1. THE HoMoTOPY CATEGORY

Corollary 1. Let € be a model category. Let v: 6.5 — Ho(6.f) and 6: €.y — 6.5/ ~ be the canonical

functors. Then there is a unique isomorphism of categories making the diagram

Coy 2 Ho (%.5)

21
.

Ge/ ~
commute. Furthermore, j is the identity on objects.

Proof. We show that €. s/ ~ satisfies the same universal property as Ho (4.s). We note that § takes homotopy
equivalences to isomorphisms and so by Proposition 1.2.8, § also takes weak equivalences to isomorphisms.
Let F: €.y — 2 be a functor that takes weak equivalences to isomorphisms. Given an object X, take the
functorial cylinder object X x I. This guarantees that X x I is cofibrant and fibrant, since X [] X is also

cofibrant and X is fibrant. Now note that we have a commutative diagram

idx

T

X#;X]_[X

Zo]_[ll\,A /

“u X x1I

X

0

Since s and idx are weak equivalences we have that 1y and 2; are both weak equivalences by 2-out-of-3.
Hence

F(s)o F (1) =F(sow) =idgx = F(son) =F(s)oF (1)
implies .# (19) = F (11).

Given a homotopy

we have

F(fo) = F(How) = F(H)o F(w)=F(H)oF(u)=F(Houn)=F(f)
so that .# identifies left homotopic maps. By duality, we see that .# also identifies right homotopic maps.
This allows us to define a unique functor ¢: 6.5/ ~— 2 by 96X = .FX and 96(f) = F(f). The result

now follows by unicity of universal objects. |

Theorem 1. Suppose € is a model category. Let v: € — Ho(¥€) denote the canonical functor, @ the

cofibrant replacement functor of €, and R the fibrant replacement functor.

(i) The inclusion 6.y — € induces an equivalence of categories

(laﬂcf/ N; Ho ((gcf) — Ho (((aﬂ)
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(i) There are natural isomorphisms
¢(QRX,QRY)/ ~— Ho(%) (vyX,7Y) — €(RQX, RQY)/ ~

In addition, there is a natural isomorphism Ho (€) (vX,~7Y) 2 €(QX, RY)/ ~, and, if X is cofibrant
and Y is fibrant, there is a natural isomorphism Ho (€) (vX,7Y) 2 €(X,Y)/ ~ . In particular, Ho (¥)
18 a category without moving to a higher universe.

(iii) The functor v: € — Ho (%) identifies left or right homotopic maps.

(i) If f+ A— B is a map in € such that vf is an isomorphism in Ho (), then f is a weak equivalence.

Proof. Part (i) is just the composition of the isomorphism from the Corollary above and the equivalence
Ho (6.5) — Ho (%) of Proposition 1.2.3.

The first part of (ii) follows from the equivalences

Ho (%) "% Ho (%,) ™% Ho (¢.;) and Ho (%) ™% Ho (%}) "F Ho (4.5)

The rest follows from Proposition 1.2.5 and the fact that

QX &5 x X5 RX

is a weak equivalence.

Part (iii) was proved in Corollary 1.2.9.

For part (iv), assume that f € ¥(X,Y) is a morphism such that +f is an isomorphism in Ho (¥’). This
implies that the image of QRf in %,y/ ~ is an isomorphism, and from Corollary 1.2.7 it follows that QRf is
a homotopy equivalence. By Proposition 1.2.8, QRf is a weak equivalence and so the left-hand side of the

commutative diagram

QRX —™ 3 RX +——— X

QRf Rf f
4dRY

QRY RY +——— Y

implies by 2-out-of-3 that Rf is a weak equivalence, and thus the right-hand square implies by 2-out-of-3

that f is a weak equivalence, as desired. |

2. ADJOINTS

Lemma 1. Let F: € — 2 be a functor and let1g: Dy — P be a full subcategory of Z. If for each object X of

€ there exists an object Y of Py and an isomorphism .F X = 15(Y), then there exists a functor Fo: € — D

and a natural isomorphism 0g: F — 19 0 Fy. Moreover, Fq is unique up to unique isomorphism.

