Project 1: Designing a Roller Coaster

Douglas Meade, Ronda Sanders, and Xian Wu
Department of Mathematics

Preparation

Be sure to read the Project Report Guidelines before beginning your project. Remember, you are to turn in a neat and complete project report. Any figures should have a title and a legend and be properly referenced in the report. Do not turn in a Maple worksheet. A complete project report should include all necessary equations and information.

The Problem

Suppose you are asked to build a larger roller coaster with an overall horizontal displacement of 500 feet. The coaster should ascend along a straight line $y=f 1(x)$ of slope 3 for the first 50 ft horizontally. We continue along three cubics, $f 2(x)=a x^{3}+b x^{2}+c x+d$, $f 3(x)=e x^{3}+f x^{2}+g x+h$, and $f 4(x)=i x^{3}+j x^{2}+k x+l$ for $125 f t$ each. In addition, the coaster should be 220 ft above the ground at the 125 ft mark, reach a bottom (local minimum) of 65 ft above the ground at 225 ft horizontally, and reach a peak (local maximum) of 150 ft above the ground at 345 ft horizontally. Finally, the coaster should start a soft landing 60 ft above the ground along a cubic $f 5(x)=m x^{3}+n x^{2}+o x+p$ for the last 75 ft .

Your Tasks

1. Write a system of 16 equations in 16 unknowns such that your track is both continuous and smooth throughout.
Note: You must explain the reasoning for your equations within your report. Be sure to include your equations in your report.
2. Solve the equations in (1) with Maple to find values for $a-p$.
3. Define and plot a piecewise-defined function, $F(x)$, for your roller coaster.

Note: Include the equation for your completed piecewise-defined function (with all values $a-p$ plugged in) as well as the graph of your roller coaster. Be sure to use the same scale for both x and y.
4. Find the maximum height of your roller coaster.

