Sequences and Series

Douglas Meade, Ronda Sanders, and Xian Wu Department of Mathematics

Overview

Sequences and series are the objects of interest for the next few weeks. The intent of this lab is to provide additional practice determining the convergence or divergence of a sequence of numbers. Ways to generate sequences and series in Maple are also introduced.

Maple Essentials

• New Maple commands introduced in this lab:

Command/Example	Description
<pre>evalf(expression);</pre>	numerically evaluates expressions involving constants
Example:	
<pre>evalf(Pi);</pre>	
<pre>seq(f(n), n=ij);</pre>	creates a finite sequence of values
Example:	$f(i), f(i+1), \cdots f(j),$
seq(1/n,n=110);	where $f(n)$ is a maple function and $i \leq j$ are integers.
<pre>seq([n,f(n)],n=ij);</pre>	creates a finite sequence of points on the graph of
Example:	y = f(x).
f:=x->x^2;	
seq([n,f(n)],n=110);	
sum(f(n), n=ij)	creates and evaluates a finite or infinite sum, that is,
Example:	series $\sum_{n=i}^{j} f(n)$, where f(n) is a maple function or
<pre>sum(n^2, n=110);</pre>	expression and $i \leq j$ can be integers, variables, or
	infinity. For a finite or convergent infinite series, it
	automatically evaluates the sum and returns a value
	or formula. If you don't want the automatic evalua-
	tion, use Sum instead of sum.
for n from i to j doend do;	A typical for-loop (for and do statement) used in
Example:	general programming languages. It executes whatever
s[1]:=1; for n from 1 to 9 do	between ''do'' and ''end do'' repeatedly for a
s[n+1]:= s[n]+n end do;	counted number of times (''for n from i to j'').
	It hence can be used to work with sequences in much
	more general ways than what the command seq could.

• A link to the *SequenceDrill* maplet can be found on the course website:

 $\texttt{http://www.math.sc.edu/calclab/142L-F07/labs/} \rightarrow SequenceDrill$

Preparation

§10.1, §10.2, and §10.3. In addition, review the basic qualitative properties of logarithms, powers, exponentials, and so on. For example, exponentials grow faster (at ∞) than polynomials, factorials grow faster than exponentials, and so on.

Assignment

Exercises 21 and 39 on pages 634-635 and exercise 29 on page 642. Please refer to and do activities on the back of this page first.

Activities

1. For each of the following sequences: (a) Generate the first 10 terms. (b) Determine whether the sequence diverges or converges to a limit. (c) Graph a sequence of points to verify your answer. Note: Let p be a parameter.

(a)
$$\{(-1)^n \arctan(n)\}_{n=1}^{\infty}$$
 (b) $\{\sqrt{n^2 + pn} - n\}_{n=1}^{\infty}$ (c) $\{\frac{10^n}{n!}\}_{n=1}^{\infty}$
(d) $\{n \sin\left(\frac{\pi}{n}\right)\}_{n=1}^{\infty}$ (e) $\{\ln\left(\frac{1}{n}\right)\}_{n=1}^{\infty}$ (f) $\{\sum_{k=1}^{n} \frac{1}{k^2}\}_{n=1}^{\infty}$
(g) $\{\sum_{k=1}^{n} \frac{1}{1 + (k/n)}\}_{n=1}^{\infty}$

Note: You may use the SequenceDrill maplet. However, it does not work well with sequences involving parameters since it involves plot. We will work out some examples using explicit commands.

2. A typical format for a recursively-defined sequence is $a_{n+1} = f(a_n)$, $n = 2, 3, \cdots$ (with a_1 given explicitly). Under the assumptions that (i) $\{a_n\}$ converges to L and (ii) f is continuous function (at L), we have that $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n = L$ and

$$L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(L).$$

Thus, L must be a solution to L = f(L). While this equation might be difficult to solve by hand, Maple can be used to find a solution (exactly, numerically, or graphically).

- (a) (See Exercise 38 on page 634) Consider the sequence $\{a_n\}$ defined by $a_1 = \sqrt{6}$, $a_{n+1} = \sqrt{6 + a_n}$, $n = 1, 2, 3, \cdots$. Use Maple to verify that it is a bounded monotone sequence and hence converges to a limit. Explain how a plot containing the graphs of y = x and $y = \sqrt{6 + x}$ confirms this limit.
- (b) (See Example 10 on page 633) Consider the sequence $\{x_n\}$ produced by Newton's Method to approximate $\sqrt{2}$ as a zero of $f(x) = x^2 2$. From Exercise 21 of §5.6, we have $x_1 = 1$, $x_{n+1} = \frac{1}{2}\left(x_n + \frac{2}{x_n}\right), n = 1, 2, 3, \cdots$. Use Maple to verify that the limit is indeed $\sqrt{2}$.

Example: Activity 1a

```
> with(plots):
> f:= n-> (-1)^n arctan(n);
> evalf(seq(f(n), n=1..10));
> limit(f(n), n=infinity);
> points:=evalf(seq([n,f(n)], n=1..10));
> P1:=plot([points], style=point):
> P2:=plot([-1/2*Pi, 1/2*Pi]):
> display([P1,P2]);
```

```
Example: Activity 2a
```

```
> a[1]:=sqrt(6);
```

```
> for n from 1 to 9 do a[n+1]:=sqrt(6+a[n]); evalf(a[n+1]) end do;
```

```
> plot([x,sqrt(6+x)],x=-6..6);
```

> solve(x=sqrt(6+x),x);