Proof. For each object X of &, choose an object Y of %y such that 6y(X): FX = 4(Y) and define

Fo(X) =Y. Since .Z is a functor we have a morphism
ﬁ(Xl,XQ): (g(Xl,XQ) — @(ﬁXl,ng)
for each pair of objects X1, X5 of €, and since 2 is a full subcategory, we also have an isomorphism

1w(Y1,Y2): Do(Y1,Y2) = D(10Y1,%0Yz)



for any pair of objects Y7, Ys of Zy. We thus obtain a morphism

@ (X1, Xs) EdCIs) HF X, FXs)
[ Z(f) haexy(00(X1)™H)
F(f)ob(X1)™! D (v 0 Fo X1, F X2)
Bi0° 70 (g (X))
00(X2) 0 F(f) 0 bp(X1)™! D (1 0 FoX1,10 0 FoX2)
1 10(FoX1,FoX2)"!
o (Bo(X2) 0 Z(f)ob(X1)™1)

Do(FoX1,0F0X2)

Since all the morphisms involved respect composition, it’s clear that this assignment is functorial and by
construction makes the isomorphism y: F — 19 o % natural.
For unicity, suppose that % : € — %, is another functor equipped with a natural isomorphism ¢q: % —

10 © %. We have by assumption an isomorphism of functors

-1
@ 0
20 © GO o, F 2 Zoyo.

Since 1 is fully faithful, for each object X of € it reflects the isomorphism 6g(X) o ¢o(X)~! giving an

isomorphism
15 (B0(X) 0 0o (X) 1) = n(X): %(X) — Fo(X).

To see that this is natural, we consider the diagram

X % (X) 22N Z0(x)
J{f l%(f) i%(f)
X’ Go(X") XXz (x")

and note that from the two naturality squares

F(X) 29 06 Zo(X) F(X) 25004 (x)
£ |wezotn and - |5(p) |t
F(x) 2 o z0(x7) F(X) P2 0% (X7)
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we obtain

w(Fo(f)on(X)) = 10 Fo(f))obo(X)op(X)™

= 0o(X') 0 Z(f) 0 (X))~ 0bp(X) 0 po(X)"
= 0o(X') o F(f)opo(X)™!

= Bo(X") opo(X")H org 0 %(f)

1(X")) 020 0% (f)

n(X") o %(f))

= ZO(
= 7/0(

which implies % (f) o n(X) = n(X’) o %(f) because 1 is fully faithful. [ ]

Proposition 1. Consider the two functors £: € — 2 and Z: 2 — €. The following are equivalent:

(i) for each object X of € andY of 2, there is an isomorphism
2(ZX,Y)=2EC(X,ZY)

natural in both X and Y,

(ii) there exist natural transformations
eridg > Zo L andn: L oZ — idg

called the unit and counit of adjunction, respectively, that make the diagrams

2x 25X yopo X RY =2 B o Lo RY

3 and
[ P
X RY

commute for all objects X of € andY of 2,
(i11) for every object Y of 9, the functor

1s representable by ZY .

If any of these conditions holds, we say that £ is left adjoint to Z (symmetrically, # is right adjoint to
Z), and write £ 1 %.
Note that condition (iii) implies that the right adjoint of £ is unique up to unique isomorphism and,

symmetrically, the left adjoint of Z is as well.

Proof. (1 = ii)
For each object X of ¥ and Y of & define ex and 7y to be the images of the identity morphism under the

isomorphisms

DLX, LX) S CX, R0 LX) and C€(BY,ZY) > D(L o RY,Y),
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respectively. One sees that these are natural transformations by chasing the identities through the commu-

tative diagrams
X ZLX, LX) ——— C(X, %o ¥X)
h?Xo(f) WX (o Z(f))

7 DLX, LX) — G(X, B0 LX)

hzx/(ff) h.@ole(f)

X' LX XN —F—— C(X',Z o LX)
and
Y C(RBY,RY) ———— (L oR2Y)Y)

hY (%(9)) hZAY (g)

g C(RY, RY') ——— P(L o RY,Y")

hay 1 (29) hy 1 (ZoZ(9))

Y’ C(RY' ,RBY') ——— D(L o RY'Y')
To establish the commutativity conditions, we chase the identities through the commutative diagrams

X C(Ro LX,Ro LX) — s YL oRoLX, LX)

€x ‘/hﬂozx@x) lh.fx(f(fx))

RXo XX C(X,Z0 LX) = PZLX, LX)
and
L oRY DL RY,L o RY) ———— €(L oL oRY,LY)
ny lhi’"ﬂ"(ny) lh‘ﬂy(%’(ny))
Y D(L o RY,Y) = C(RY,ZY)

and use the definition of € and 1. This establishes (ii).
(if = iii)
Define the morphisms

2(2X,Y) "IN (@ 02X, 27) "G @ (X, 2Y)

and
REX (ny)

2(x,2Y) ") g ox, 2oav)" —9) 92X, ).
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Using the naturality diagrams
X —* 5 Ro¥LX

J{.%o;z)(f) and
HoL oRY

ERY

|s
XY
we see

hay (ex) 0 B(LX,Y) o k¥ (y) o L (X, ZY)(f)

and

h?X(ny) o L(X,RY) o hay(ex) o Z(LX,Y)(9)

giving isomorphisms
2(ZLX,Y)2EC(X,Z2Y)
for each object X of ¥ .

