
1. The Homotopy Category

Corollary 1. Let C be a model category. Let γ : Ccf → Ho (Ccf ) and δ : Ccf → Ccf/ ∼ be the canonical

functors. Then there is a unique isomorphism of categories making the diagram

Ccf Ho (Ccf )

Ccf/ ∼

δ

γ

∃!j

commute. Furthermore, j is the identity on objects.

Proof. We show that Ccf/ ∼ satisfies the same universal property as Ho (Ccf ). We note that δ takes homotopy

equivalences to isomorphisms and so by Proposition 1.2.8, δ also takes weak equivalences to isomorphisms.

Let F : Ccf → D be a functor that takes weak equivalences to isomorphisms. Given an object X, take the

functorial cylinder object X × I. This guarantees that X × I is cofibrant and fibrant, since X
∐
X is also

cofibrant and X is fibrant. Now note that we have a commutative diagram

X X
∐
X X

X × I

u0

u1

idX

ı1

ı0

∇

ı0
∐
ı1

s

Since s and idX are weak equivalences we have that ı0 and ı1 are both weak equivalences by 2-out-of-3.

Hence

F (s) ◦F (ı0) = F (s ◦ ı0) = idFX = F (s ◦ ı1) = F (s) ◦F (ı1)

implies F (ı0) = F (ı1).

Given a homotopy

X X × I

Y

f1

f0

ı0

ı1

H

we have

F (f0) = F (H ◦ ı0) = F (H) ◦F (ı0) = F (H) ◦F (ı1) = F (H ◦ ı1) = F (f1)

so that F identifies left homotopic maps. By duality, we see that F also identifies right homotopic maps.

This allows us to define a unique functor G : Ccf/ ∼→ D by G δX = FX and G δ(f) = F (f). The result

now follows by unicity of universal objects. �

Theorem 1. Suppose C is a model category. Let γ : C → Ho (C ) denote the canonical functor, Q the

cofibrant replacement functor of C , and R the fibrant replacement functor.

(i) The inclusion Ccf → C induces an equivalence of categories

Ccf/ ∼
∼−→ Ho (Ccf ) −→ Ho (C )
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(ii) There are natural isomorphisms

C (QRX,QRY )/ ∼ ∼−→ Ho (C ) (γX, γY )
∼−→ C (RQX,RQY )/ ∼

In addition, there is a natural isomorphism Ho (C ) (γX, γY ) ∼= C (QX,RY )/ ∼, and, if X is cofibrant

and Y is fibrant, there is a natural isomorphism Ho (C ) (γX, γY ) ∼= C (X,Y )/ ∼ . In particular, Ho (C )

is a category without moving to a higher universe.

(iii) The functor γ : C → Ho (C ) identifies left or right homotopic maps.

(iv) If f : A −→ B is a map in C such that γf is an isomorphism in Ho (C ), then f is a weak equivalence.

Proof. Part (i) is just the composition of the isomorphism from the Corollary above and the equivalence

Ho (Ccf ) −→ Ho (C ) of Proposition 1.2.3.

The first part of (ii) follows from the equivalences

Ho (C )
Ho(Q)−→ Ho (Cc)

Ho(R)−→ Ho (Ccf ) and Ho (C )
Ho(R)−→ Ho (Cf )

Ho(Q)−→ Ho (Ccf )

The rest follows from Proposition 1.2.5 and the fact that

QX
qX−→ X

rX−→ RX

is a weak equivalence.

Part (iii) was proved in Corollary 1.2.9.

For part (iv), assume that f ∈ C (X,Y ) is a morphism such that γf is an isomorphism in Ho (C ). This

implies that the image of QRf in Ccf/ ∼ is an isomorphism, and from Corollary 1.2.7 it follows that QRf is

a homotopy equivalence. By Proposition 1.2.8, QRf is a weak equivalence and so the left-hand side of the

commutative diagram

QRX RX X

QRY RY Y

qRX

QRf Rf

rX

f

qRY

rY

implies by 2-out-of-3 that Rf is a weak equivalence, and thus the right-hand square implies by 2-out-of-3

that f is a weak equivalence, as desired. �

2. Adjoints

Lemma 1. Let F : C → D be a functor and let ı0 : D0 → D be a full subcategory of D . If for each object X of

C there exists an object Y of D0 and an isomorphism FX
∼→ ı0(Y ), then there exists a functor F0 : C → D0

and a natural isomorphism θ0 : F → ı0 ◦F0. Moreover, F0 is unique up to unique isomorphism.

Proof. For each object X of C , choose an object Y of D0 such that θ0(X) : FX ∼= ı0(Y ) and define

F0(X) = Y . Since F is a functor we have a morphism

F (X1, X2) : C (X1, X2)→ D(FX1,FX2).

for each pair of objects X1, X2 of C , and since D0 is a full subcategory, we also have an isomorphism

ı0(Y1, Y2) : D0(Y1, Y2)
∼→ D(ı0Y1, ı0Y2)
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for any pair of objects Y1, Y2 of D0. We thus obtain a morphism

C (X1, X2) D(FX1,FX2)

f F (f)

F (f) ◦ θ0(X1)−1 D(ı0 ◦F0X1,FX2)

θ0(X2) ◦F (f) ◦ θ0(X1)−1 D(ı0 ◦F0X1, ı0 ◦F0X2)

ı−1
0 (θ0(X2) ◦F (f) ◦ θ0(X1)−1)

D0(F0X1, ◦F0X2)

F0(X1,X2)

F(X1,X2)

hFX2
(θ0(X1)−1)

hi0◦F0X(θ0(X2))

ı0(F0X1,F0X2)−1

Since all the morphisms involved respect composition, it’s clear that this assignment is functorial and by

construction makes the isomorphism θ0 : F → ı0 ◦F0 natural.

