MATH 550 Section 001 Fall 2005 Bonus Project 2

(Due in Class November 17)
Let a be the largest digit among the last four digits of your student number and b be the smallest positive digit. Consider the triple integral

$$
\iiint_{W} z^{2} e^{x^{2}+y^{2}} d x d y d z,
$$

where W is the region in the first octant $(x \geq 0, y \geq 0, z \geq 0)$ bounded by the surfaces $x=0, y=0, x^{2}+y^{2}+z^{2}=a, x^{2}+y^{2}+z^{2}=b$ and $x^{2}+y^{2}=z^{2}$.
(a) Plot the region W. (Helpful Maple commands: with(plots), plot3d, display.)
(b) Find a numerical value for the integral. (Helpful Maple commands: int, evalf. More information on numerical integration can be found under int[numerical].)

Your solution should include several plots for (a) and the answer to (b), with detailed explanations of how you obtained your answer. You should include a neat Maple worksheet containing the relevant computations.