LoRoLX X X
J{%oi’(g)

LoRY — v

ls

Z(ny o ZL(f)) oex
H(ny)o Ko L(f)oex
Z(ny)oeqgy o f

f

Ny 05(%(9) oex)

ny oL o%(g) o L (ex)
gongx oL (ex)

g

Naturality in X follows directly from naturality of € and 7. Namely, given a morphism f € € (X', X) we

have the commutative diagram

X D(LX,Y) ~ € (X, RY)
a H(a)oex
7 haev (1) 1 | hy (Z(1)
a0 L(f) —— Rlao L (f)) oex: = Rla)oex o f

X’ DLXY) ~ €X', RY)
and, similarly, the commutative diagram

X C(X, RY) ~ D(LX,Y)

B ny o Z(B)
i haev (1) I | hy (1))
Bofr———nyoZ(Bof)=mnyoL(B)oL(f)
X’ C (X', ZY) = 2(£X,Y)

This establishes the isomorphism of functors.



(iii = i)

First define the functor
Lo Fun (2°P, Get) — Fun (€°P, Get)
as follows. Given .7 : 2 — Get and an object X of € define
LA F)X) =F o L(X).
Given a morphism n € Fun (2°P, Set) (£1, %2) define natural transformation %, (n): Z(%#1) — Z(F2)
by
Z(n)x =ngx.
Let h7: 2 — Fun(2°P,Get) and h%: € — Fun (€°P, Set) denote the Yoneda embeddings, which we

note identify € and 2 as full subcategories of Fun (2°P, Get) and Fun (¢°P, Set) by the Yoneda Lemma.
By assumption, we have for each object Y of & a representing object ZY of ¥ for the functor

Li(hy) = 2(ZL(-),Y) = C(—. RY) = hE(%Y)
Hence by Lemma 1 we obtain a factorization

2

9 —— Fun (2°P, Get) —Z, Fun (€°P, Set)

NZ e /
“u he

€
by the same argument, giving an isomorphism of functors
C(— () =hC o= L oh? =9(L(~),-),
natural in Y.

Similarly, define the functor %, : Fun (¢, Get) — Fun (2, Get) and note that using the co-Yoneda embed-
dings hy,: 2 — Fun (¢, Get) and h,,: € — Fun (2, Get) we obtain a factorization

¢ < Fun (€, Get) —Z5 Fun (2, Set)

~
S

g

N hg

P
giving an isomorphism of functors
L (=), —)=hypoL =R, ohy=C(—,%Z(—)),
natural in X. This establishes (i). |

Proposition 2. Given an adjunction

%%9

the functor Z commutes with limits and, dually, the functor £ commutes with colimits.
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Proof. Let .7 : . — & be a functor for which lim .%# exists. For every morphism «: i — j of .# we have a

commutative diagram of 2

lim %
F(i) —— T F()
and hence obtain a commutative diagram
Z (im .F)

%y \@(Aj)
o (i) o F

@ RBoF (o)

(7)
of ¥.
Given any other object Z of € equipped with morphisms ¢;: Z — % (i) such that % o .#(«) o (; = (; for

all « € #(i,7) for all i, j, we obtain by the natural isomorphism

L(Z, Ko F (i) hZZ(
_—

C(2,% 0 F (i) NLL, L 0B o F(i) 29 927, 7))

Gi v L(G) v ZL(Gi) oez )
for all objects i of .#. By the naturality diagram
C(Z,HoF(1) ——— DZZ, F(i))
hZ (%o F () hPZ(F ()
C(Z, %o F(j) ———— D(RZ, F(j))
we see that for all o € £ (i, j) over all objects i,j of &
F(a)oL(G)oegiy =L (Ao F(a)o()oegzy =L(()oezy)

and hence we obtain a unique morphism h € Z(#Z,lim .%) making all diagrams

indexed over a € (i, j) commute. Pulling this map back along the isomorphism

NLZNmF) ———— C( R o LZ,Rlim.F) —— € (Z,Z1im F)

h A(h) nz o %(h)




gives a moprhism, which we see makes all diagrams

commute by chasing h through the triangular prism

(L7, 1im F)

h7(X;) REZ(N;)
C(Z, % lim F)

NLL,F(0)) - RN 9(22,20)

h? (R (M) h?(%(7;))

hZ(RoF (o))

C(Z, R o F(i)) C(Z,% o F(j))

which commutes since the left, right, and bottom faces are naturality squares and the rear face commutes
by construction of h.

