b, c) counted by Ω′` has a representation (k, s, t) satisfying

c = k(s2 + t2) ≤ n and P | k,

we deduce that k = k′P for some positive integer k′ with k′(s2 + t2) ≤ M . In particular, (k, s, t)
also satisfies s2 + t2 ≤ M and, hence, s and t are each ≤

√
M . Also, since (iii) does not hold

for the representation of an (a, b, c) counted by Ω′`, we have t = p`τ for some positive integer τ .
Hence,

Ω′` ≤
∑

1≤s≤
√
M

∑
1≤t≤

√
M

p`|t

∑
1≤k′≤M/(s2+t2)

1

≤
∑

1≤s≤
√
M

∑
1≤τ≤

√
M

M

s2 + p2
`τ

2

≤
∑

1≤τ≤
√
M

∑
1≤s≤p`τ

M

s2 + p2
`τ

2
+

∑
1≤τ≤

√
M

∑
p`τ<s≤

√
M

M

s2 + p2
`τ

2

≤
∑

1≤τ≤
√
M

∑
1≤s≤p`τ

M

p2
`τ

2
+

∑
1≤τ≤

√
M

∑
p`τ<s<∞

M

s2

≤
∑

1≤τ≤
√
M

M

p`τ
+

∑
1≤τ≤

√
M

M

p`τ

10



≤ 2M

p`

(
1 +

1

2
logM

)
,

where the inequalities in the last two lines are justified by comparing sums to integrals. Thus,

Ω′` �
M

p`
logM. (9)

Now we find a lower bound on Ω`. We use M , P and k′ as defined in our argument for (9)
above. We proceed in a similar manner, but instead consider only even values of t and odd values
of s, writing t = 2v and s = 2u − 1. We also impose the conditions 1 ≤ v ≤

√
M/32 and

v < u ≤ 2v. With these restrictions, we have

u2 + v2 ≤ 5v2 ≤ 5M

32
. (10)

Also, t < s ≤ 4v so that
s2 + t2 < 32v2 ≤M.

Observe that if gcd(2v, 2u − 1) = 1, then Theorem 5 implies that (k′P, 2u − 1, 2v) is a represen-
tation for some Pythagorean triple (a, b, c) counted by Ω` provided that p` - k′ and

1 ≤ k′ ≤ n

P
(
(2u− 1)2 + (2v)2

) =
M

(2u− 1)2 + (2v)2
.

Since M/
(
4(u2 + v2)

)
is smaller than the right-hand side above, (k′P, 2u − 1, 2v) remains a

representation for some Pythagorean triple (a, b, c) counted by Ω` if p` - k′ and

1 ≤ k′ ≤ M

4(u2 + v2)
. (11)

Recalling p` is an odd prime, the number of positive integers k′ satisfying (11) divisible by p` is at
most

M

p`
(
4(u2 + v2)

) ≤ M

12(u2 + v2)
.

We deduce from (10) that the number of k′ satisfying (11) not divisible by p` is at least

M

4(u2 + v2)
− M

12(u2 + v2)
− 1 =

M

6(u2 + v2)
− 1

≥ M

6(u2 + v2)
− 5M

32(u2 + v2)
� M

u2 + v2
.

Therefore,

Ω` �M
∑

1≤v≤
√
M/32

∑
v<u≤2v

gcd(2v,2u−1)=1

1

u2 + v2

�M
∑

1≤v≤
√
M/32

∑
v<u≤2v

gcd(2v,2u−1)=1

1

5v2
.

11



This gives us

Ω` �M
∑

1≤v≤
√
M/32

1

v2

∑
v<u≤2v

gcd(2v,2u−1)=1

1. (12)

With some justification, we show next that we can drop the condition gcd(2v, 2u − 1) = 1 in
this last expression. Observe that∑

1≤v≤
√
M/32

1

v2

∑
v<u≤2v

1 =
∑

1≤v≤
√
M/32

1

v
. (13)

On the other hand, if gcd(2v, 2u − 1) > 1, then v and 2u − 1 have a common odd prime factor
≤ v. Thus, ∑

1≤v≤
√
M/32

1

v2

∑
v<u≤2v

gcd(2v,2u−1)>1

1 ≤
∑

3≤q≤v
q prime

∑
1≤v≤
√
M/32

q|v

1

v2

∑
v<u≤2v
q|(2u−1)

1

≤
∑

3≤q≤v
q prime

∑
1≤v≤
√
M/32

q|v

1

v2

(
v

q
+ 1

)

≤
∑

3≤q≤v
q prime

∑
1≤v≤
√
M/32

q|v

2

qv

≤
∑

3≤q≤v
q prime

∑
1≤qv′≤

√
M/32

2

q2v′

≤
∑

3≤q≤v
q prime

∑
1≤v′≤

√
M/32

2

q2v′

≤
( ∑

q≥3
q prime

2

q2

) ∑
1≤v≤
√
M/32

1

v
.

