Project 1: Designing a Roller Coaster

Douglas Meade, Ronda Sanders and Xian Wu
Department of Mathematics

Preparation

Be sure to read What is a Project Report? before beginning your project. Remember, you are to turn in a neat and complete project report. Any figures should have a title and a legend and be properly referenced in the report. Do not turn in a Maple worksheet! All projects should be written using Microsoft Word.

The Problem

Suppose you are asked to build a larger roller coaster with an overall horizontal displacement of 400 feet. The coaster should ascend along a straight line $y=f 1(x)$ of slope 2.5 for the first 20ft horizontally. We continue along three cubics, $f 2(x)=a x^{3}+b x^{2}+c x+d$, $f 3(x)=e x^{3}+f x^{2}+g x+h$, and $f 4(x)=i x^{3}+j x^{2}+k x+l$ for 100 ft each. In addition, the coaster should be 120 ft above the ground at the 80 ft mark, reach a bottom of 30 ft above the ground at 180 ft horizontally, and reach a peak 55 ft above the ground at 260 ft horizontally. Finally, the coaster should start a soft landing 30 ft above the ground along a cubic $f 5(x)=m x^{3}+n x^{2}+o x+p$ for the last 80 ft .

Your Tasks

1. Write a system of 16 equations in 16 unknowns such that your track is both continuous and smooth throughout.
Note: You must explain the reasoning for your equations within your report. Be sure to include your equations in your report.
2. Solve the equations in (1) with Maple to find values for $a-p$.
3. Define and plot a piecewise-defined function, $F(x)$, for your roller coaster.

Note: Include the equation for your completed piecewise-defined function (with all values $a-p$ plugged in) as well as the graph of your roller coaster.
4. Find the maximum height of your roller coaster.