We note that 1z o Z(h) is necessarily unique, for if we had some other morphism b’ € €(Z, Zlim .7 )
making the relevant diagrams of ¥ commute, then pushing it along the isomorphism gives Z(h') o €jjm . €
2(£Z,1im F) making the relevant diagrams of 2 commute, which implies .Z(h’) o €jjm . = h by unicity,
and hence b/ = nz o Z(h). Therefore Zlim .# = lim % o % by unicity of universals. |
Proposition 3. Let €,2,92' be categories equipped with adjunctions

& %'
¢ % 9 and 9 —— 9’

4

Then

is an adjunction.

Proof. The composition of functors is clearly well defined, so we obtain a natural isomorphism
P'(L o ZL(X),Y) = 9(ZLX),ZY'

C X, %oRY'").

1%
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Definition 1. Given two categories ¢ and 2, an equivalence of categories is a pair of functors .%: € — &

and 4: 2 — € and natural isomorphisms ¢: idg - Z o F, n: F o9 — idgy.

Proposition 4. Let £: € — 2 and Z#: € — D be adjoint functors with unit €: idy — % o £ and counit
n: Lo —idgy.
(i) The functor X is fully faithful if and only if n is an isomorphism,
(ii) The functor £ is fully faithful if and only if € is an isomorphism
(iii) The following are equivalent:
(a) £ is an equivalence of categories,
(b) % is an equivalence of categories,
(¢c) L and # are fully faithful. In this case, £ and % are quasi-inverses of one another, and €, n are

both isomorphism.
Proof. For (i), we observe from the diagram

Z(Y,Y")

2(Y,Y") C(RY, RY")

R
hy s (ny)

D(L o RY,Y")
that Z(Y,Y’) is an isomorphism if and only if hy(ny) is an isomorphism. Hence # is fully faithful if and
only if hy/(ny) is an isomorphism for all objects Y, Y’ of &, and we are reduced to showing this is equivalent

to ny being an isomorphism.

Clearly if ny is an isomorphism, then hy/(ny) is an isomorphism for all objects Y, Y’ of & with inverse
hy (ny'): 2(ZL o ZY,Y").
Conversely, taking Y/ =Y we obtain an inverse to 1y by applying the the inverse morphism:

nyt = hy(ny) " (ny).

For (ii), we apply the same argument, mutatis mutandis, to the diagram

(X, x") —25Y  g(ex, X7
h¥(ex) 4
C(X, %0 LX)
Part (iii) follows from the definition of an equivalence of categories and the unicity of the adjoints. |

3. QUILLEN ADJUNCTIONS AND DERIVED FUNCTORS

Definition 2. Let ¥ and 2 be model categories.
(1) A functor £: € — Z is left Quillen if £ is a left adjoint and preserves cofibrations and trivial

cofibrations.
(2) A functor Z: 9 — € is right Quillen if Z is a right adjoint and preserves fibrations and trivial

fibrations.
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(3) An adjunction (£, %, ¢), where ¢ is the natural isomorphism
LX)y :- @(XX, Y) :> %(X,%Y),
is called a Quillen adjunction if £ is left Quillen.

Remark 1. Hovey always uses 7 for the unit of adjunction and ¢ for the counit of adjunction; my notation

is exactly the opposite.

Example 1. Let € be a model category and let I be a set. Equip the product category €’ with the product
model structure. We can view an object of €/ as a discrete diagram of € and a morphism of this category as
a morphisms of discrete diagrams. For example, in the case where I has two elements, a morphism between
two objects, f = (f1, f2): X = (X1, X2) = Y = (¥1,Y3) is just two morphisms of &:

X, Xo
lfl lf2
Y Y,

with no commutativity relations.
As € has all small limits by assumption, we can define a product functor lim;: 47 — C which takes an
object X = (X;)r of €' to the limit over the discrete diagram,
I@X:%m&:HX@
iel
For any morphism of f € €/(X,Y), lim;(f) is the unique map induced by the universal property of limit,
which is determined by the diagrams

lim; X AQ lim; Y

| |

X, —r

indexed over I. For example, when I has two elements, the image of a morphism (f1, f2): (X1, X2) — (¥7,Y2)

is just the product map,

X1<;X1XX24>X2

lf1 331f1><f2 lh

Vi +—— Vi xY, —— Y,

We can define a a diagonal functor A: ¥ — %! which takes an object of X of € to the discrete diagram
with I copies of X. A morphism f € € (X, X) defines a morphism of discrete diagrams by taking f in each
component. We note that, by definition, a morphism f € ¢/(AX,Y) is simply a collection of morphisms
fi € €(X,Y;), giving

