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Abstract. Given a classical modular form f(z), a basic question is whether any of its
Fourier coefficients vanish. This question remains open for certain modular forms. For
example, let ∆(z) =

∑
τ(n)qn ∈ S12(Γ0(1)). A well-known conjecture of Lehmer asserts

that τ(n) 6= 0 for all n. In recent work, Ono constructed a family of polynomials An(x) ∈
Q[x] with the property that τ(n) vanishes if and only if An(0) and An(1728) do. In this
paper, we establish a similar criterion for the vanishing of coefficients of certain newforms
on genus zero groups of prime level.

1. Introduction

Let z ∈ H, the complex upper-half plane, let q := e2πiz, and let N and k be positive
integers. A classical modular form f(z) of weight k on the congruence subgroup Γ0(N) has
a q-expansion f(z) =

∑
af (n)qn. Of some interest are questions as to when, if ever, the

coefficients af (n) vanish.
We completely understand the vanishing behavior of coefficients of certain types of mod-

ular forms. For integers j ≥ 0 we denote the jth Bernoulli number by Bj. For even integers
k ≥ 2, we define the Eisenstein series of weight k on SL2(Z) by

(1.1) Ek(z) = 1− 2k

Bk

∞∑
n=1

∑
d|n

dk−1qn.

Further, we agree that E0(z) := 1. When k ≥ 4, Ek(z) is a modular form, none of whose
coefficients vanish. At the other extreme, one calls a modular form lacunary if a density one
subset of its coefficients vanish. Serre [17] proved that an integer weight modular form is
lacunary if and only if it is a linear combination of modular forms with complex multiplica-
tion; he later used this criterion [18] to prove that

∏
(1− qn)r with even r ≥ 2 is lacunary if

and only if r ∈ {2, 4, 6, 8, 10, 14, 26}.
On the other hand, for some modular forms f(z), it is not known whether any coefficients

af (n) vanish. Lehmer’s Conjecture furnishes the most famous example of questions of this
type. Let

(1.2) η(z) := q
1
24

∞∏
n=1

(1− qn)
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denote the Dedekind eta-function. We define the Delta-function by

∆(z) := η(z)24 =
∞∑
n=1

τ(n)qn.

It is a cusp form of weight 12 on SL2(Z). Lehmer’s Conjecture asserts that τ(n) 6= 0 for
all n.

In recent work, Ono [13, 14] constructed a family of polynomials An(x) ∈ Q[x] for all n ≥ 1
with the property that τ(n) vanishes if and only if An(0) and An(1728) do. In this paper,
we establish a similar criterion for the vanishing of coefficients of certain newforms on genus
zero groups of prime level. Moreover, we highlight deeper connections our construction has
to the theory of harmonic weak Maass forms. To state our results we first require some
notation and definitions.

In this paper, we consider N ∈ S := {1, 2, 3, 5, 7, 13}; for these N , the modular curve
X0(N) has genus zero. In addition, for N 6= 1 in S, the congruence subgroup Γ0(N) has
two inequivalent cusps, represented by zero and infinity. We denote the complex vector
space of weakly holomorphic modular forms of weight k on Γ0(N) by M !

k(Γ0(N). Forms in
M !

k(Γ0(N)) have poles, if any, supported at cusps. We denote by Mk(Γ0(N)) and Sk(Γ0(N))
the subspaces of holomorphic modular forms and cusp forms, respectively.

For N ∈ S and positive integers k, we require certain Eisenstein series in Mk(Γ0(N)). If
χ is a Dirichlet character modulo N and j and n are integers with j ≥ 0, we define

σχ,j(n) :=
∑
d|n

χ(d)dj.

We denote by χtriv
N the trivial character modulo N , and we set σj(n) := σχtriv

1 ,j(n). For N 6= 1
in S, we define

(1.3) E∗N,2(z) :=
NE2(Nz)− E2(z)

N − 1
= 1 +

24

N − 1

∞∑
n=1

σχtriv
N ,1(n)qn ∈M2(Γ0(N)).