For unicity, suppose that G0 : C → D0 is another functor equipped with a natural isomorphism ϕ0 : F →
ı0 ◦ G0. We have by assumption an isomorphism of functors

ı0 ◦G0
ϕ−1

0−→ F
θ0−→ ı0F0.

Since ı0 is fully faithful, for each object X of C it reflects the isomorphism θ0(X) ◦ ϕ0(X)−1 giving an

isomorphism

ı−1
0 (θ0(X) ◦ ϕ0(X)−1) = η(X) : G0(X) −→ F0(X).

To see that this is natural, we consider the diagram

X G0(X) F0(X)

X ′ G0(X ′) F0(X ′)

f G0(f)

η(X)

F0(f)

η(X′)

and note that from the two naturality squares

F (X) ı0 ◦F0(X)

F (X ′) ı0 ◦F0(X ′)

F(f)

θ0(X)

ı0◦F0(f)

θ0(X′)

and

F (X) ı0 ◦ G0(X)

F (X ′) ı0 ◦ G0(X ′)

F(f)

ϕ0(X)

ı0◦G0(f)

ϕ0(X′)



4

we obtain

ı0(F0(f) ◦ η(X)) = ı0 ◦F0(f)) ◦ θ0(X) ◦ ϕ0(X)−1

= θ0(X ′) ◦F (f) ◦ θ0(X)−1 ◦ θ0(X) ◦ ϕ0(X)−1

= θ0(X ′) ◦F (f) ◦ ϕ0(X)−1

= θ0(X ′) ◦ ϕ0(X ′)−1 ◦ ı0 ◦ G0(f)

= ı0(η(X ′)) ◦ ı0 ◦ G0(f)

= ı0(η(X ′) ◦ G0(f))

which implies F0(f) ◦ η(X) = η(X ′) ◦ G0(f) because ı0 is fully faithful. �

Proposition 1. Consider the two functors L : C → D and R : D → C . The following are equivalent:

(i) for each object X of C and Y of D , there is an isomorphism

D(LX,Y ) ∼= C (X,RY )

natural in both X and Y ,

(ii) there exist natural transformations

ε : idC → R ◦L and η : L ◦R → idD

called the unit and counit of adjunction, respectively, that make the diagrams

LX L ◦R ◦LX

LX
idLX

L (εX)

ηLX and

RY R ◦L ◦RY

RY

εRY

idRY

R(ηY )

commute for all objects X of C and Y of D ,

(iii) for every object Y of D , the functor

D(L (−), Y ) : C → Set

is representable by RY .

If any of these conditions holds, we say that L is left adjoint to R (symmetrically, R is right adjoint to

L ), and write L a R.

Note that condition (iii) implies that the right adjoint of L is unique up to unique isomorphism and,

symmetrically, the left adjoint of R is as well.

Proof. (i ⇒ ii)

For each object X of C and Y of D define εX and ηY to be the images of the identity morphism under the

isomorphisms

D(LX,LX)
∼→ C (X,R ◦LX) and C (RY,RY )

∼→ D(L ◦RY, Y ),
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respectively. One sees that these are natural transformations by chasing the identities through the commu-

tative diagrams

X D(LX,LX) C (X,R ◦LX)

D(LX,LX ′) C (X,R ◦LX ′)

X ′ D(LX ′,LX ′)( C (X ′,R ◦LX ′)

f

∼

hLX◦L (f) hX(R◦L (f))

∼

∼

hLX′ (L f) hR◦LX′ (f)

and

Y C (RY,RY ) D(L ◦RY, Y )

C (RY,RY ′) D(L ◦RY, Y ′)

Y ′ C (RY ′,RY ′) D(L ◦RY ′, Y ′)

g

∼

hRY (R(g)) hL RY (g)

∼

∼

hRY ′ (Rg) hY ′ (L ◦R(g))

To establish the commutativity conditions, we chase the identities through the commutative diagrams

X C (R ◦LX,R ◦LX) D(L ◦R ◦LX,LX)

R ◦LX C (X,R ◦LX) D(LX,LX)

εX

∼

hR◦LX(εX) hLX(L (εX))

∼

and

L ◦RY D(L ◦RY,L ◦RY ) C (L ◦L ◦RY,L Y )

Y D(L ◦RY, Y ) C (RY,RY )

ηY

∼

hL◦RY (ηY ) hRY (R(ηY ))

∼

and use the definition of ε and η. This establishes (ii).

