Project 1: Designing a Roller Coaster

Douglas Meade, Ronda Sanders and Xian Wu
Department of Mathematics

Preparation

Be sure to read What is a Project Report? before beginning your project. Remember, you are to turn in a neat and complete project report. Any figures should have a title and a legend and be properly referenced in the report. Do not turn in a Maple worksheet! All projects should be written using Microsoft Word.

The Problem

Suppose you are asked to build a larger roller coaster with an overall horizontal displacement of 400 feet. The coaster should ascend along a straight line $y=f 1(x)$ of slope 2 for the first 20ft horizontally. We continue along three cubics, $f 2(x)=a x^{3}+b x^{2}+c x+d$, $f 3(x)=e x^{3}+f x^{2}+g x+h$, and $f 4(x)=i x^{3}+j x^{2}+k x+l$ for 100 ft each. In addition, the coaster should be 100 ft above the ground at the 80 ft mark, reach a bottom of 10 ft above the ground at 180 ft horizontally, and reach a peak 65 ft above the ground at 260 ft horizontally. Finally, the coaster should start a soft landing 20 ft above the ground along a cubic $f 5(x)=m x^{3}+n x^{2}+o x+p$ for the last 80 ft .

Your Tasks

1. Write a system of 16 equations in 16 unknowns such that your track is both continuous and smooth throughout.
Note: You must explain the reasoning for your equations within your report.
2. Solve the equations in (1) with Maple to find formulas for $f 1, f 2, f 3, f 4$, and $f 5$. Note: You must include the complete equations for every function in your report.
3. Define and plot a piecewise-defined function, $F(x)$, for your roller coaster.

Note: Also include your completed piecewise-defined function in your report.
4. Find the maximum height of your roller coaster.