ax,y)=]]#¢x.v)
i€l

With this observation, it’s easy to see that this functor is left adjoint to lim; since we can view the universal

property of products as a representability statement: The object lim; Y; = [],.; Y is the representing object
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of the functor [],.; €(—,Y;), and hence

iel
@ (—Ji}nY) —¢ (-,H)@-) = [[% (- V) =€ (-, Y) =6 (A(-).Y).
iel i€l
By Proposition 1 we obtain the desired natural isomorphism
¢ (AXY)=[[¢(ax.vi) =% (AX, lim Y) .
iel !
Note that by definition of the product model structure, A necessarily preserves cofibrations and weak equiv-

alences, so this adjunction is Quillen.

Lemma 2. Let € and 2 be model categories and suppose L : € — 2 is left adjoint to #: P — €. This
adjunction is Quillen if and only if Z is right Quillen.

Proof. By Lemma 1.1.10 of Hovey it suffices to show that given a fibration (resp. trivial fibration) p €
2(Y1,Ys), then Zp € € (RY1,#Y>) has the right lifting property with respect to all trivial cofibrations
(resp. cofibrations). Let f € (X1, X2) be a trivial cofibration (resp. cofibration). To say that %Zp has the

right lifting property with respect to f is to say that for every commutative diagram

X1 L> %Yl

r e

XQL}%}/Q

there is a lift £: X9 — ZY7 such that Lo f = ¢ and #Zpo ¢ = ). This is equivalent to the morphisms of sets

X2
DL X0, V1) = C (X0, V1) " —57 G( X0, BY2) = D(L X, Vo)

and

hay, (f)
AR

DL X2, Y1) =2 C (X, Y1) C (X1, ZY1) = 2(L X1, Y1)

being surjective. However, by the naturality squares

@(XXQ,Yl) T %(XQ,%Yl) @($X27Y1) — CK(XQ,%Yl)
X2 (p) n¥2(gp) and hy, (L(5) haev, ()
@(XXQ,YQ) —_— %(XZ,QYQ) @(.,%Xl,yl) —_— %(Xl,.@yl)

this is equivalent to Z(f) having the left lifting property with respect to p. This is equivalent to .Z(f) being

a cofibration (resp. trivial cofibration), which in turn is equivalent to the adjunction being Quillen. |

Remark 2. (i) If ¥: ¥ — Y and #Z: 9 — € is a Quillen adjunction, then, by Ken Brown’s Lemma,
% preserves weak equivalences between cofibrant objects and # preserves weak equivalences between
fibrant objects. By abuse of notation, we write .Z: €. — 2 and Z: %5 — € for the restrictions, then

observe that we obtain
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and

R R
9 Dy '
A4
3 -7
Yo Yo, ot e

-

Ho(2) ") 1o (2;) 2 Ho (%)

by the universal property for the homotopy category.

We also note that given natural transformations n: & — %', v: Z — %’ between Quillen functors,
we obtain natural transformations Ho (1) : Ho (¢) — Ho (¢’) and Ho (v) : Ho (%) — Ho (%') defined
by Ho (n) y = nx and Ho (v) y = vx. Since all the functors involved preserve weak equivalences, these
are indeed natural by Lemma 1.2.2.

Note that on objects,
Ho (%) (X) = Z(QX) and Ho (Z) (Y) = Z(QY).

(ii) This construction does not require Quillen functors. We only used the fact that these functors preserve

weak equivalences between cofibrant (resp. fibrant) objects.

Definition 3. Let ¥ and 2 be model categories.

(1) If #:% — 2 is a left Quillen functor, define the total left derived functor LF: Ho (¢) — Ho (2)
to be the composition

Ho (¢) "% Ho (%,) "2 Ho (2)
Given a natural transformation 7: % — Z’ of left Quillen functors, define the total derived natural
transformation LT to be Ho (1) o Ho (Q), so that (LT)x = 7gx.-
(2) f¥Y: 2 — € is a right Quillen functor, define the total right derived functor R4 : Ho (2) — Ho (¥)
to be the composition

oW Ho (25)

o(¥
H_(>)

Ho (2) Ho (%)

Given a natural transformation 7: ¢ — ¢’ of right Quillen functors, define the total derived natural

transformation RT to be Ho (1) o Ho (R), so that (RT)x = Trx.