(ii ⇒ iii)

Define the morphisms

D(LX,Y )
R(LX,Y )−→ C (R ◦LX,RY )

hRY (εX)−→ C (X,RY )

and

C (X,RY )
L (X,RY )−→ D(LX,L ◦RY )

hLX(ηY )−→ D(LX,Y ).
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Using the naturality diagrams

X R ◦LX

RY R ◦L ◦RY

εX

f R◦L (f)

εRY

and

L ◦R ◦LX LX

L ◦RY Y

ηLX

R◦L (g) g

ηY

we see

hRY (εX) ◦R(LX,Y ) ◦ hLX(ηY ) ◦L (X,RY )(f) = R(ηY ◦L (f)) ◦ εX

= R(ηY ) ◦R ◦L (f) ◦ εX

= R(ηY ) ◦ εRY ◦ f

= f

and

hLX(ηY ) ◦L (X,RY ) ◦ hRY (εX) ◦R(LX,Y )(g) = ηY ◦L (R(g) ◦ εX)

= ηY ◦L ◦R(g) ◦L (εX)

= g ◦ ηLX ◦L (εX)

= g

giving isomorphisms

D(LX,Y ) ∼= C (X,RY )

for each object X of C .

Naturality in X follows directly from naturality of ε and η. Namely, given a morphism f ∈ C (X ′, X) we

have the commutative diagram

X D(LX,Y ) C (X,RY )

α R(α) ◦ εX

α ◦L (f) R(α ◦L (f)) ◦ εX′ = R(α) ◦ εX ◦ f

X ′ D(LX ′, Y ) C (X ′,RY )

f

∼

hRY (f) hY (L (f))

∼

and, similarly, the commutative diagram

X C (X,RY ) D(LX,Y )

β ηY ◦L (β)

β ◦ f ηY ◦L (β ◦ f) = ηy ◦L (β) ◦L (f)

X ′ C (X ′,RY ) D(LX,Y )

f

∼

hRY (f) hY (L (f))

∼

This establishes the isomorphism of functors.
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(iii ⇒ i)

First define the functor

L∗ : Fun (Dop,Set)→ Fun (C op,Set)

as follows. Given F : D → Set and an object X of C define

L∗(F )(X) = F ◦L (X).

Given a morphism η ∈ Fun (Dop,Set) (F1,F2) define natural transformation L∗(η) : L∗(F1) → L∗(F2)

by

L∗(η)X = ηLX .

Let hD
− : D → Fun (Dop,Set) and hC

− : C → Fun (C op,Set) denote the Yoneda embeddings, which we

note identify C and D as full subcategories of Fun (Dop,Set) and Fun (C op,Set) by the Yoneda Lemma.

By assumption, we have for each object Y of D a representing object RY of C for the functor

L∗(hY ) = D(L (−), Y ) ∼= C (−,RY ) = hC
−(RY )

Hence by Lemma 1 we obtain a factorization

D Fun (Dop,Set) Fun (C op,Set)

C

hD
−

∃!R

L∗

hC
−

by the same argument, giving an isomorphism of functors

C (−,R(−)) = hC
− ◦R ∼= L∗ ◦ hD

− = D(L (−),−),

natural in Y .

Similarly, define the functor R∗ : Fun (C ,Set)→ Fun (D ,Set) and note that using the co-Yoneda embed-

dings h−D : D → Fun (C ,Set) and h−D : C → Fun (D ,Set) we obtain a factorization

C Fun (C ,Set) Fun (D ,Set)

D

h−C

∃!L

R∗

h−D

giving an isomorphism of functors

D(L (−),−) = h−D ◦L ∼= R∗ ◦ h−C = C (−,R(−)),

natural in X. This establishes (i). �

Proposition 2. Given an adjunction

C D
L

R

the functor R commutes with limits and, dually, the functor L commutes with colimits.
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Proof. Let F : I → D be a functor for which lim F exists. For every morphism α : i → j of I we have a

commutative diagram of D

lim F

F (i) F (j)

λi λj

F(α)

and hence obtain a commutative diagram

R (lim F )

R ◦F (i) R ◦F (j)

R(λi) R(λj)

R◦F(α)

of C .

Given any other object Z of C equipped with morphisms ζi : Z → F (i) such that R ◦F (α) ◦ ζi = ζj for

all α ∈ I (i, j) for all i, j, we obtain by the natural isomorphism

C (Z,R ◦F (i)) D(LZ,L ◦R ◦F (i)) D(LZ,F (i))

ζi L (ζi) L (ζi) ◦ εF(i)

L (Z,R◦F(i)) hLZ(εF(i))

for all objects i of I . By the naturality diagram

C (Z,R ◦F (i)) D(RZ,F (i))

C (Z,R ◦F (j)) D(RZ,F (j))

∼

hZ(R◦F(α)) hRZ(F(α))

∼

we see that for all α ∈ I (i, j) over all objects i, j of I

F (α) ◦L (ζi) ◦ εF(i) = L (R ◦F (α) ◦ ζi) ◦ εF(j) = L (ζj) ◦ εF(j)

and hence we obtain a unique morphism h ∈ D(RZ, lim F ) making all diagrams

LZ

lim F

F (i) F (j)

L (ζi)◦εF(i) L (ζj)◦εF(j)
∃!h

λi λj

F(α)

indexed over α ∈ I (i, j) commute. Pulling this map back along the isomorphism

D(LZ, lim F ) C (R ◦LZ,R lim F ) C (Z,R lim F )

h R(h) ηZ ◦R(h)
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gives a moprhism, which we see makes all diagrams

Z

R lim F

R ◦F (i) R ◦F (j)

ζi ζj∃!ηZ◦R(h)

R(λi) R(λj)

R◦F(α)

commute by chasing h through the triangular prism

D(LZ, lim F )

C (Z,R lim F )

D(LZ,F (i)) D(LZ,F (j))

C (Z,R ◦F (i)) C (Z,R ◦F (j))

hLZ(λi) hLZ(λj)

∼

hZ(R(λi)) hZ(R(λj))

hLZ(F(α))

∼ ∼
hZ(R◦F(α))

which commutes since the left, right, and bottom faces are naturality squares and the rear face commutes

by construction of h.

