A More Rigorous Approach to Limits

Douglas Meade, Ronda Sanders, and Xian Wu
Department of Mathematics

Overview

The rigorous ϵ – δ definition of limits can be difficult for students to grasp. This lab is designed to provide visual and interactive tools for working with these concepts.

Maple Essentials

• The *EpsilonDelta* maplet is available from the course website:

 $\texttt{http://www.math.sc.edu/calclab/141L-S09/labs/} \rightarrow EpsilonDelta$

Preparation

Review the precise definition of the limit (pages 138–142 in Anton).

DEFINITION: Let f(x) be defined for all x in some interval containing the number a, with the possible exception that f(x) need not be defined at a. We will write

$$\lim_{x \to a} f(x) = L$$

if given any number $\epsilon > 0$ we can find a number $\delta > 0$ such that

$$|f(x) - L| < \epsilon \text{ if } 0 < |x - a| < \delta.$$

In general, ϵ and δ are meant to be very small numbers. Therefore, intuitively, the definition states that f(x) will be very close to L when x is very close to a. The task is to show that, for any given ϵ (no matter how close f(x) is to L), you can always find a δ so that x is close enough to a to make the definition work.

Maple Syntax

For precise solutions to our inequalities, we will be using Maple's solve command. The general syntax is

> solve(eqn, var);

where eqn is the equation (or inequality) and var is the variable for which we want to solve. We will input most of our inequalities as follows

> solve(abs(f(x)-L) < epsilon, $\{x\}$);

For example, if we want to know where $|\sqrt{x}-2|<0.05$ we would use the following command

 $> solve(abs(sqrt(x)-2) < 0.05, {x});$

and Maple would return the interval (3.8025, 4.2025).

Activities

When using the $\epsilon - \delta$ definition of the limit, we want to find the largest δ that satisfies the definition. For each of the limits below, your task is to identify the δ for each ϵ given. (Follow the General Directions below.)

1.
$$\lim_{x\to 0} \sqrt{x} = 3$$
, $\epsilon = 0.15$, $\epsilon = 0.05$

2.
$$\lim_{x\to 3} \frac{x^2-9}{x-3} = 6$$
, $\epsilon = 0.2$, $\epsilon = 0.05$ (Page 141, Exercise 11)

3.
$$\lim_{x\to 3} (5x-2) = 13$$
, $\epsilon = 0.10$, $\epsilon = 0.05$ (Page 141, Exercise 10)

4.
$$\lim_{x \to 2} (x^2 + 3x - 1) = 9$$
, $\epsilon = 0.8$, $\epsilon = 0.6$

HINT: For this one, you should use the interval that contains a.

General Directions

- 1. Look at the limit and identify f(x), a, L, and ϵ .
- 2. Launch the *EpsilonDelta* maplet and click **Modify or Make Your Own Problem.** Enter the function f(x), a, and L. Enter ϵ .
- 3. Click Save Problem and Close. You should see the graph of f(x) in blue with blue shading that goes from $a \delta$ to $a + \delta$ along the x-axis. You will notice two red horizontal lines, one at $L \epsilon$ and the other at $L + \epsilon$. You should also see a brown rectangle that extends vertically from $f(a \delta)$ to $f(a + \delta)$. You may change the size of this rectangle by changing the value of δ , which can be done using the slider or by typing in the desired value.
- 4. Your task is to determine the largest value of δ that keeps the brown rectangle completely inside the red lines. You should zoom several times to insure that you have not crossed either horizontal line.
- 5. When you think you are done, write down your last value of δ that did not cross the line.
- 6. Now we will find the value of δ more precisely.
- 7. Use the arrow notation (:= $x \rightarrow$) to assign the function f(x). Use := to assign a, L, and epsilon to their respective values.
- Use the solve command as follows
 solve(abs(f(x) L) < epsilon, {x});
 Maple will return an interval (or intervals).
- 9. Find the distances from a to the left bound and from a to the right bound of the interval. (Remember you should use absolute value so both distances are positive.) The *smallest* of these two values is the *largest* δ that works for this ϵ .
- 10. Your values from the *EpsilonDelta* maplet and from using the **solve** command should be very close.

Remark

Ideally, we would like to find a formula for δ in terms of ϵ (see examples 1, 2, and 3 of §2.4) that will work for any given ϵ . However, such formulas in general are very hard to find. For some simple functions (like linear functions), the solve command can be used to find general formulas for δ in terms of ϵ . Try the following and compare the answer with problem 3 above.

- > restart;
- > solve(abs((5*x-2)-13) < epsilon, {x}) assuming epsilon > 0;

Assignment

Exercises 9, 12, and 14 in §2.4 on page 141.

Review Labs A-E for next week's Hour Quiz 1.