Overestimating the sum over q by allowing q to be composite gives that∑
q≥3
q prime

2

q2
≤ 2

(
π2

6
− 1− 1

4

)
< 0.8.

Combining the upper bound just obtained with the lower bound in (13) and using (12), we now
deduce

Ω` �M
∑

1≤v≤
√
M/32

1

v
�M logM,

12



by comparing the sum above to an appropriate integral.
Combining this lower bound for Ω` with the upper bound for Ω′` given in (9), we deduce that

max`(Ω
′
`/Ω`)� 1/p1 for every ` ∈ {1, 2, . . . , r}. Thus, from (8), we deduce

Ω′ � Ω/p1,

where the implied constant is absolute.
To complete the proof, we recall that

n0 ∈ S =

{ ∏
x<p≤2x

p : x > 2

}
and n0 ≤ n ≤ n1+ε

0 .

Let x be such that n0 =
∏

x<p≤2x p. As in (7), we have log n0 ∼ x. Therefore, the number of
residue classes in Kn0 is

≤
∑
p|n0

p < (π(2x)− π(x))2x� x2

log x
∼ (log n0)

2

log log n0

� (log n)2

log log n
.

Recalling that our coloring consisted of pairs (u, v) where u is a non-negative integer ≤ ξ(n) + 1
and v is associated with residue classes in Kn0 , we deduce that the total number of colorings used
is

� ξ(n)(log n)2

log log n
,

as claimed.
The proportion of the Pythagorean triples (a, b, c) with c ≤ n that are not 3-colored is

� 1

2ξ(n)
+

n2/3

n log n
+

Ω′(n)

Ω(n)
� 1

2ξ(n)
+

1

n1/3 log n
+

1

x

� 1

2ξ(n)
+

1

n1/3 log n
+

1

log n0

� max

{
1

2ξ(n)
,

1

log n

}
.

This finishes the proof of Theorem 2.
Letting ξ(n) = log log n, we have the following corollary to Theorem 2.

Corollary 1. Let n be sufficiently large. There exist O(log2 n)-colorings of {1, 2, . . . , n} for
which the proportion of Pythagorean triples (a, b, c) with c ≤ n which are not 3-colored is
� (log n)− log 2.

6 The Proof of Theorem 3
We take n sufficiently large and assign to each positive integer m ≤ n an ordered pair (u, v). We
define u = u(m) as in Section 4 except with ξ(m) there replaced by

√
ξ(m). Thus, there are

�
√
ξ(m) different values of u(m) and the proportion of Pythagorean triples (a, b, c) with c ≤ n

for which u(b) = u(a) (or u(b) = u(c)) is� 1/2
√
ξ(n). For v = v(m), we use that for a prime p

congruent to 3 modulo 4, the number −1 is not a quadratic residue modulo p. The following is an
easy consequence (and the proof is left to the reader).
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Lemma 8. Any number of the form s2 + t2 with gcd(s, t) = 1 cannot be divisible by a prime
congruent to 3 modulo 4.

We set
z = min{log log log n,

√
ξ(n)}. (14)

This choice of z will allow us to give a self-contained argument using the sieve of Eratosthenes.
We take v(m) to be the number of distinct primes ≤ z which are congruent to 3 modulo 4 and
divide m. For a Pythagorean triple (a, b, c) with v(a) = v(c) and with representation (k, s, t), we
deduce from Lemma 8 that each prime ≤ z congruent to 3 modulo 4 dividing s2 − t2 also divides
k.

Let A(s, n) be the number of positive integer pairs (t, k), with t ≤ s and k(s2 + t2) ≤ n,
satisfying if p is a prime≤ z with p ≡ 3 (mod 4) and p | (s2− t2), then p | k. Note that we do not
require here that gcd(s, t) = 1. Recall Theorem 5. As an overcount of the number of Pythagorean
triples (a, b, c) where v(a) = v(c), we use

∑
s≤
√
nA(s, n). In addition, to overestimate A(s, n),

we instead consider (t, k) above with ks2 ≤ n rather than k(s2 + t2) ≤ n.
Let P be the product of all primes ≤ z that are congruent to 3 modulo 4. Let Ad(s, n) denote

the number of positive integer pairs (t, k), with t ≤ s and ks2 ≤ n, satisfying d | (s2 − t2) and
gcd(k, d) = 1. The principle of inclusion-exclusion implies that

A(s, n) =
∑
d|P

µ(d)Ad(s, n),

where µ is the Möbius function. Lemma 4 gives us

Ad(s, n) =
∑

k≤n/s2
gcd(k,d)=1

|{t ≤ s : d | (s2 − t2)}|

=

(
ρs(d)s

d
+O(ρs(d))

) ∑
k≤n/s2

gcd(k,d)=1

1

=

(
ρs(d)s

d
+O(ρs(d))

)(
ϕ(d)n

ds2
+O(ϕ(d))

)
=
ρs(d)ϕ(d)n

d2s
+O

(
ρs(d)ϕ(d)

(
n

ds2
+
s

d
+ 1

))
.