Theorem 2. For every model category, €, there is a natural isomorphism «: L(idy) — iduo(g). Also

for every pair of left Quillen functors F: € — 2 and F': 9 — &, there is a natural isomorphism m =
mgrgz: LF o LF — L(F' o F). These natural isomorphisms satisfy the following properties.

1) An associativity coherence diagram is commutative. That is, if F:¢ — €', F': C' — €", and
Y g , s
F": 6" — €" are left Quillen functors, then the diagram

(LF" o LF") o LF "2 M7 [ (g1 o 7Y o LF 2207 [(F" 0 F') o F)

s Y L(F" o (F' o F))

LF" o (LF oLF) F' o L(F o F) “ZT07,

commutes.
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(2) A left unit coherence diagram is commutative. That is, if F: € — D is a left Quillen functor, then

the diagram

L(ld@) oL — O L(ld_@ Oﬁ)
laoLl? ‘
lito(g) © LF ————— LF

commautes.
(8) A right unit coherence diagram is commutative. That is, if F: € — D is a left Quillen functor,

then the diagram

LZ o L(idy) —™—— L(F oidy)

J{L?oa

LZ oidyo(e) ——— LF

commutes.

Proof. Let 1: €, — € be the natural inclusion. We observe from the functorial factorization

0 X
N
0x

that we obtain a natural transformation ¢: 2 0 @ — id¢. Taking the derived natural transformation Ho (q)

gives the natural isomorphism

idpo(s) = Ho (1) 0 Ho (Q) "2 L(idg)

because ¢x is a trivial fibration.

Define m#/ to be the collection of maps

LF o LFX = Z/(Q(Z QX)) " ) 2/(Z(0X)) = L(F' 0 F(X))

which is natural in X as a functor on €, for if f' € € (X, X’) then we have the commutative diagram

QX 5 X
le if
QX/ dx’ X'/

which gives rise to the commutative diagram in &

Q7 (QX)) 29 7 (x) T #(x)
JQ?(QJ“) Z(Qf) Lﬁf(f)
QP (QX") T 7 (Qx") T8 #(x)



15
and hence a commutative diagram in &

7' (Q?(QX)) F'oF (gx)

Q(Z(QX))) F' o F(QX) ———— F' 0 F(X)
Z(QF(Qf)) F'oF(QS) ‘ "0 Z (f)
QZ(Q (q?(QX)) o Z(QX') F'oF (qx1) F' o F(X)

Since all functors involved preserve weak equivalences, m 4 is also natural in X as a functor on Ho (%).
Moreover, .# preserves cofibrant objects because it preserves cofibrations as a left Quillen functor, hence

' preserves the weak equivalence gz (gx) between cofibrant objects and thus it follows that m .z # is an
isomorphism in Ho (&).

For the associativity coherence diagram, we must show that

(7" 0 7' (a7qx)) o (F' (a7 @rox)) = (F" (a7 7qx)) o (F" 0 Q0 F'(a7qx)).

This follows from naturality of ¢ and a construction similar to the one above.

The left unit coherence diagram commutes because by definition

Mmia, 7(X) =ido(97qx) = 47qx
and
a0L§(X) = ayQX = qg?QX
For the right unit coherence diagram, we have
mgidf(X) = E(Qidg(qu)) = y(QQX)i E(QQX) — ﬁ(QX)
and
L7 oa(X) =7 (Q(ax)): 7 (QQX) = F(QX).

Given a cofibrant object X we have the commutative diagram

QQX qQx QX

i@(u) qu

QX — & 4 x

because ¢ is natural. Since gx is a weak equivalence between cofibrant objects it follow that #(gx) is

invertible in Ho (2) and hence

Z(qox) = F Qqx).
Since every object of Ho (%) is weakly equivalent to a cofibrant object, this completes the proof. ]
Definition 4. Let ¢, 2, and & be categories and let #,9: € — 9, F',9': 9 — & be functors. Given

natural transformations n: % — ¢ and v: ' — ¢’, defin the horizontal composition nxv: F' oF — 4’ o4

is the natural transformation defined by the collection of morphisms of &

7o 7(X) %) g1 0 4(x)

J{V}*x J{V%X
@ o 7(x) L") g o q(x)
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Lemma 3. Let 4, 9, and & be model categories. Let F,9: ¢ — 2 and F',9': 9 — & be left Quillen
functors. Suppose n: F — 4 and v: F' — 4’ be natural transformations. If m is the composition isomor-

phism of the Theorem above, then the diagram

LF oLF " L(F' oF)

J{LTI*LV J{L(n*u)

