Lab L: Critical Points, Inflection Points, and FSOLVE

Douglas Meade and Ronda Sanders
Department of Mathematics

Overview

The analysis of a function via calculus involves solving a variety of equations: $f^{\prime}(x)=0$ for critical points, $f^{\prime \prime}(x)=0$ for possible inflection points. In many cases it is impossible to find exact solutions to these equations. Maple's fsolve command will be used to find approximate solutions to equations.

Maple Essentials

Command	Description
fsolve	Similar to solve. Returns a floating-point approximation. (Returns a decimal instead of an exact value.)

Preparation

Review the First and Second Derivative Tests.

Activities

- Log in and start a Maple session.
- Type with(plots): at the top of your worksheet. This will allow us to plot points and use the display command.
- Example 1: Find approximations to all solutions to $x^{3}-5 x=-1$.
(1) The first step is to rewrite the problem as a root-finding problem. That is, $x^{3}-5 x+1=0$.
(2) We then graph $F(x)=x^{3}-5 x+1$ to get an approximation of the solutions. $>\operatorname{plot}\left(\mathrm{x}^{\wedge} 3-5^{*} \mathrm{x}+1, \mathrm{x}=-5 . .5\right)$
(3) Using fsolve:
(a) For this particular graph, the first solution is between $x=-3$ and $x=-1$.
(b) Enter the following line of code: $>$ fsolve $\left(\mathrm{x}^{\wedge} 3-5^{*} \mathrm{x}+1=0, \mathrm{x}=-3 . .-1\right)$;
(c) You should get -2.330058740 .
(4) Get estimates for the other two solutions.
- Example 2: Find and plot the cubic polynomial that has a relative maximum at $(-1,2)$ and a relative minimum at $(3,-2)$.
(1) We begin with a generic cubic polynomial and its derivative.
$>\mathrm{f}:=\mathrm{a}^{*} \mathrm{x}^{\wedge} 3+\mathrm{b}^{*} \mathrm{x}^{\wedge} 2+\mathrm{c}^{*} \mathrm{x}+\mathrm{d} ;$
$>$ DyDx:= diff(f, x);
(2) We get two equations from the points $(-1,2)$ and $(3,-2)$.
$>$ eq1: $=\operatorname{eval}(f, x=-1)=2$;
$>$ eq2: $=\operatorname{eval}(f, x=3)=-2$;
(3) We get two more equations from $f^{\prime}(x)=0$ at relative extrema.
$>$ eq3: $=\operatorname{eval}(\operatorname{DyDx}, x=-1)=0 ;$
$>$ eq4: $=\operatorname{eval}(\mathrm{DyDx}, x=3)=0 ;$
(4) We now solve the system of 4 equations and 4 unknowns. We will use the fsolve command to get numeric approximations instead of fractions. $>$ values $:=$ fsolve($\{$ eq1,eq2,eq3,eq4 $\},\{a, b, c, d\}) ;$
(5) We find the cubic by plugging in these values into f. $>\mathrm{F}:=\operatorname{eval}(\mathrm{f}$, values);
(6) We then plot the cubic and the points to verify that we have the correct cubic. $>\mathrm{P} 1:=\operatorname{plot}(\mathrm{F}, \mathrm{x}=-5 . .5, \mathrm{y}=-5.5)$:
$>$ P2: $=\operatorname{pointplot}([-1,2]$, symbolsize $=10)$:
$>$ P3: $=$ pointplot $([3,-2]$, symbolsize $=10)$:
$>$ display ([P1,P2,P3]);
(7) Notice that the graph has relative extrema at $(-1,2)$ and $(3,-2)$ as desired.
- Example 3: Find the intervals over which the function $f(x)=x^{\sin (x)}$ is increasing, decreasing, concave up, and concave down on $[0,6]$.
(1) We begin by identifying the critical points. Use Maple to find the derivative and assign it to df.
(2) Graph df and use the fsolve command to find the zeros.
(3) The function $f(x)$ is increasing where df is positive (above the x-axis) and decreasing where df is negative (below the x-axis).
(4) We then identify possible inflection points. Use Maple to find the second derivative and assign it to ddf.
(5) Graph ddf and use the fsolve command to find the zeros.
(6) The function $f(x)$ is concave up where ddf is positive (above the x-axis) and concave down where ddf is negative (below the x-axis).
(7) Finally, graph $f(x)$ over $[0,6]$ and make sure your answers make sense.

Assignment

- Your assignment for this week is to complete Project 3. You should prepare a neat and complete project report. All projects are due at the beginning of next week's lab.
- Next week's lab will be Hour Quiz 3. You should study all material since the last hour quiz.