Thus,

A(s, n) ≤
∑
d|P

µ(d)

(
ρs(d)ϕ(d)n

d2s
+O

(
ρs(d)ϕ(d)

(
n

ds2
+
s

d
+ 1

)))
.

We use that there are at most π(z) ≤ z primes dividing P . For the error term above, observe that
d | P implies that ρs(d) ≤ 2z and that d ≤ zz. Therefore,

ρs(d)ϕ(d)

(
n

ds2
+
s

d
+ 1

)
≤ 2zd

(
n

ds2
+
s

d
+ 1

)
≤ n 2z

s2
+ 2zs+ 2zzz.
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Also, ∑
d|P

|µ(d)| =
∑
d|P

1 ≤ 2z.

Hence,

A(s, n) ≤
(∑

d|P

µ(d)
ρs(d)ϕ(d)

d2

)
n

s
+O

(
n 22z

s2
+ 22zs+ 22zzz

)
. (15)

The multiplicativity of ρs and ϕ implies that∑
d|P

µ(d)
ρs(d)ϕ(d)

d2
=

∏
p≤z

p≡3 (mod 4)

(
1− ρs(p)ϕ(p)

p2

)

≤
∏
p≤z

p≡3 (mod 4)

(
1− p− 1

p2

)

=
∏
p≤z

p≡3 (mod 4)

(
1− 1

p

) ∏
p≤z

p≡3 (mod 4)

(
1 +

1

p(p− 1)

)
.

The last product above approaches a constant as z tends to infinity, and Theorem 11 can be used to
see that ∏

p≤z
p≡3 (mod 4)

(
1− 1

p

)
� 1√

log z
.

From (15), we obtain

A(s, n)� n

s
√

log z
+
n 22z

s2
+ 22zs+ 22zzz.

Using the above estimate for A(s, n), our bound on the number of Pythagorean triples (a, b, c)
satisfying v(a) = v(c) is ∑

s≤
√
n

A(s, n)� n log n√
log z

+ n 22z + 22zzz
√
n. (16)

Recalling (14), we get ∑
s≤
√
n

A(s, n)� n log n√
log log log log n

+
n log n√
log ξ(n)

. (17)

The needed estimates are complete. We have colored each integer m ≤ n by a pair (u, v) of
non-negative integers with u ≤

√
ξ(n) and v bounded by the number of primes up to

√
ξ(n). For n

large, there are less than bξ(n)c such pairs. The number of Pythagorean triples (a, b, c) with c ≤ n

is Ω(n) ∼ (4/π)n log n by Theorem 8. Since u(b) = u(a) or u(b) = u(c) for� n log n/2
√
ξ(n) of

these triples and since (17) provides a bound on the number of triples with v(a) = v(c), Theorem 3
follows.
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7 The Proof of Theorem 4
We describe the coloring of N that we use to establish Theorem 4. First, color all positive even
integers red. Next, color each odd positive integer divisible by at least one prime congruent to 3
modulo 4 white. Color the remaining elements of N blue. By Lemma 8 and Theorem 5, we see that
if a primitive Pythagorean triple (a, b, c) with c ≤ n is not 3-colored, it must be that a = s2 − t2 is
odd and has no prime divisors congruent to 3 modulo 4. Call these the bad triples. We need only
count then how many bad triples exist.

Let z = log n, and define P as the product of primes ≤ z that are ≡ 3 (mod 4). From
Theorem 5, we see that an upper bound for the number of bad triples is∑

s≤
√
n

∣∣{the number of t ≤ s such that p | (s− t) =⇒ p ≡ 1 (mod 4) or p > z
}∣∣.

By an inclusion-exclusion argument similar to (but easier than) the one used in the previous section,
we see that∣∣{the number of t ≤ s such that p | (s− t) =⇒ p ≡ 1 (mod 4) or p > z

}∣∣
=
∑
p|(2P)

µ(d)

(
s

d
+O(1)

)
=
s

2

∏
p≡3 (mod 4)

p≤z

(
1− 1

p

)
+O

(
2π(z)

)
.

Hence, an upper bound for the number of bad triples is∑
s≤
√
n

(
s

2

∏
p≡3 (mod 4)

p≤z

(
1− 1

p

)
+O

(
2π(z)

))
� n√

log log n
.

Recalling Theorem 9, we deduce Theorem 4.
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