Implicit Differentiation

Douglas Meade, Ronda Sanders, and Xian Wu
Department of Mathematics

Overview

This lab provides experience working with functions defined implicitly.

Maple Essentials

- Important Maple commands introduced in this lab are:

Command	Description	Example
display	display plots in a single plot (need plots package)	display([F,G],title=''Fig1'');
implicitplot	create graph of function defined implicitly (need plots package)	implicitplot($\mathrm{x} * \mathrm{y}=1, \mathrm{x}=0 . .1, \mathrm{y}=0 . .1$)
pointplot	plot points (need plots package)	pointplot([1,2], color=red, symbolsize=18):
implicitdiff	compute derivatives of functions defined implicitly	implicitdiff(f,y,x); implicitdiff(f,y,x\$2);
fsolve	compute a solution of equations numerically	$\begin{aligned} & \text { fsolve }\left(\left\{\mathrm{f}=1, \mathrm{~g}=\mathrm{x}^{\wedge} 2\right\},\{\mathrm{x}, \mathrm{y}\}\right) ; \\ & \text { fsolve(\{f,g\},\{x,y\},\{x=0.1,y=0..2\});} \end{aligned}$
with	load a Maple package	with(plots) : with(plots)

- The ImplicitDifferentiation maplet is available from the course website:
http://people.math.sc.edu/calclab/141L-S17/labs \rightarrow ImplicitDifferentiation

Related course material/Preparation

§3.7

Assignment

Complete lab activities and your lab instructor will give other assignment for each section.
Hint for using implicitplot: Start with a big range for both x and y in implicitplot to see the size of the view window the graph will display and then re-plot the graph with that view window for a better plot.

Activities

Problem 1: Find the equation of the tangent line to the curve $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ at the point $(3,1)$. Then graph the curve, the point, and the tangent line with a viewing window of $(-5,5) x(-2,4)$.
Problem 2: Find all points where the tangent line to the graph of $x^{2} y-x y^{2}=2$ is horizontal or vertical. (Hint: The tangent line is vertical where $d x / d y=0$.)
Problem 3: Find $d^{2} y / d^{2} x$ and $d^{3} y / d^{3} x$ if y is defined implicitly by $y+\sin y=x$.

Example Problem

- a) Use implicit differentiation to find $d y / d x$ for the Folium of Descartes $x^{3}+y^{3}=3 x y$.
- b) Find the equation of the tangent line to the Folium of Descartes at the point (3/2,3/2).
- c) Graph the curve, the point, and the tangent with a viewing window of $(-3,3) x(-4,3)$.
- d) At what point(s) in the first quadrant is the tangent line to the Folium of Descartes horizontal?

Steps:

1. Start a Maple session with restart; and load the Maple plots package. This package allows us to plot points, use the display command, use the commands for implicitlydefined functions, and more. Notice that we used ':' instead of ';'. The difference is that the maple does not display the output with ' $:$ '.
$>$ restart;
$>$ with(plots):
2. For part a), simply assign the Folium of Descartes to, say, FD, then use command implicitdiff to find $d y / d x$.
$>$ FD: $=x^{\wedge} 3+y^{\wedge} 3=3 * x * y$;
> dydx:=implicitdiff(FD,y,x);
(Notice that implicitdiff(f,x,y); computes $d x / d y$ and implicitdiff(f,y,x\$n); computes $d^{n} y / d^{n} x$. You will need them to do problem 2 and problem 3, respectively.)
3. Next, to find the tangent line, we need a point and a slope. The point $(3 / 2,3 / 2)$ is given and we find the slope m by evaluating $d y / d x$ at this point.
$>m:=\operatorname{eval}(d y d x,\{x=3 / 2, y=3 / 2\}$);
4. Find the equation of the tangent line by the point-slope formula $y=m\left(x-x_{1}\right)+y_{1}$. $>\mathrm{L}:=\mathrm{x}->\mathrm{m} *(\mathrm{x}-3 / 2)+3 / 2$;
5. Next, write (and assign) commands to plot the curve, the point, and the tangent line. Write the commands separately using ' $:$ ' so Maple does not display the output yet. (In the first plot command, the option numpoints $=10000$ will insure a smooth curve.)
>P1:= implicitplot(FD, $x=-3.3$, $y=-4.3$, numpoints=10000):
>P2:= pointplot([3/2,3/2], color=green, symbolsize=15):
$>P 3:=p l o t(L(x), x=-3.3, y=-4.3$, color=blue, linestyle=DOT):
6. These plots can then be displayed on a single plot using the display command.
> display([P1, P2, P3], title='(Figure 1'');
7. From the graph, we can see that the answer to part d) is a point located approximately at $(1.2,1.5)$. Since this point is on the curve and the $d y / d x=0$ at this point, we can find it's location by solving those two equations.
$>$ fsolve(\{FD, dydx=0\},\{x,y\},\{x=1..2,y=1..2\});
(For a numerical solution in a specified region, fsolve in general does a better job than solve.)

Additional Notes

The ImplicitDifferentiation maplet provides additional practice finding the slope of a curve at a point.

