Piecewise-Defined Functions

Douglas Meade and Ronda Sanders Department of Mathematics

Overview

A skydiver's height above ground is given by different formulae during the free-fall, the opening of the parachute, and the final descent. Mathematically, the height could be written as a single *piecewise-defined function*. The **piecewise** command for working with piecewise-defined functions is introduced in this lab. This will be helpful as you design a goblet.

Maple Essentials

• New Maple commands introduced in this lab include:

Command	Description
convert	converts an expression from one form to another form
	To convert an expression into a piecewise-defined form use: convert(f , piecewise, x);
piecewise	define a piecewise-defined function
	The general syntax to represent $\begin{cases} f_1, \ cond_1 \\ f_2, \ cond_2 \\ \vdots \ \vdots \\ f_n, \ cond_n \end{cases}$ piecewise($cond_1$, f_1 , $cond_2$, f_2 , \ldots , $cond_n$, f_n); where each $cond_i$ is an inequality and each f_i is an expression. It is important to realize that Maple evaluates each $cond_i$ in order. If $cond_j$ is the first condition found to be true , the corresponding expression, f_j , is returned. We do not need to write double inequalities as such, only write the < (or \leq) part of the double inequality.

Preparation

Recall how to use the VolumeOfRevolution command to produce 3-D pictures of solids of revolution and definite integrals for their volume. Recall, from Calculus I, that a function, f, is continuous at x = c exactly when $\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = f(c)$.

Assignment

- 1. Project 1 is due at the beginning of next week's lab. Remember to follow the Project Report Guidelines that are handed out today (and available on the lab homepage). Also, e-mail the Maple worksheet that creates your goblet to your lab TA.
- 2. For Mastery Quiz 5 you will be asked to write some expressions in the form of piecewise-defined functions.

Activities

- 1. Consider the function $G(x) = |x^2 4x|$. Use diff and convert to express the derivative of this function as a piecewise-defined function. Graph y = G(x) and y = G'(x) on the same set of axes. Are there any points where this function is not differentiable?
- 2. Plot the solid of revolution formed when the region bounded by the graph of y = G(x), from Activity 1, the x-axis, x = -1/2, and x = 3 is rotated around the x-axis. Notice that this solid, is the shell of a (sideways) goblet.
- 3. A martini glass is produced when the region bounded by the graphs of $y = F(x) = \begin{cases} 0.1 6x, & x < 0\\ 0.1, & 0 \le x < 7\\ 2x 13.9, & x \ge 7 \end{cases}$

$$y = G(x) = \begin{cases} 0, & x < 7\\ 2x - 14, & x \ge 7 \end{cases}, x = -1/3 \text{ and } x = 9 \text{ is revolved around the x-axis.}$$

- (a) Plot the region and the solid. >with(Student[Calculus1]); >F:=piecewise(x<0, 0.1-6*x, x<7, 0.1, x>=7, 2*x-13.9); >G:=piecewise(x<7, 0, x>=7, 2*x-14); >plot([F,G],x=-1/3..9); >VolumeOfRevolution(F, G, x=-1/3..9, output=plot);
- (b) How much liquid will this goblet hold?
 >q1:= VolumeOfRevolution(G, 0, x=-1/3..9, output=integral);
 >q1:=value(q1);
 >evalf(q1);
- (c) How much glass is required to make this goblet?
 >q2:=VolumeOfRevolution(F, G, x=-1/3..9, output=integral);
 >q2:=value(q2);
- (d) What is the minimum thickness of glass in this goblet?
 >convert(F-G, piecewise, x);
 The minimum of this function is the minimum thickness of the glass.
- (e) Let *R* denote the radius of the base of the goblet. The height of the center of mass is located on the *x*-axis at x = H where $H = \frac{\int_a^b (x-a)(f(x)^2 - g(x)^2) dx}{\int_a^b (f(x)^2 - g(x)^2) dx}$. Compute *R*, *H*, and $\frac{H}{R}$. > R := eval(F, x=-1/3); > H := int((x+1/3)*(F^2-G^2), x=-1/3..9) / int(F^2-G^2, x=-1/3..9); > H/R; According to the constraint in the project, this would be a very stable goblet. However, the

According to the constraint in the project, this would be a very stable goblet. However, the goblet does not hold enough, the glass is too thin, and the region is composed only of linear functions.