We note that ηZ ◦ R(h) is necessarily unique, for if we had some other morphism h′ ∈ C (Z,R lim F )

making the relevant diagrams of C commute, then pushing it along the isomorphism gives L (h′) ◦ εlim F ∈
D(LZ, lim F ) making the relevant diagrams of D commute, which implies L (h′) ◦ εlim F = h by unicity,

and hence h′ = ηZ ◦R(h). Therefore R lim F ∼= lim R ◦F by unicity of universals. �

Proposition 3. Let C ,D ,D ′ be categories equipped with adjunctions

C D
L

R
and D D ′

L ′

R′

Then

C D ′
L ′◦L

R◦R′

is an adjunction.

Proof. The composition of functors is clearly well defined, so we obtain a natural isomorphism

D ′(L ′ ◦L (X), Y ′) ∼= D(L (X),R′Y ′)

∼= C (X,R ◦R′Y ′).

�



10

Definition 1. Given two categories C and D , an equivalence of categories is a pair of functors F : C → D

and G : D → C and natural isomorphisms ε : idC → G ◦F , η : F ◦ G → idD .

Proposition 4. Let L : C → D and R : C → D be adjoint functors with unit ε : idC → R ◦L and counit

η : L ◦R → idD .

(i) The functor R is fully faithful if and only if η is an isomorphism,

(ii) The functor L is fully faithful if and only if ε is an isomorphism

(iii) The following are equivalent:

(a) L is an equivalence of categories,

(b) R is an equivalence of categories,

(c) L and R are fully faithful. In this case, L and R are quasi-inverses of one another, and ε, η are

both isomorphism.

Proof. For (i), we observe from the diagram

D(Y, Y ′) C (RY,RY ′)

D(L ◦RY, Y ′)

hY ′ (ηY )

R(Y,Y ′)

∼

that R(Y, Y ′) is an isomorphism if and only if hY ′(ηY ) is an isomorphism. Hence R is fully faithful if and

only if hY ′(ηY ) is an isomorphism for all objects Y , Y ′ of D , and we are reduced to showing this is equivalent

to ηY being an isomorphism.

Clearly if ηY is an isomorphism, then hY ′(ηY ) is an isomorphism for all objects Y, Y ′ of D with inverse

hY ′(η
−1
Y ) : D(L ◦RY, Y ′).

Conversely, taking Y ′ = Y we obtain an inverse to ηY by applying the the inverse morphism:

η−1
Y = hY (ηY )−1(ηY ).

For (ii), we apply the same argument, mutatis mutandis, to the diagram

C (X,X ′) D(LX,LX ′)

C (X,R ◦LX ′)

hX(εX)

L (X,X′)

∼

Part (iii) follows from the definition of an equivalence of categories and the unicity of the adjoints. �

3. Quillen Adjunctions and Derived Functors

Definition 2. Let C and D be model categories.

(1) A functor L : C → D is left Quillen if L is a left adjoint and preserves cofibrations and trivial

cofibrations.

(2) A functor R : D → C is right Quillen if R is a right adjoint and preserves fibrations and trivial

fibrations.
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(3) An adjunction (L ,R, ϕ), where ϕ is the natural isomorphism

ϕX,Y : D(LX,Y )
∼→ C (X,RY ),

is called a Quillen adjunction if L is left Quillen.

Remark 1. Hovey always uses η for the unit of adjunction and ε for the counit of adjunction; my notation

is exactly the opposite.

Example 1. Let C be a model category and let I be a set. Equip the product category C I with the product

model structure. We can view an object of C I as a discrete diagram of C and a morphism of this category as

a morphisms of discrete diagrams. For example, in the case where I has two elements, a morphism between

two objects, f = (f1, f2) : X = (X1, X2)→ Y = (Y1, Y2) is just two morphisms of C :

X1 X2

Y1 Y2

f1 f2

with no commutativity relations.

As C has all small limits by assumption, we can define a product functor limI : C I → C which takes an

object X = (Xi)I of C I to the limit over the discrete diagram,

lim
I
X = lim

I
Xi =

∏
i∈I

Xi.