LG o LY —=— L(¥' 0 9)
commutes.
Proof. We unravel the definitions. The morphism
Linxv)omyx : F'QFQX — 9'9QX

is given by the composition across the top of the commutative diagram
F'
FQFQX 297N, 1 zox — YT qrz0x
F'Q(ngx) F'(nex) 9’ (vox)

Vg

F'QuQx —2 ) | gigox M9 qigox

YQ¥Qx VgQx

9090x — 21 | ggox —— qig0x

and the morphism m o Ly x Lvx: F'Q.7QX — 9'9QX is given by the composition across the bottom of

the commutative diagram

FIQF(QX) —L2_, qrozox L9, g z0x

F'Qnex) 4'Q(ngx) ' (ngx)

FQIQX — 1219, qrogx LX), gigx
Chasing the bottom left side of each diagram gives us the desired equality. |

Remark 3. Essentially, this says we have a 2-category (modulo some set theoretic issues...) with 0-cells
model categories, 1-cells left Quillen functors, 2-cells the natural transformations and the homotopy category,
total derived functor, and total derived natural transformation define a pseudo 2-functor to the 2-category

of categories.

Lemma 4. Let € be a model category and assume we have homotopic morphisms fo ~ f1 € €(X,Y). If
Y is fibrant object, then we may always choose a fibrant path object. Dually, if X cofibrant we may always

choose a cofibrant cylinder object.

Proof. Since Y is assumed to be fibrant, the pullback

Y xY 25 Y

]

Y ——



17

is fibrant, as fibrations are stable under pullback. Choose a path object

Yy — & VXY

X poV

with pg X p; a fibration, t a weak equivalence, and a homotopy

X K,y

N

Taking a fibrant replacement, Y = RY”, we obtain a lift

Y

y! PPy gy

Rt

3 X -7
0 1
q Q/ Pid
-
-
-
-
-
-

RY ———— 0

because Y x Y is fibrant and ry is a trivial cofibration, making RY’ a path object. We also obtain a

homotopy 7y o K since the diagrams

X

commute for ¢ =0, 1. |

Lemma 5. Let € and 2 be model categories. Given a Quillen adjunction

%%@

we obtain a derived adjunction
LF
Ho (¢) —— Ho(2)
RY
Proof. Denote by € and 7 the unit and counit of adjunction, respectively, and by [—,—]¢, [—, —]2 the

morphisms of the homotopy category. Also, recall that the isomorphism of adjunction is given by the
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morphisms

27X, Y) LI pgzx,9y) L) wx,9y)
and
FX
v(x,9v7) 23, g ax, g9v) ), 97x,Y)

We first observe that we have natural isomorphisms
[LFX,Y)9 2 P2(FQX,RY)/ ~ and [X,RYY]|s 2 € (QX,9RY)/ ~

This reduces the problem to showing that the isomorphism of adjunction both preserves and reflects homo-
topies between cofibrant objects of € and fibrant objects of 2, for then we can see that for any object X of

% and any object Y of &, the isomorphism of adjunction descends to a well-defined isomorphism

D(FQX,RY) —>— €(QX,9RY)

| |

DFQX,RY)/ ~ — €(QX,9RY)/ ~

Towards that end, assume that X is a cofibrant object of ¥ and Y is a fibrant object of 2. Given
fo~f1 € 2(FX,Y), choose a homotopy from a fibrant path object.

y — & LY XY

with py X p; a fibration, t a weak equivalence, and a homotopy

FX Ky

Since ¥ is right Quillen it preserves products, fibrant objects, weak equivalences between fibrant objects,

and (trivial) fibrations, hence we obtain a path object of €

G(A)

V) x4(Y)

24 Y(Y xY)
gm %’1 =% (po)x¥(p1)

and a homotopy

g(K)OEX gy/

G (f)oex v

Y
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by the commutativity of the naturality square

@(yX, Y’) —— (f(X, gY’)
lh‘gx(pi) lhx(g(m))
NFX,Y) — €(X,9Y)

It’s clear that this morphism is surjective and natural, so it remains to show that that it reflects homotopies.
Assume that there is a homotopy 4(fo) cex ~ 4(f1) ocex in €. By duality, the argument above implies

that we may choose a cofibrant cylinder object

X[|x —yY X

A

and a homotopy

X "X/

%m;\x@
gy

As & is left Quillen it preserves cofibrant objects, (trivial) cofibrations, and weak equivalences between

cofibrant objects by which we obtain a cylinder object in &

F(V)

FX[X)= FX][[FX

FX
FX'

and a homotopy

gx 2, gx
ny oF (H)
nyoﬂ(%(ﬁ)oax)
Y

and we note that
Ny oF o¥(fi)oF(ex)=fi

implies that we have a homotopy fyo ~ fi1, as desired. Therefore the induced map is injective, hence an

isomorphism. |

4. QUILLEN EQUIVALENCES

Definition 5. A Quillen adjunction (%,¥9,¢): € — 2 is a Quillen equivalence if and only if, for all cofibrant
X in € and fibrant Y in 2, amap f: FX — Y is a weak equivalence in 2 if and only if o(f): X — ¢Y is

a weak equivalence in €.

