Review of Calculus I

Douglas Meade, Ronda Sanders, and Xian Wu
Department of Mathematics

Overview

The fundamental operations of calculus are limits, derivatives, and integrals (definite and indefinite). The goal of this week's lab is to review those basic operations using Maple.

Maple Essentials

- Maple commands introduced in this lab:

Command	Description
:=	assign a name to a quantity. eg: $\mathrm{f}:=$ sqrt (x) ; eq1: $=\mathrm{x}+\mathrm{y}=2$;
limit	compute limits or sided limits: $\operatorname{limit}(F, x=a)$; finds the limit, $\lim _{x \rightarrow a} F$; $\operatorname{limit}\left(F, x=a\right.$, right) ; finds the sided limit from right, $\lim _{x \rightarrow a^{+}} F$; limit ($F, x=a$, left); finds the sided limit from left, $\lim _{x \rightarrow a^{-}} F$.
diff	compute derivatives of an expression: $\operatorname{diff}(f, x)$; finds the derivative of f with respect to $x, \frac{d f}{d x}$; $\operatorname{diff}(f, x \$ n)$; finds the nth derivative of $f, \frac{d^{n} f}{d x^{n}}$
int	$\begin{aligned} & \text { compute definite and indefinite integrals: } \\ & \text { int }(f, x) \text {; evaluates the indefinite integral, } \int f d x \text {; } \\ & \text { int }(f, x=a . . b) \text {; evaluates the definite integral, } \int_{a}^{b} f d x \text {. } \end{aligned}$
plot	plot one or more functions on a specified window $\operatorname{plot}(f, x=a . . b)$; plots the graph of $y=f$ for $a<x<b$; plot ($[f, g], x=a . . b$); graphs two functions in a single plot

Note that Maple's int command does not include any constants of integration. Whenever you evaluate an indefinite integral, do not forget to include a constant of integration (+C) in your answer.

- Basic Functions and Expressions: Maple uses sqrt (x) for \sqrt{x}, abs (x) for $|x|$, $\exp (\mathrm{x})$ for e^{x}, and $\mathrm{x}^{\wedge} \mathrm{n}$ for x^{n}. Other basic functions can be typed in as what they are but you must carefully use () to group together and match up expressions as needed. You must also type in ${ }^{*}$ when a multiplication is presented. For example, you need to type in $\sin (\mathrm{x})$ instead of $\sin \mathrm{x}$ for $\sin x$ and $2 * \mathrm{x} /(\mathrm{x}+\mathrm{y})$ instead of $2 \mathrm{x} / \mathrm{x}+\mathrm{y}$ for $\frac{2 x}{x+y}$. Finally, do not forget to type in ; at the end of a line that is to be executed.
- Palettes: The Expression palette can be used instead of typing the full Maple commands for many functions and operations. The Symbol palette contains other symbols, including $\pi(\mathrm{Pi})$ and ∞ (infinity). To view both palettes simultaneously, drag one of the palettes to another edge of the Maple window.

Related Course Material/Preparation

Review the basic terminology and properties of limits, derivatives, and integrals.

Activities

Many (but not all) problems below can be solved in Maple using different interface methods: typing in a command directly, using the right-clicking, or using palettes. Try and/or combine different methods when possible. In any case, you should make it a habit to enter an expression and assign it to a name first. You should always inspect the output to verify that the expression was entered correctly. You can then apply operations by the right-clicking or referring the name or the equation label (if you use commands or palettes).

1. Use Maple to compute the derivative of the following functions:
(i) $f 1:=x^{3} \ln (x)$
(ii) $f 2:=\frac{\arctan (x)}{\sqrt{x^{2}+1}}$
(iii) $f 3:=\frac{1-\ln (t)}{1+\ln (t)}$
2. Use Maple to compute the first and 100th derivatives of $x \sin (2 x)$.
3. Use Maple to evaluate the following indefinite and definite integrals:
(i) $\int \frac{x+1}{(x-2)^{2}} d x$
(ii) $\int_{-1}^{3} x e^{-x^{2}} d x$
(iii) $\int_{0}^{\pi / 2}\left|\frac{1}{2}-\cos x\right| d x$
4. Use Maple to evaluate the following limits:
(i) $\lim _{x \rightarrow 0} \frac{x^{2} \arccos (x)}{(\sin (2 x))^{2}}$
(ii) $\lim _{n \rightarrow \infty}(1+3 / n)^{2 n}$
(iii) $\lim _{t \rightarrow 1^{+}} \tan \left(\frac{\pi}{2} t\right)$
5. Let

$$
f(x)=\ln \left(\frac{\left(x^{2}+2\right)^{2}}{\sqrt{4 x^{2}+1}\left(x^{2}+1\right)}\right)
$$

In a Maple worksheet:
(a) enter the function and assign it to a name of your choice

Hint: Use a short, but meaningful, name, say f.
(b) find and name the first and second derivatives of $f(x)$

Hint: Reasonable names for these quantities would be df and d2f or ddf.
(c) plot the graph of $y=f^{\prime \prime}(x)$ on the interval $-5<x<5$ and estimate the intervals on which $y=f(x)$ is concave up.
(d) create a single plot containing the graphs of $y=f(x)$ and $y=f^{\prime}(x)$ for $-5<x<5$ and verify that $f^{\prime}(x)=0$ at each critical number of $y=f(x)$. Did you estimate correctly in (c)?
(e) Right-click on your graph to see the context menu. Under the option Legend, click Show Legend. Now, from the same context menu, click Edit Legend. Enter an appropriate label for the first curve. Repeat this step for the other curve in the plot.

Assignment

Use Maple to do the following exercises from the textbook: 55 on page 266; 17 and 19 on page 437; 97 and 99 on page 441.