For any morphism of f ∈ C I(X,Y ), limI(f) is the unique map induced by the universal property of limit,

which is determined by the diagrams

limI X limI Y

Xi Yi

limI(f)

fi

indexed over I. For example, when I has two elements, the image of a morphism (f1, f2) : (X1, X2)→ (Y1, Y2)

is just the product map,

X1 X1 ×X2 X2

Y1 Y1 × Y2 Y2

f1 ∃!f1×f2 f2

We can define a a diagonal functor ∆: C → C I which takes an object of X of C to the discrete diagram

with I copies of X. A morphism f ∈ C (X,X) defines a morphism of discrete diagrams by taking f in each

component. We note that, by definition, a morphism f ∈ C I(∆X,Y ) is simply a collection of morphisms

fi ∈ C (X,Yi), giving

C I(∆X,Y ) =
∏
i∈I

C (X,Yi)

With this observation, it’s easy to see that this functor is left adjoint to limI since we can view the universal

property of products as a representability statement: The object limI Yi =
∏
i∈I Yi is the representing object
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of the functor
∏
i∈I C (−, Yi), and hence

C
(
−, lim

I
Y
)

= C

(
−,
∏
i∈I

Yi

)
∼=
∏
i∈I

C (−, Yi) = C I (−, Y ) = C I (∆ (−) , Y ) .

By Proposition 1 we obtain the desired natural isomorphism

C I (∆X,Y ) =
∏
i∈I

C (∆X,Yi) ∼= C
(

∆X, lim
I
Y
)
.

Note that by definition of the product model structure, ∆ necessarily preserves cofibrations and weak equiv-

alences, so this adjunction is Quillen.

Lemma 2. Let C and D be model categories and suppose L : C → D is left adjoint to R : D → C . This

adjunction is Quillen if and only if R is right Quillen.

Proof. By Lemma 1.1.10 of Hovey it suffices to show that given a fibration (resp. trivial fibration) p ∈
D(Y1, Y2), then Rp ∈ C (RY1,RY2) has the right lifting property with respect to all trivial cofibrations

(resp. cofibrations). Let f ∈ C (X1, X2) be a trivial cofibration (resp. cofibration). To say that Rp has the

right lifting property with respect to f is to say that for every commutative diagram

X1 RY1

X2 RY2

ϕ

f Rp

ψ

there is a lift ` : X2 → RY1 such that ` ◦ f = ϕ and Rp ◦ ` = ψ. This is equivalent to the morphisms of sets

D(LX2, Y1) ∼= C (X2,RY1)
hX2 (Rp)−→ C (X2,RY2) ∼= D(LX2, Y2)

and

D(LX2, Y1) ∼= C (X2,RY1)
hRY1

(f)
−→ C (X1,RY1) ∼= D(LX1, Y1)

being surjective. However, by the naturality squares

D(LX2, Y1) C (X2,RY1)

D(LX2, Y2) C (X2,RY2)

∼

hLX2 (p) hX2 (Rp)

∼

and

D(LX2, Y1) C (X2,RY1)

D(LX1, Y1) C (X1,RY1)

∼

hY1
(L (f)) hRY1

(f)

∼

this is equivalent to L (f) having the left lifting property with respect to p. This is equivalent to L (f) being

a cofibration (resp. trivial cofibration), which in turn is equivalent to the adjunction being Quillen. �

Remark 2. (i) If L : C → D and R : D → C is a Quillen adjunction, then, by Ken Brown’s Lemma,

L preserves weak equivalences between cofibrant objects and R preserves weak equivalences between

fibrant objects. By abuse of notation, we write L : Cc → D and R : Df → C for the restrictions, then

observe that we obtain

C Cc D

Ho (C ) Ho (Cc) Ho (D)

Q

γC

L

γCc γD

Ho(Q)

∃!

Ho(L )
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and

D Df C

Ho (D) Ho (Df ) Ho (C )

R

γD

R

γDf
γC

Ho(R)

∃!

Ho(R)

by the universal property for the homotopy category.

We also note that given natural transformations η : L → L ′, ν : R → R′ between Quillen functors,

we obtain natural transformations Ho (η) : Ho (L )→ Ho (L ′) and Ho (ν) : Ho (R)→ Ho (R′) defined

by Ho (η)X = ηX and Ho (ν)X = νX . Since all the functors involved preserve weak equivalences, these

are indeed natural by Lemma 1.2.2.

Note that on objects,

Ho (L ) (X) = L (QX) and Ho (R) (Y ) = R(QY ).

(ii) This construction does not require Quillen functors. We only used the fact that these functors preserve

weak equivalences between cofibrant (resp. fibrant) objects.

Definition 3. Let C and D be model categories.

(1) If F : C → D is a left Quillen functor, define the total left derived functor LF : Ho (C ) → Ho (D)

to be the composition

Ho (C )
Ho(Q)−→ Ho (Cc)

Ho(F)−→ Ho (D)

Given a natural transformation τ : F → F ′ of left Quillen functors, define the total derived natural

transformation Lτ to be Ho (τ) ◦Ho (Q), so that (Lτ)X = τQX .

(2) If G : D → C is a right Quillen functor, define the total right derived functor RG : Ho (D)→ Ho (C )

to be the composition

Ho (D)
Ho(R)−→ Ho (Df )

Ho(G )−→ Ho (C )

Given a natural transformation τ : G → G ′ of right Quillen functors, define the total derived natural

transformation Rτ to be Ho (τ) ◦Ho (R), so that (Rτ)X = τRX .

