Lab H: More Mathematical Models
 Douglas Meade and Ronda Sanders
 Department of Mathematics

Overview

There are three objectives in this lab

- understand the mathematical reasoning associated with a real-world example,
- use Maple to solve a system of equations, and
- use Maple to graph a piecewise-defined function.

Preparation

Review properties of the first derivative. Review higher order derivatives.

The Problem

Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying photographs of your favorite coasters, you decide to make the slope of ascent 0.8 and the slope of the drop -1.6. You decide to connect these two straight stretches $y=L_{1}(x)$ and $y=L_{2}(x)$ with part of a parabola $y=f(x)=a x^{2}+b x+c$, where x and $f(x)$ are measured in feet. For the track to be smooth there can't be abrupt changes in direction, so you want the linear segments L_{1} and L_{2} to be tangent to the parabola at the transition points P and Q. (See the figure.) To simplify the equations, you decide to place the origin at P.

Answer the following questions.
(1) Suppose that the horizontal distance between P and Q is 100 ft . Write equations in a, b, and c that will ensure the track is smooth at transition points.
(2) Solve the linear equations in part (1) for a, b and c to find a formula for $f(x)$.
(3) Plot L_{1}, f, and L_{2} to verify graphically that the transitions are smooth.
(4) Find the difference in elevation between P and Q.

Source: Stewart, James. Calculus: Early Transcendentals Single Variable. Thomson Brooks/Cole. 2003.

Solving the Problem

(1) Log in and start a Maple session.
(2) Type with(plots): and press enter. This will let us use the display command later.
(3) Define f as $a x^{2}+b x+c$.
(4) Define Df as the derivative of $f(x)$.
(5) Question (1).
(a) If the point P is at the origin, we know that $f(0)=0$. This will be our first equation.
(b) If the line L_{1} with slope 0.8 is tangent to $f(x)$ at $x=0$, we know that $f^{\prime}(0)=0.8$. This will be our second equation.
(c) If the line L_{2} with slope -1.6 is tangent to $f(x)$ at $x=100$, we know that $f^{\prime}(100)=-1.6$. This will be our third equation.
(6) Question (2).
(a) We solve the equations from question (1) using the solve command. We assign the solutions to values.
(b) We then plug these values in to find $f(x)$. Remember to re-assign the equation to the variable f .
(7) Question (3).
(a) Before we can plot, we must find equations for L_{1} and L_{2}.
(b) L_{1} is a line through $(0,0)$ with a slope of 0.8 .
(c) L_{2} is a line through $(100, f(100))$ with a slope of -1.6 .
(d) We want to plot L_{1} from -20 to 0 . This will be our first plot command. Remember to use : not ;.
(e) We want to plot $f(x)$ from 0 to 100 . This will be our second plot command. We will use a different linestyle and color to make sure we can distinguish the sections of the graph.
(f) We want to plot L_{2} from 100 to 120 . This will be our third plot command.
(g) We use the display command to graph the piecewise-defined function.
(8) Question (4).
(a) We know that Q is the point $(100, f(100))$. So we find $f(100)$.
(b) Since P is the points $(0,0)$, we easily calculate the difference in elevation.
(9) Remember to log out.

Assignment
Your assignment for this week is to complete Project 2. You should prepare a neat and complete project report. All projects are due at the beginning of next week's lab.