For N ∈ S and weights k > 2, we define

(1.4) EN,k,∞(z) = 1 + · · · :=

{
Ek(z) N = 1,
NkEk(Nz)−Ek(z)

Nk−1
N ∈ {2, 3, 5, 7, 13}.

Note that for N 6= 1 in S, the form EN,k,∞(z) does not vanish at infinity, but vanishes at
the cusp zero. Moreover, for such N , it follows from (1.1) and (1.4) that

(1.5) EN,k,∞(z) = 1− 2k

Bk(Nk − 1)

∞∑
n=1

(
Nkσk−1

( n
N

)
− σk−1(n)

)
qn.

For N 6= 1 in S, we also require

(1.6) EN,k,0(z) = q + · · · := Bk

2k
(Ek(Nz)− Ek(z)) ∈Mk(Γ0(N)).

Note that EN,k,0(z) does not vanish at the cusp zero, but vanishes at infinity. We have

EN,k,0(z) =
∞∑
n=1

(
σk−1(n)− σk−1

( n
N

))
qn.
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Now, let N ∈ S and let k ∈ Z. If Sk(Γ0(N)) is one-dimensional, we denote its normalized
generator by

(1.7) fN,k(z) =
∞∑
n=1

aN,k(n)qn = q + · · · .

In the following table, we list all one-dimensional spaces Sk(Γ0(N)) and the corresponding
fN,k(z) in terms of (1.1), (1.2), (1.3), (1.6) and (1.9) (see below for the definition of (1.9)).

N k fN,k(z)

1 12, 16, 18, 20, 22, 26 η(z)24Ek−12(z)

2 8 η(z)8η(2z)8

2 10 f2,8(z)E∗2,2(z)

3 6 η(z)6η(3z)6

3 8 f3,6(z)E∗3,2(z)

5 4 η(z)4η(5z)4

5 6 f5,4(z)E∗5,2(z)

7 4 10
51

(φ7(z)E7,4,0(z)− E7,4,∞(z))

In [16], Ono presents a table with similar information for all even weight eta-product new-
forms, a list that contains our f1,12(z), f2,8(z), f3,6(z), and f5,4(z). We have checked for
vanishing among aN,k(n) for n < 10, 000, and the only form to have vanishing coefficients
for such n is f5,4(z). One can check for n = 2rm with r ≡ 3 (mod 4) and m odd that
a5,4(n) = 0.

Moreover, congruences for the coefficients of fN,k(z) restrict the possible n for which
aN,k(n) could vanish. For example, let N = 2 or N = 3 and suppose that ` is prime with
` | Bk(N

k − 1) but ` - 2k. One can show for all primes p 6= N that

(1.8) aN,k(p) ≡ 1 + pk−1 (mod `).

Hence, if aN,k(p) = 0 then we must have pk−1 ≡ −1 (mod `), which implies for (N, k, `) ∈
{(2, 8, 17), (3, 6, 13), (3, 8, 41)} that p ≡ −1 (mod `). Similar congruence restrictions hold
for the coefficients of the other forms in the table.

We now turn our attention to defining φN(z) ∈M !
0(Γ0(N)) ∩ Z((q)), a suitable generator

for the field of rational functions on X0(N). For this purpose, take

(1.9) φN(z) :=

j(z) = E4(z)3∆(z)−1 if N = 1,(
η(z)
η(Nz)

) 24
N−1

if N 6= 1 in S.

Next, for N ∈ S and n ≥ 0 we define a sequence of forms jN,n(z) ∈ M !
0(Γ0(N)) as follows.

Let f(z) be a meromorphic function on H, let τ ∈ H ∪ Q ∪ {∞}, and denote by ντ (f(z))
the order of vanishing at τ . Set jN,0(z) := 1, and for n ≥ 1, define jN,n(z) to be a form in
M !

0(Γ0(N)) for which

ν0(jN,n(z)) ≥ 0,

jN,n(z) = q−n + cN,n +O(q).(1.10)
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Observe that jN,n(z) is the unique form in M !
0(Γ0(N)) with these properties. To see this,

note that if f(z) is a second form with these properties, then the difference jN,n(z)− f(z) is
a holomorphic modular form of weight zero which vanishes at infinity. Hence, the difference
is constant; in particular, it must be zero. Further, note that jN,1(z) = φN(z).