Theorem 2. For every model category, C , there is a natural isomorphism α : L(idC ) → idHo(C ). Also

for every pair of left Quillen functors F : C → D and F ′ : D → E , there is a natural isomorphism m =

mF ′F : LF ′ ◦ LF → L(F ′ ◦F ). These natural isomorphisms satisfy the following properties.

(1) An associativity coherence diagram is commutative. That is, if F : C → C ′, F ′ : C ′ → C ′′, and

F ′′ : C ′′ → C ′′′ are left Quillen functors, then the diagram

(LF ′′ ◦ LF ′) ◦ LF L(F ′′ ◦F ′) ◦ LF L((F ′′ ◦F ′) ◦F )

LF ′′ ◦ (LF ′ ◦ LF ) LF ′′ ◦ L(F ′ ◦F ) L(F ′′ ◦ (F ′ ◦F ))

mF′′F′◦LF m(F′′◦F′)F

LF ′′◦mF′F mF′′(F′◦F)

commutes.
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(2) A left unit coherence diagram is commutative. That is, if F : C → D is a left Quillen functor, then

the diagram

L(idD) ◦ LF L(idD ◦F )

1Ho(D) ◦ LF LF

m

α◦LF

commutes.

(3) A right unit coherence diagram is commutative. That is, if F : C → D is a left Quillen functor,

then the diagram

LF ◦ L(idC ) L(F ◦ idC )

LF ◦ idHo(C ) LF

m

LF◦α

commutes.

Proof. Let ı : Cc → C be the natural inclusion. We observe from the functorial factorization

0 X

QX

qX

that we obtain a natural transformation q : ı ◦ Q → idC . Taking the derived natural transformation Ho (q)

gives the natural isomorphism

idHo(C )
∼→ Ho (ı) ◦Ho (Q)

Ho(q)→ L(idC )

because qX is a trivial fibration.

Define mF ′F to be the collection of maps

LF ′ ◦ LFX = F ′(Q(F (QX)))
F ′(qF(QX))−→ F ′(F (QX)) = L(F ′ ◦F (X))

which is natural in X as a functor on C , for if f ′ ∈ C (X,X ′) then we have the commutative diagram

QX X

QX ′ X ′

qX

Qf f

qX′

which gives rise to the commutative diagram in D

Q(F (QX)) F (QX) F (X)

Q(F (QX ′)) F (QX ′) F (X ′)

qF(QX)

QF(Qf)

F(qX)

F(Qf) F(f)

qF(QX′) F(qX′ )
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and hence a commutative diagram in E

F ′(Q(F (QX))) F ′ ◦F (QX) F ′ ◦F (X)

F ′(Q(F (QX ′))) F ′ ◦F (QX ′) F ′ ◦F (X ′)

F ′(qF(QX))

F ′(QF(Qf))

F ′◦F(qX)

F ′◦F(Qf) F ′◦F(f)

F ′(qF(QX′)) F ′◦F(qX′ )

Since all functors involved preserve weak equivalences, mF ′F is also natural in X as a functor on Ho (C ).

Moreover, F preserves cofibrant objects because it preserves cofibrations as a left Quillen functor, hence

F ′ preserves the weak equivalence qF(QX) between cofibrant objects and thus it follows that mF ′F is an

isomorphism in Ho (E ).

For the associativity coherence diagram, we must show that

(F ′′ ◦F ′(qFQX)) ◦ (F ′′(qF ′QFQX)) = (F ′′(qF ′FQX)) ◦ ((F ′′ ◦Q ◦F ′(qFQX)).

This follows from naturality of q and a construction similar to the one above.

The left unit coherence diagram commutes because by definition

midD F (X) = idD(qFQX) = qFQX

and

α ◦ LF (X) = αFQX = qFQX

For the right unit coherence diagram, we have

mF idC (X) = F (qidC (qQX)) = F (qQX) : F (QQX)→ F (QX)

and

LF ◦ α(X) = F (Q(qX)) : F (QQX)→ F (QX).

Given a cofibrant object X we have the commutative diagram

QQX QX

QX X

qQX

Q(qX) qX

qX

because q is natural. Since qX is a weak equivalence between cofibrant objects it follow that F (qX) is

invertible in Ho (D) and hence

F (qQX) = FQ(qX).

Since every object of Ho (C ) is weakly equivalent to a cofibrant object, this completes the proof. �

Definition 4. Let C , D , and E be categories and let F ,G : C → D , F ′,G ′ : D → E be functors. Given

natural transformations η : F → G and ν : F ′ → G ′, defin the horizontal composition η∗ν : F ′ ◦F → G ′ ◦G
is the natural transformation defined by the collection of morphisms of E

F ′ ◦F (X) F ′ ◦ G (X)

G ′ ◦F (X) G ′ ◦ G (X)

F ′(ηX)

νFX νGX

G ′(ηX)



16

Lemma 3. Let C , D , and E be model categories. Let F ,G : C → D and F ′,G ′ : D → E be left Quillen

functors. Suppose η : F → G and ν : F ′ → G ′ be natural transformations. If m is the composition isomor-

phism of the Theorem above, then the diagram

LF ′ ◦ LF L(F ′ ◦F )

LG ′ ◦ LG L(G ′ ◦ G )

m

Lη∗Lν L(η∗ν)

m

commutes.

