Power Series

Douglas Meade and Ronda Sanders
Department of Mathematics

Overview

There are two fundamental questions to ask about a power series $\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}$:

1. For what values of x does the infinite sum converge?
2. When the series converges, to what does it converge?

The first question is answered with the convergence tests (most often the ratio test for absolute convergence) and special consideration of any endpoints. This convergence can be seen graphically by animating plots of selected partial sums of the series.
The second question is, in general, much more difficult to answer. One of the more useful techniques is to apply common operations (multiplication, division, differentiation, integration, substitution, ...) to a known power series. Maple is much better at this than most of us, but a little practice can quickly improve this skill.

Preparation

Review the definition of interval (and radius) of convergence for a power series and how the ratio test is used to find the this interval. (Chapter 10, Anton)

Maple Essentials

- New Maple commands introduced in this lab include:

Command	Description
display (..., insequence=true $)$	displays a collection of plots as the frames of an animation; the individual frames can be 2D or 3D plots plot - the dithout insequence=true all frames are displayed in one

- This lab utilizes the commands introduced in Lab I: the arrow operator ($->$) to create a function, the sum and Sum commands for defining power series, and the seq command for creating a sequence of partial sums and frames in an animation.
- Also, the solve command will be used to solve an inequality.

Assignment

- Mastery Quiz 10 will be distributed at the end of today's lab.
- Hour Quiz 3 will be given during next week's lab meeting. This quiz will focus on the material covered since Hour Quiz 2, i.e., Labs I, J, K and L.

Activities

1. Consider the power series $\sum_{k=0}^{\infty} x^{k}$.
(i) Animate the first 10 partial sums of this series.
(ii) What is the interval of convergence (and radius of convergence) of this series?
(iii) To what function does this series converge?
2. Repeat Activity 1 for each of the following power series:
(a) $\sum_{k=1}^{\infty} k x^{k-1}$
(b) $\sum_{k=2}^{\infty} k(k-1) x^{k-2}$
(c) $\sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1}$
(d) $\sum_{k=0}^{\infty}(-x)^{k}$
(e) $\sum_{k=0}^{\infty} \frac{(-x)^{k}}{k!}$
(f) $\sum_{k=0}^{\infty} \frac{-(-x)^{k+1}}{k+1}$
(g) $\sum_{k=0}^{\infty} \frac{-(-2 x)^{k+1}}{k+1}$
(h) $\sum_{k=0}^{\infty}\left(x-x^{2}\right)^{k}$
(i) $\sum_{k=0}^{\infty} \frac{\left(x-x^{2}\right)^{k}}{k!}$

Note: Pay special attention to the power in the first term of each series.

Example: Activity $2 h$.

$>$ with(plots):
Note: We begin be defining the sum and first 10 partial sums.
$>\mathrm{a}:=\mathrm{k}->\left(\mathrm{x}-\mathrm{x}^{\wedge} 2\right)^{\wedge} \mathrm{k}$;
$>\mathrm{S}:=\operatorname{Sum}(\mathrm{a}(\mathrm{k}), \mathrm{k}=0$..infinity $)$;
$>\operatorname{PS}:=\operatorname{Sum}(\mathrm{a}(\mathrm{k}), \mathrm{k}=0 . . \mathrm{n})$;
Note: The following commands animate the partial sums.
$>\mathrm{q1}:=[\operatorname{seq}(\mathrm{PS}, \mathrm{n}=0 . .9)]$;
$>$ value(q1);
$>\mathrm{q} 2:=[\operatorname{seq}(\operatorname{plot}(\mathrm{p}, \mathrm{x}=-2 . .2, \mathrm{y}=-2 . .10), \mathrm{p}=\mathrm{q} 1 \mathrm{)})]:$
$>$ display ($q 2$, insequence=true);
Note: Next, we apply the ratio test for absolute convergence.
$>\mathrm{q} 3:=\operatorname{abs}(\mathrm{a}(\mathrm{k}+1) / \mathrm{a}(\mathrm{k}))$;
$>\mathrm{q} 4:=$ simplify (q3);
$>$ rho $:=\operatorname{limit}(q 4, \mathrm{k}=$ infinity $)$;
$>$ solve (rho<1, x);
Note: The next commands check the endpoints of the interval.
$>\mathrm{q} 5:=\operatorname{simplify}(\operatorname{eval}(\mathrm{S}, \mathrm{x}=(1+\operatorname{sqrt}(5)) / 2))$;
$>$ value(q5);
$>\mathrm{q} 6:=\operatorname{simplify}($ eval $(\mathrm{S}, \mathrm{x}=(1-\mathrm{sqrt}(5)) / 2))$;
$>$ value(q6);
Note: Both endpoints give divergent series, so the interval of convergence is open.
Interval of Convergence: $\left(\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$
Radius of Convergence: $\frac{\sqrt{5}}{2}$
> f:= value(S);

