Lines and Plots

Douglas Meade and Ronda Sanders
Department of Mathematics

Overview

There are two objectives in this lab:

- Review our ability the work with the equations of lines.
- Use Maple 9.5 to produce report-quality figures.

Maple Essentials

- The Lines tutor is started from the Maple 9.5 user interface under the Tools menu:

$$
\text { Tools } \rightarrow \text { Tutors } \rightarrow \text { Precalculus } \rightarrow \text { Lines } \ldots
$$

- New Maple commands introduced in this lab include:

Command	Description
plot	plot one or more functions on a specified window plot ($f, x=a . . b$) ; plots the graph of $y=f(x)$ for $a<x<b$; plot ($[f, g], x=a . . b$) ; graphs two functions in a single plot
:=	assign a name to a quantity

Preparation

- Review parallel and perpendicular lines.
- Read Section 1.2: Graphing Functions Using Calculators and Computer Algebra Systems in Anton. Specifically, review choosing a viewing window and compression.

Assignment

This week's Mastery Quiz asks you to use Maple to generate a report-quality figure. The Activities in this lab will help prepare you to answer the Mastery Quiz questions. The deadline for turning in Mastery Quiz 2 will be announced in lab.

Activities

1. Launch the Lines tutor. Notice the four options for inputting data about your line. Use the appropriate line definitions to quickly solve the following problems.
Note: You may want to use the tutor more than once.
(a) Find the slope-intercept form of the equation of the line passing through the points $(2,4)$ and $(1,-7)$.
(b) Find the slope-intercept form of the equation of the line that is parallel to $y=4 x-2$ and passes through the point $(2,5)$.
(c) Find the slope-intercept form of the equation of the line that is perpendicular to $x-4 y=7$ and passes through the point $(3,-4)$.
2. Create one plot that displays the graph of all of the following equations:

- $f(x)=\sqrt{x}$
- $g(x)=|x|$
- $h(x)=2 x$

Use the viewing window $[-3,3] \times[-3,3]$ for your plot. Display $f(x)$ in blue, $g(x)$ in red, and $h(x)$ in green. Give your plot a title and legend. Finally, transfer your beautiful plot to a Microsoft Word document.
3. Repeat Activity 2 using $f(x)=2 \sin (4 x), g(x)=\sin (x)$, and $h(x)=2+\cos \left(\frac{x}{2}\right)$ on the viewing window $[-\pi, \pi] \times[-5,5]$.

Example: Activity 2

- First, assign the functions to the letters f, g, and h , respectively. This will make the functions easier to call and change in the future.
$>\mathrm{f}:=\operatorname{sqrt}(\mathrm{x})$;
$>\mathrm{g}:=\operatorname{abs}(\mathrm{x})$;
$>\mathrm{h}:=2^{*} \mathrm{x}$;
- Next, create a basic plot of the functions on the appropriate window.
$>\operatorname{plot}([f, g, h], x=-3 . .3, y=-3 . .3)$;
- Now adjust the plot command to color the functions as instructed. By choosing our own colors for the functions, we can more easily and accurately create the legend later. $>\operatorname{plot}([f, g, h], x=-3 . .3, y=-3 . .3$, color=[blue, red, green $])$;
- Again adjust the plot command to add a title. Every good figure has a title so it can easily be referenced within a report.
$>\operatorname{plot}([f, g, h], x=-3 . .3, y=-3 . .3$, color=[blue, red, green], title="My Graph");
- To create the Legend, follow these steps:

1. Position the cursor over the plot and press the right mouse button to see the context menu.
2. Under the option Legend, select Edit Legend.
3. Enter an appropriate label for each of the three functions.

- Finally, transfer your figure to a Word document as follows:

1. Position the cursor over the plot and press the right mouse button to see the context menu. Select Copy.
2. Open Microsoft Word from the Start menu at the bottom left of the screen. On the blank document, press the right mouse button to see the context menu. Select Paste.

Additional Notes

- The Expression palette can be used instead of typing the full Maple commands for many functions and operations. The Symbol palette contains other symbols, including π (Pi) and ∞ (infinity). To view both palettes simultaneously, drag one of the palettes to another edge of the Maple window.

