# Project 2: Building a Better Roller Coaster 

## Douglas Meade and Ronda Sanders <br> Department of Mathematics

## The Problem

Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying your favorite coasters, you decide to make the slope of ascent 0.8 and the slope of the drop -1.6. You decide that for your riders to have a smooth ride you must create the ride based on a piecewise-defined function whose first and second derivatives are both continuous. You decide to connect your straight stretchs $y=L_{1}(x)$ and $y=L_{2}(x)$ to part of a parabola $f(x)=a x^{2}+b x+c$ by means of two cubic functions. To simplify the equations, you again place the transition point $P$ at the origin. You develop the following piecewise-defined function for your coaster.

$$
\begin{array}{ll}
L_{1}(x) & -20 \leq x<0 \\
g(x)=k x^{3}+l x^{2}+m x+n & 0 \leq x<20 \\
f(x)=a x^{2}+b x+c & 20 \leq x \leq 100 \\
h(x)=p x^{3}+q x^{2}+r x+s & 100<x \leq 120 \\
L_{2}(x) & 120<x \leq 140
\end{array}
$$

(1) Write a system of 11 equations in 11 unkowns that ensure that the functions and their first two derivatives agree at the transition points.
Note: You must explain the reasoning for your equations and include the equations within your report.
(2) Solve the equations in (1) with Maple to find formulas for $f(x), g(x)$ and $h(x)$.
(3) Find equations for $L_{1}(x)$ and $L_{2}(x)$.

Note: You must include equations for $L_{1}(x), g(x), f(x), h(x)$, and $L_{2}(x)$ within your report.
(4) Plot the peicewise-defined function.

Note: Make sure that the individual portions of the graph are distinguishable and labelled.
(5) What is the difference in elevation between $P$ (transition point between $L_{1}(x)$ and $g(x))$ and $Q$ (transition point between $h(x)$ and $\left.L_{2}(x)\right)$ ?