Proof. We unravel the definitions. The morphism

L(η ∗ ν) ◦mX : F ′QFQX → G ′GQX

is given by the composition across the top of the commutative diagram

F ′QFQX F ′FQX G ′FQX

F ′QGQX F ′GQX G ′GQX

G ′QGQX G ′GQX G ′GQX

F ′(qFQX)

F ′Q(ηQX) F ′(ηQX)

νFQX

G ′(νQX)

F ′(qGQX)

νQGQX

νGQX

νGQX

G ′(qGQX)

and the morphism m ◦ Lη ∗ LνX : F ′QFQX → G ′GQX is given by the composition across the bottom of

the commutative diagram

F ′QF (QX) G ′QFQX G ′FQX

F ′QGQX G ′QGQX G ′GQX

F ′Q(ηQX)

νQFQX

G ′Q(ηQX)

G ′(qFQX)

G ′(ηQX)

νQGQX G ′(qGQX)

Chasing the bottom left side of each diagram gives us the desired equality. �

Remark 3. Essentially, this says we have a 2-category (modulo some set theoretic issues...) with 0-cells

model categories, 1-cells left Quillen functors, 2-cells the natural transformations and the homotopy category,

total derived functor, and total derived natural transformation define a pseudo 2-functor to the 2-category

of categories.

Lemma 4. Let C be a model category and assume we have homotopic morphisms f0 ∼ f1 ∈ C (X,Y ). If

Y is fibrant object, then we may always choose a fibrant path object. Dually, if X cofibrant we may always

choose a cofibrant cylinder object.

Proof. Since Y is assumed to be fibrant, the pullback

Y × Y Y

Y 0

π0

π1
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is fibrant, as fibrations are stable under pullback. Choose a path object

Y Y × Y

Y ′

∆

t p0×p1

with p0 × p1 a fibration, t a weak equivalence, and a homotopy

X Y ′

Y

K

fi
pi

Taking a fibrant replacement, Y
rY→ RY ′, we obtain a lift

Y

Y ′ Y × Y

RY ′ 0

t
∆

rY

p0×p1

∃q0×q1

because Y × Y is fibrant and rY is a trivial cofibration, making RY ′ a path object. We also obtain a

homotopy rY ◦K since the diagrams

X Y ′ RY ′

Y × Y

Y

K

fi

rY

p0×p1

pi

q0×q1

πi

commute for i = 0, 1. �

Lemma 5. Let C and D be model categories. Given a Quillen adjunction

C D
F

G

we obtain a derived adjunction

Ho (C ) Ho (D)
LF

RG

Proof. Denote by ε and η the unit and counit of adjunction, respectively, and by [−,−]C , [−,−]D the

morphisms of the homotopy category. Also, recall that the isomorphism of adjunction is given by the
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morphisms

D(FX,Y ) C (G FX,GY ) C (X,GY )
G (FX,Y ) hGY (εX)

and

C (X,GY ) D(FX,FGY ) D(FX,Y )
F(X,GY ) hFX(ηY )

We first observe that we have natural isomorphisms

[LFX,Y ]D ∼= D(FQX,RY )/ ∼ and [X,RGY ]C ∼= C (QX,GRY )/ ∼ .

This reduces the problem to showing that the isomorphism of adjunction both preserves and reflects homo-

topies between cofibrant objects of C and fibrant objects of D , for then we can see that for any object X of

C and any object Y of D , the isomorphism of adjunction descends to a well-defined isomorphism

D(FQX,RY ) C (QX,GRY )

D(FQX,RY )/ ∼ C (QX,GRY )/ ∼

∼

Towards that end, assume that X is a cofibrant object of C and Y is a fibrant object of D . Given

f0 ∼ f1 ∈ D(FX,Y ), choose a homotopy from a fibrant path object.

Y Y × Y

Y ′

∆

t p0×p1

with p0 × p1 a fibration, t a weak equivalence, and a homotopy

FX Y ′

Y

K

fi
pi

Since G is right Quillen it preserves products, fibrant objects, weak equivalences between fibrant objects,

and (trivial) fibrations, hence we obtain a path object of C

GY G (Y × Y ) ∼= G (Y )× G (Y )

GY ′

G (∆)

G (t) G (p0×p1)=G (p0)×G (p1)

and a homotopy

X GY ′

GY

G (K)◦εX

G (fi)◦εX
G (pi)
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by the commutativity of the naturality square

D(FX,Y ′) C (X,GY ′)

D(FX,Y ) C (X,GY )

∼

hFX(pi) hX(G (pi))

∼

It’s clear that this morphism is surjective and natural, so it remains to show that that it reflects homotopies.

