Piecewise-Defined Functions

Douglas Meade and Ronda Sanders

Department of Mathematics

Overview

A skydiver's height above ground is given by different formulae during the free-fall, the opening of the parachute, and the final descent. Mathematically, the height could be written as a single piecewisedefined function. The piecewise command for working with piecewise-defined functions is introduced in this lab. This will be helpful as you design a goblet.

Maple Essentials

- New Maple commands introduced in this lab include:

Command	Description
convert	converts an expression from one form to another form To convert an expression into a piecewise-defined form use: convert (f, piecewise, x);
piecewise	define a piecewise-defined function The general syntax to represent $\left\{\begin{array}{ll}f_{1}, & \text { cond }_{1} \\ f_{2}, & \text { cond }_{2} \\ \vdots & \vdots \\ f_{n}, & \text { cond }_{n}\end{array}\right.$ is: piecewise ($\left.\operatorname{cond}_{1}, f_{1}, \operatorname{cond}_{2}, f_{2}, \ldots, \operatorname{cond}_{n}, f_{n}\right)$; where each cond_{i} is an inequality and each f_{i} is an expression. It is important to realize that Maple evaluates each cond_{i} in order. If cond $_{j}$ is the first condition found to be true, the corresponding expression, f_{j}, is returned. We do not need to write double inequalities as such, only write the $<$ (or $\leq)$ part of the double inequality.

Preparation

Recall how to use the VolumeOfRevolution command to produce 3-D pictures of solids of revolution and definite integrals for their volume. Recall, from Calculus I, that a function, f, is continuous at $x=c$ exactly when $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=f(c)$.

Assignment

1. Project 1 is due at the beginning of next week's lab. Remember to follow the Project Report Guidelines that are handed out today (and available on the lab homepage). Also, e-mail the Maple worksheet that creates your goblet to your lab TA.
2. For Mastery Quiz 5 you will be asked to write some expressions in the form of piecewise-defined functions.

Activities

1. Consider the function $G(x)=\left|x^{2}-4 x\right|$. Use diff and convert to express the derivative of this function as a piecewise-defined function. Graph $y=G(x)$ and $y=G^{\prime}(x)$ on the same set of axes. Are there any points where this function is not differentiable?
2. Plot the solid of revolution formed when the region bounded by the graph of $y=G(x)$, from Activity 1, the x-axis, $x=-1 / 2$, and $x=3$ is rotated around the x-axis. Notice that this solid, is the shell of a (sideways) goblet.
3. A martini glass is produced when the region bounded by the graphs of $y=F(x)=\left\{\begin{array}{ll}0.1-6 x, & x<0 \\ 0.1, & 0 \leq x<7 \\ 2 x-13.9, & x \geq 7\end{array}\right.$, $y=G(x)=\left\{\begin{array}{ll}0, & x<7 \\ 2 x-14, & x \geq 7\end{array}, x=-1 / 3\right.$ and $x=9$ is revolved around the x-axis.
(a) Plot the region and the solid.
$>$ with(Student[Calculus1]);
$>\mathrm{F}:=$ piecewise $\left(\mathrm{x}<0,0.1-6^{*} \mathrm{x}, \mathrm{x}<7,0.1, \mathrm{x}>=7,2^{*} \mathrm{x}-13.9\right)$;
$>\mathrm{G}:=$ piecewise $\left(\mathrm{x}<7,0, \mathrm{x}>=7,2^{*} \mathrm{x}-14\right)$;
$>\operatorname{plot}([\mathrm{F}, \mathrm{G}], \mathrm{x}=-1 / 3 . .9)$;
$>$ VolumeOfRevolution(F, G, x=-1/3..9, output=plot);
(b) How much liquid will this goblet hold?
$>q 1:=$ VolumeOfRevolution(G, $0, x=-1 / 3 . .9$, output=integral);
$>q 1:=$ value(q1);
$>\operatorname{evalf}(q 1)$;
(c) How much glass is required to make this goblet?
$>q 2:=\operatorname{VolumeOfRevolution}(\mathrm{F}, \mathrm{G}, \mathrm{x}=-1 / 3 . .9$, output=integral);
$>q 2:=$ value $(q 2)$;
(d) What is the minimum thickness of glass in this goblet?
$>$ convert(F-G, piecewise, x);
The minimum of this function is the minimum thickness of the glass.
(e) Let R denote the radius of the base of the goblet. The height of the center of mass is located on the x-axis at $x=H$ where $H=\frac{\int_{a}^{b}(x-a)\left(f(x)^{2}-g(x)^{2}\right) d x}{\int_{a}^{b}\left(f(x)^{2}-g(x)^{2}\right) d x}$. Compute R, H, and $\frac{H}{R}$. $>\mathrm{R}:=\operatorname{eval}(\mathrm{F}, \mathrm{x}=-1 / 3)$;
$>\mathrm{H}:=\operatorname{int}\left((\mathrm{x}+1 / 3)^{*}\left(\mathrm{~F}^{\wedge} 2-\mathrm{G}^{\wedge} 2\right), \mathrm{x}=-1 / 3 . .9\right) / \operatorname{int}\left(\mathrm{F}^{\wedge} 2-\mathrm{G}^{\wedge} 2, \mathrm{x}=-1 / 3 . .9\right)$; $>\mathrm{H} / \mathrm{R}$;
According to the constraint in the project, this would be a very stable goblet. However, the goblet does not hold enough, the glass is too thin, and the region is composed only of linear functions.