Remark 4. Note that a Quillen equivalence is not always an equivalence of categories. This could be

thought of as a weak equivalence of model categories.
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Proposition 5. Let (F,9,p): € — P be a Quillen adjunction with unit €: ide — 4 o F and counit
n: F o9 —idg. The following are equivalent:
(a) (Z,9,p) is a Quillen equivalence,

(rex

(b) The composition X =5 G.FX g—> ) YRF X is a weak equivalence for all cofibrant X, and the com-

position FQYY y(q_g),,) FZQY 5 Y is a weak equivalence for all fibrant Y,

(¢) The derived adjunction is an equivalence of categories.

Proof. (a) = (b)
Assume X is cofibrant in 4 and Y is fibrant in 2. Note that r#zx and gy are both weak equivalences.

From the diagrams

F(X,RFX)
R sk §

I FX,RFX) CGFX, GRFX) 127X o X gRTX)

regx ¢ g(ﬁ?x) ’ %(rgx) CEx

and

ot

T

C(QIY,9Y) —— D (FQYY, FYGY) — D(FGCYY,Y)

gy F(qgy) ———— Ny © F (quy)

we see p(rgx) =9 (rgzx ocex) and p(ny o Z(quy)) = qgy imply ¥ (rex) cecx and ny o % (¢yy ) are weak
equivalences by the definition of a Quillen equivalence.

(b) = ()
It suffices to show that the unit and counit of the adjunction are both isomorphisms. First assume that X
is a cofibrant object of ¥ and note that .# X is cofibrant in X. Chasing the identity through the diagram

NFX, FX) —~ @(X,9.7X)
hyx(rgx) hx(g(ryx))

NFX,RFX) ——~— ¢(X,9RFX)

HFX,RFX)) ~ — s G(X,9RFX)/ ~

[LFX,LFX], ——— [X,RY o LT X].,
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we see that the image in the bottom right hand corner is the isomorphism

X X g7x ") gpzx

and thus for arbitrary X we obtain the isomorphism

X5 0x BN g70x "I yr7Qx

The proof that

—1
FOZRY T8 ggRy " gy Y,y

is an isomorphism follows similarly. One need only check that the diagrams from part (ii) of Proposition 1
commute.

(c) = (a)
This follows formally from part (iii) of Propostion 4. Let X be a cofibrant object of ¥, Y a cofibrant object
of 7, and ¢: idyew) — RY o L the unit of the derived adjunction. Note that by assumption both ¢ is a
natural isomorphism.

Given a morphism f € Z(.ZX,Y) denote its image under the ismorphism of adjunction f € €(X,9Y).

We have a commutative diagram

NFX,Y) ——s €(X,9Y)

| |
NFX,Y)) ~ — C(X,9Y)] ~
|- |-

[LFX,Y], —=— [X,R¥Y],

and note that f is a weak equivalence if and only if its image in Ho (2) is an isomorphism. The image of f
in [X,R4Y] is RY(f) oex, which is an isomorphism if and only if RZ(f) is an isomorphism. Noting that
RY reflects isomorphisms because it is fully faithful, we see that R¥(f) is an isomorphism if and only if the
image of f in Ho (2) is an isomorphism. Since RZ(f)oex is the image of f in Ho (%), it now follows that f

is a weak equivalence if and only if f is a weak equivalence. Therefore the adjoint pair .%,% form a Quillen

equivalence. ]

5. APPENDIX

Lemma 6. If X is a cofibrant object of €, then qx: QX — X is an isomorphism. Dually, if Y is a fibrant
object of €, then ry: Y — RY is an isomorphism.

Proof. We have

0 X

N7

QX
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with ¢gx a trivial fibration, which gives a lift

00— QX

X —X 5 X

because X is cofibrant. We note that h is a weak equivalence by 2-out-of-3. By the functorial factorization

we get

X —" L 0ox

N

giving a retract

idx
X a(h) X/ gxoB(h) X
h B(h) h
0X idox 0X idox 0X

\@/

and hence h is a trivial fibration. This now gives a lift

and so we see
gx =gqx oidgx =gxohoh' =idxoh' =1’