Assume that there is a homotopy G (f0) ◦ εX ∼ G (f1) ◦ εX in C . By duality, the argument above implies

that we may choose a cofibrant cylinder object

X
∐
X X

X ′

∇

ı0
∐
ı1

s

and a homotopy

X X ′

GY

ıi

G (fi)◦εX
H

As F is left Quillen it preserves cofibrant objects, (trivial) cofibrations, and weak equivalences between

cofibrant objects by which we obtain a cylinder object in D

F (X
∐
X) ∼= FX

∐
FX FX

FX ′
F(ı0

∐
ı1)=F(ı0)

∐
F(ı1)

F(∇)

F(s)

and a homotopy

FX FX ′

Y

ηY ◦F(G (fi)◦εX)

F(ıi)

ηY ◦F(H)

and we note that

ηY ◦F ◦ G (fi) ◦F (εX) = fi

implies that we have a homotopy f0 ∼ f1, as desired. Therefore the induced map is injective, hence an

isomorphism. �

4. Quillen Equivalences

Definition 5. A Quillen adjunction (F ,G , ϕ) : C → D is a Quillen equivalence if and only if, for all cofibrant

X in C and fibrant Y in D , a map f : FX → Y is a weak equivalence in D if and only if ϕ(f) : X → GY is

a weak equivalence in C .

Remark 4. Note that a Quillen equivalence is not always an equivalence of categories. This could be

thought of as a weak equivalence of model categories.
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Proposition 5. Let (F ,G , ϕ) : C → D be a Quillen adjunction with unit ε : idC → G ◦ F and counit

η : F ◦ G → idD . The following are equivalent:

(a) (F ,G , ϕ) is a Quillen equivalence,

(b) The composition X
εX−→ G FX

G (rFX)−→ GRFX is a weak equivalence for all cofibrant X, and the com-

position FQGY
F(qGY )−→ FQY

ηY−→ Y is a weak equivalence for all fibrant Y ,

(c) The derived adjunction is an equivalence of categories.

Proof. (a) ⇒ (b)

Assume X is cofibrant in C and Y is fibrant in D . Note that rFX and qGY are both weak equivalences.

From the diagrams

D(FX,RFX) C (G FX,GRFX) C (X,GRFX)

rFX G (rFX) G (rFX) ◦ εX

F(X,RFX)

ϕ

hGRFX(εX)

and

C (QGY,GY ) D(FQGY,FGY ) D(FGGY, Y )

qGY F (qGY ) ηY ◦F (qGY )

ϕ−1

we see ϕ(rFX) = G (rFX ◦ εX) and ϕ(ηY ◦F (qGY )) = qGY imply G (rFX) ◦ εX and ηY ◦F (qGY ) are weak

equivalences by the definition of a Quillen equivalence.

(b) ⇒ (c)

It suffices to show that the unit and counit of the adjunction are both isomorphisms. First assume that X

is a cofibrant object of C and note that FX is cofibrant in X. Chasing the identity through the diagram

D(FX,FX) C (X,G FX)

D(FX,RFX) C (X,GRFX)

D(FX,RFX)/ ∼ C (X,GRFX)/ ∼

[LFX,LFX]D [X,RG ◦ LFX]C

∼

hFX(rFX) hX(G (rFX))

∼

∼

∼ ∼

∼
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we see that the image in the bottom right hand corner is the isomorphism

X
εX−→ G FX

G (rFX)−→ GRFX

and thus for arbitrary X we obtain the isomorphism

X
q−1
X−→ QX

εQX−→ G FQX
G (rFQX)
−→ GRFQX

The proof that

FQGRY
F(qGRY )−→ FGRY

ηRY−→ RY
r−1
Y−→ Y

is an isomorphism follows similarly. One need only check that the diagrams from part (ii) of Proposition 1

commute.

(c) ⇒ (a)

This follows formally from part (iii) of Propostion 4. Let X be a cofibrant object of C , Y a cofibrant object

of D , and ε : idHo(C ) → RG ◦ LF the unit of the derived adjunction. Note that by assumption both ε is a

natural isomorphism.

Given a morphism f ∈ D(FX,Y ) denote its image under the ismorphism of adjunction f̃ ∈ C (X,GY ).

We have a commutative diagram

D(FX,Y ) C (X,GY )

D(FX,Y )/ ∼ C (X,GY )/ ∼

[LFX,Y ]D [X,RGY ]C

∼

∼

∼ ∼

∼

and note that f is a weak equivalence if and only if its image in Ho (D) is an isomorphism. The image of f

in [X,RGY ] is RG (f) ◦ εX , which is an isomorphism if and only if RG (f) is an isomorphism. Noting that

RG reflects isomorphisms because it is fully faithful, we see that RG (f) is an isomorphism if and only if the

image of f in Ho (D) is an isomorphism. Since RG (f) ◦ εX is the image of f̃ in Ho (C ), it now follows that f

is a weak equivalence if and only if f̃ is a weak equivalence. Therefore the adjoint pair F ,G form a Quillen

equivalence. �

5. Appendix

Lemma 6. If X is a cofibrant object of C , then qX : QX → X is an isomorphism. Dually, if Y is a fibrant

object of C , then rY : Y → RY is an isomorphism.

Proof. We have

0 X

QX

qX
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with qX a trivial fibration, which gives a lift

0 QX

X X

qX∃h

idX

because X is cofibrant. We note that h is a weak equivalence by 2-out-of-3. By the functorial factorization

we get

X QX

X ′

h

α(h) β(h)

giving a retract

X X ′ X

QX QX QX

idX

α(h)

h

qX◦β(h)

β(h) h

idQX

idQX idQX

and hence h is a trivial fibration. This now gives a lift

0 X

QX QX

h

idQX

∃h′

and so we see

qX = qX ◦ idQX = qX ◦ h ◦ h′ = idX ◦h′ = h′.

�


