Integration Methods II: Partial Fractions and Trig Substitutions

Douglas Meade and Xian Wu
Department of Mathematics

Overview

The objective of this lab is to use Maple to help you practice your integration skills in partial fractions and trigonometric substitutions.

Maple Essentials

- Three maplets Trig Substitutions, Partial Fractions: General Decomposition, and Partial Fractions: Finding Coefficients are available from the course website (last column in Lab 6):

> http://www.math.sc.edu/calclab/142L-S06/labs

Those maplets are designed to help you to understand named methods following individual steps with randomly generated problems. In a near future, they will be able to take user-specified problems.

- Important Maple commands introduced in this lab:

Command/Example	Description
convert $(f$, parfrac, options $) ;$ Examples: convert $\left(x /(x-2) \wedge 3 /\left(x^{\wedge} 2+x+1\right), ~ p a r f r a c\right) ; ~$ convert $\left(x /(x-b) \wedge 3 /\left(x^{\wedge} 2+1\right)\right.$, parfrac,$\left.x\right) ;$	Convert a rational function f into its partial fraction form
completesquare Examples: completesquare $(f(x), x) ;$$\quad$ completesquare $\left(x^{\wedge} 2+2 * x+2\right) ;$	Complete squares (need to load the student package first. $)$

Related course material

$\S 8.4$ and $\S 8.5$ of the textbook.

Activities

1. Use maple commamds covert and completesquare to perform partial fractions for the following rational functions:
(a) $f 1(x)=\frac{1}{x^{2}-6 x-7}$. (see ex. 10 on page 543$)$
(b) $f 2(x)=\frac{x^{5}-4 x^{3}+1}{x^{3}-4 x}$. (see ex. 20 on page 544)
(c) $f 3(x)=\frac{x^{2}}{(x+1)^{3}}$. (see ex. 25 on page 544$)$
(d) $f 4(x)=\frac{x^{3}+x^{2}+x+2}{\left(x^{2}+1\right)\left(x^{2}+2\right)}$. (see ex. 30 on page 544)
(e) $f 5(x)=\frac{x^{4}+6 x^{3}+10 x^{2}+x}{x^{2}+6 x+10}$. (see ex. 32 on page 544)
(f) $f 6(x)=\frac{x^{2}+1}{\left(x^{2}+2 x+3\right)^{2}}$. (see ex. 37 on page 544)

Remarks:

(a) Don't forget to include with (student) : to load the student package.
(b) You may want to define your own partial fraction operator, say MyPF, as follows:
> MyPF:=f->completesquare(convert(f,parfrac,x));
You can then use it as a maple command to do partial fractions and completing squares for a rational function, say $R(x)$, as follows:
> $\operatorname{MyPF}(\mathrm{R}(\mathrm{x}))$;
2. Use the Integration Methods tutor introduced in Lab 4 to help you to evaluate integrals of the above rational functions.
3. Launch each of the Trig Substitutions, the Partial Fractions: General Decomposition, and the Partial Fractions: Finding Coefficients maplets from the course web and do a few practice problems.

Assignment

Exercises 45 and 46 on page 536; exercises 38 and 39 on page 544 .