We now define a related sequence JN,n(z) ∈M !
0(Γ0(N)). For all N ∈ S define JN,0(z) := 1,

and for all n ≥ 1, set

(1.11) JN,n(z) := jN,n(z)− cN,n = q−n +O(q).

We remark that for positive integers n with N - n, we have

JN,n(z) = JN,1(z) | nTN,0(n),

where TN,0(n) is the usual Hecke operator with level N , weight 0, and index n. Now, since
jN,1(z) generates the spaceM !

0(Γ0(N)), and since JN,n(z) ∈M !
0(Γ0(N)) satisfies ν0(JN,n(z)) ≥

0 and ν∞(JN,n(z)) = −n, it follows that JN,n(z) is expressible as a monic polynomial in
jN,1(z) with integer coefficients. Hence, for all integers N ∈ S and m ≥ 0, we define monic
polynomials pN,m(x) ∈ Z[x] as follows. Set pN,0(x) := 1 and for m ≥ 1, define pN,m(x) by

(1.12) pN,m(jN,1(z)) = JN,m(z).

We will study the generating function for these polynomials, given by

(1.13) HN,x(z) :=
∞∑
n=0

pN,n(x)qn;

the polynomials p1,m(x) are usually called Faber polynomials.
Finally, for pairs (N, k) with Sk(Γ0(N)) one-dimensional, choose G = 1+ · · · =

∑
bG(n)qn

in Mk−2(Γ0(N)). For m ≥ 0, and with pN,m(x) as in (1.12), define polynomials AN,k,G,m(x)
by

(1.14)
∞∑
m=0

AN,k,G,m(x)qm := HN,x(z) ·G(z)− EN,k,∞(z).

When N = 1, the mth q-expansion coefficient of EN,k,∞(z), which we denote by βN,k(m), is
given by (1.1). For N 6= 1 in S, the mth coefficient of EN,k,∞(z) is given by (1.5). It follows
from (1.14) that

(1.15) AN,k,G,m(x) =
m∑
n=0

bG(n)pN,m−n(x)− βN,k(m).

We now use the notation and definitions above to concisely state the known results on
vanishing criteria for newform coefficients in terms of the polynomials in (1.14).

Theorem 1.1. Assume the notation above. Let N = 1, let m be a positive integer, let
k ∈ {12, 16, 18, 20, 22, 26}, and fix G(z) = Ek−2(z).

(1) If k ≡ 0, 4 (mod 6), then we have a1,k(m) = 0 if and only if A1,k,G,m(0) = 0.
(2) If k ≡ 0 (mod 4), then we have a1,k(m) = 0 if and only if A1,k,G,m(1728) = 0.

Remark 1. The k = 12 case is due to Ono [13, 14]. In this case, a1,12(m) = τ(m), and
the theorem provides a criterion for verifying Lehmer’s Conjecture. The result for weights
k 6= 12 follows from work of the first author [5].

Therefore, our main result extends the results of Theorem 1.1 to other levels N ∈ S.
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Theorem 1.2. Assume the notation above.

(1) Let N = 2, and suppose that m is a positive integer. Then a2,8(m) = 0 if and only if
A2,8,G,m(x) = 0, where (G, x) is given by the following table:

G x

E6(z) −26, 29

E6(2z) 23, −26

E2,6,∞(z) −26

E4(z)E∗2,2(z) −26, −28

E4(2z)E∗2,2(z) 24, −26

(2) Let N = 3, and suppose that m is a positive integer. Then a3,6(m) = 0 if and only if
A3,6,G,m(x) = 0, where (G, x) is given by the following table:

G x

E4(z) −33, −35

E4(3z) −3, −33

E3,4,∞(z) −33

Remark 2. Analogous results hold for (N, k) ∈ {(2, 10), (3, 8)} using the identities f2,10(z) =
f2,8(z) · E∗2,2(z) andf3,8(z) = f3,6(z) · E∗2,2(z); see Section 2.

Remark 3. Let ω := −1+
√
−3

2
. The arguments x in the theorem are precisely the rational in-

teger values of φN(τ) at elliptic points of Γ0(N) or points τ ∈ {i, ω, i/N, ω/N}. Equivalently,
the x values arise as the values of φN(τ) at zeros of G(z). In particular, the valence formula
shows that G2(z) ∈M6(Γ0(2)) must have a zero at 1+i

2
, a representative of the unique elliptic

point for Γ0(2), and that G3(z) ∈ M4(Γ0(2)) must have a zero at 2+ω
3

, a representative of

the unique elliptic point for Γ0(3). Observing that φ2

(
1+i

2

)
= −26 and that φ3

(
2+ω

3

)
= −33,

it follows that part (1) of the theorem holds for all pairs (G2(z),−26), while part (2) of the
theorem holds for all pairs (G3(z),−33).

We note that there may be points τ of this type for which φN(τ) is not a rational integer.
For example, when N = 3, one can show (see Section 2) that while φ3

(
2+ω

3

)
, φ3(ω), and

φ3

(
ω
2

)
are rational integers, we have

(1.16) φ3(i) = −9 + 6
√

3 = 3(−3 + 2
√

3), φ3

(
i

3

)
= 243− 162

√
3 = 34(3− 2

√
3).

Moreover, for N ∈ {5, 7, 13}, none of the values of φN(τ) at such points are rational inte-
gers. Nevertheless, one could derive further results of the type in Theorem 1.2 by studying
AG,N,k,m(x) at algebraic integral arguments x which arise as values of φN(τ) at quadratic
irrationalities in H. For simplicity and aesthetics, we do not pursue further investigation of
examples of this type.
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Here we list examples of the polynomials AN,k,G,m(x) above. For (N, k) = (2, 8) and m = 3
we have

A2,8,E6(z),3(x) = x3 − 432x2 − 39924x− 9010432

17
,

A2,8,E6(2z),3(x) = x3 + 72x2 − 396x− 133984

17
,

A2,8,E2,6,∞(z),3(x) = x3 + 80x2 + 1036x+
6912

17
,

A2,8,E4(z)E∗2,2(z),3(x) = x3 + 336x2 + 21516x+
4515584

17
,

A2,8,E4(2z)E∗2,2(z),3(x) = x3 + 96x2 + 2316x+
288704

17
.

Similarly, for (N, k) = (3, 6) and m = 2 we have

A3,6,E4(z),2(x) = x2 + 264x+
65223

13
,

A3,6,E4(3z),2(x) = x2 + 24x− 297

13
,

A3,6,E3,4,∞(z),2(x) = x2 + 21x− 1116

13
.

Note that in the examples above, all coefficients are integers except for the constant terms.
If G(z) has integer coefficients, it follows from (1.15) that all coefficients of AN,k,G,m(x) must
be integral with the possible exception of the constant term. The integrality of the constant
term depends on βN,k(m), the mth coefficient of EN,k,∞(z). Thus, a necessary condition for
aN,k(m) to vanish is that βN,k(m) be an integer. Consequently, if p is a prime for which
a2,8(p) = 0, then (1.5) implies that p ≡ −1 (mod 17). Similarly, if p is a prime for which
a3,6(p) = 0, then we must have p ≡ −1 (mod 13). These observations are consistent with
those following from the congruences (1.8).

The outline of the paper is as follows. In Section 2, we prove Theorem 1.2. We do this
directly using facts about modular forms. In Section 3, we describe an alternate approach
to the proof using harmonic weak Maass forms.

2. Proof of Theorem 1.2

Let τ ∈ H. In [4], Asai, Kaneko, and Ninomiya proved that

(2.1)
∞∑
n=0

J1,n(τ)qn = −θ(j(z)− j(τ))

j(z)− j(τ)
=
E14(z)

∆(z)
· 1

j(z)− j(τ)
.

This formula is equivalent to the denominator formula for the Monster Lie Algebra and has
connections to other “Moonshine” phenomena; for details, see [8]. Since j(i) = 1728 and
j(ω) = 0, equation (2.1) has the following specializations:

H1,1728(z) =
∞∑
n=0

p1,n(1728)qn =
∞∑
n=0

J1,n(i)qn =
E6(z)

E4(z)
,(2.2)

H1,0(z) =
∞∑
n=0

p1,n(0)qn =
∞∑
n=0

J1,n(ω)qn =
E8(z)

E6(z)
.(2.3)
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Now, let N 6= 1 in S. The generating function for JN,n(τ) has a formula similar to (2.1),
which we now describe. With φN(z) as in (1.9), Ahlgren [3] proved the formula

(2.4)
∞∑
n=1

jN,n(τ)qn =
θ(φN(z)− φN(τ))

φN(z)− φN(τ)
− E∗N,2(z) = E∗N,2(z)

(
φN(z)

φN(z)− φN(τ)
− 1

)
.

Let cN,n be as in (1.10). An application of the Residue Theorem to (jN,n(z) − cN,n) ·
EN,2,∞(z) ∈M !

2(Γ0(N)) shows that

cN,n =
24

N − 1
· σχtriv

N ,1(n).

From (1.3), (1.11), and (2.4), it follows that

(2.5)
∞∑
n=0

JN,n(τ)qn =
θ(φN(z)− φN(τ))

φN(z)− φN(τ)
=

E∗N,2(z)φN(z)

φN(z)− φN(τ)
.

In this setting, we seek analogues of (2.2) and (2.3). When N = 2, we consider

j(z) =
(φ2(z) + 256)3

φ2(z)2
,(2.6)

j(2z) =
(φ2(z) + 16)3

φ2(z)
(2.7)

for this purpose. For the remaining values of N 6= 1 in S, we record analogous expressions

(2.8) j(z) =
ψN,1(φN(z))

φN(z)N
, j(Nz) =

ψN,2(φN(z))

φN(z)

in the following table:

N ψN,1(x) ψN,2(x)

3 (x+ 243)3(x+ 27) (x+ 3)3(x+ 27)

5 (x2 + 250x+ 3125)3 (x2 + 10x+ 5)3

7 (x2 + 13x+ 49)(x2 + 245x+ 2401)3 (x2 + 13x+ 49)(x2 + 5x+ 1)3

13 (x2 + 5x+ 13) (x2 + 5x+ 13)
×(x4 + 247x3 + 3380x2 + 1183x+ 28561)3 ×(x4 + 7x3 + 20x2 + 19x+ 1)3

Returning to N = 2, we compute the value of φ2 at elliptic points of Γ0(2) and at points
τ ∈ {i, ω, i/2, ω/2}. We observe that Γ0(2) has a single elliptic point of order 2, represented
by (i+1)/2, and that j

(
i+1

2

)
= j(i) = 1728. From (2.6), we then conclude that x = φ2

(
i+1

2

)
and x = φ2(i) are roots of the polynomial

(x+ 256)3 − 1728x2 = (x+ 64)(x− 512)2 = 0.

Using the q-expansion for φ2(z), we find that

(2.9) φ2

(
1 + i

2

)
= −64, φ2(i) = 512.
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Similarly, if we let z = i/2 in (2.7), we deduce that

φ2

(
i

2

)
= 8.

Alternatively, one may compute the last value from the identity

φN (−1/z) =
N12/(N−1)

φN(z/N)
,

which follows from the transformation formula for η(z) and the fact that j(z) = j(−1/z).
We also substitute j(ω) = 0 in (2.6) and (2.7) to obtain

φ2(ω) = −256, φ2

(ω
2

)
= −16.

For each of the preceding special values, one may use standard techniques to express
φ2(z)− φ2(τ) as a ratio of Eisenstein series. For example, we have

φ2(z) + 64 = φ2(z)− φ2

(
1 + i

2

)
=
E∗2,2(z)2

E2,4,0(z)
.

In view of such identities, we conclude the following analogues of (2.2) and (2.3) for N = 2.

Lemma 2.1. Assume the notation in (1.1), (1.3), (1.4), (1.11), (1.12), and (1.13). Then
the following identities hold:

H2,8(z) =
∞∑
n=0

p2,n(8)qn =
∞∑
n=0

J2,n

(
i

2

)
qn =

E2,6,∞(z)E∗2,2(z)

E6(2z)
,

H2,−16(z) =
∞∑
n=0

p2,n(−16)qn =
∞∑
n=0

J2,n

(ω
2

)
qn =

E2,6,∞(z)

E4(2z)
,

H2,−64(z) =
∞∑
n=0

p2,n(−64)qn =
∞∑
n=0

J2,n

(
1 + i

2

)
qn =

E2,6,∞(z)

E∗2,2(z)2
,

H2,−256(z) =
∞∑
n=0

p2,n(−256)qn =
∞∑
n=0

J2,n(ω)qn =
E2,6,∞(z)

E4(z)
,

H2,512(z) =
∞∑
n=0

p2,n(512)qn =
∞∑
n=0

J2,n(i)qn =
E2,6,∞(z)E∗2,2(z)

E6(z)
.

We next consider N = 3 and similarly calculate φ3(z) at elliptic points of Γ0(3) and points
τ ∈ {i, ω, i/3, ω/3}. The congruence subgroup Γ0(3) has a unique elliptic point, represented
by (2 + ω)/3. We find that j

(
2+ω

3

)
= j(ω) = 0. Substituting this information in the

expressions for j(z) and j(3z) in terms of φ3(z), we obtain

(2.10) φ3(ω) = −243, φ3

(
2 + ω

3

)
= −27, φ3

(ω
3

)
= −3.

On the other hand, (1.16) shows that φ3(i) and φ3(i/3) are algebraic integers, but not rational
integers.
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We further require g3(z), a modular form which transforms with respect to the character
χ−3(·) :=

(−3
·

)
:

(2.11) g3(z) :=
η(z)9

η(3z)3
∈M3(Γ0(3), χ−3).

For τ ∈
{

2+ω
3
, ω, ω

3

}
, we may express φ3(z)−φ3(τ) as a rational function of Eisenstein series

with rational coefficients, from which we conclude the following lemma.

Lemma 2.2. Assume the notation in (1.1), (1.3), (1.4), (1.11), (1.12), (1.13), and (2.11).
We have the following relations:

H3,−3(z) =
∞∑
n=0

p3,n(−3)qn =
E∗3,2(z)E3,4,∞(z)

E4(3z)
,

H3,−27(z) =
∞∑
n=0

p3,n(−27)qn =
g3(z)2

E3,4,∞(z)
,

H3,−243(z) =
∞∑
n=0

p3,n(−243)qn =
E∗3,2(z)E3,4,∞(z)

E4(z)
.

We now use Lemmas 2.1 and 2.2 to prove Theorem 1.2.

Proof of Theorem 1.2. Fix (N, k) = (2, 8). For the pairs (G(z), x) in part (1) of the theorem,
(1.14) together with Lemma 2.1 imply that

∞∑
m=1

A2,8,G(z),m(x)qm = H2,x(z) ·G(z)− E2,8,∞(z) ∈M8(Γ0(2)).

Since M8(Γ0(2)) has dimension 3, one may now readily deduce for each such pair (G(z), x)
that there is a constant cG,x, as in the following table, for which

∞∑
m=1

A2,8,G(z),m(x)qm = cG,x · f2,8(z).

Note that this constant must be cG,x = A2,8,G(z),1(x). Hence, we see for all m ≥ 1 that
a2,8(m) is a non-zero multiple of A2,8,G(z),m(x).
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G(z) x cG,x

E6(z) 512 576
17

E6(2z) 8 576
17

E4(z)E∗2,2(z) −256 576
17

E4(2z)E∗2,2(z) −16 576
17

E6(z) −64 −9216
17

E6(2z) −64 −648
17

E4(z)E∗2,2(z) −64 3840
17

E4(2z)E∗2,2(z) −64 −240
17

E2,6,∞(z) −64 −512
17

Part (2) of Theorem 1.2 follows similarly. Let (N, k) = (3, 6). For each pair (G(z), x) in part
(2) of the theorem, (1.14) and Lemma 2.2 imply that there is a constant cG,x = A3,6,G(z),1(x)
for which

∞∑
m=1

A3,6,G(z),m(x)qm = cG,x · f3,6(z).

We give the cG,x below. The theorem follows.

G(z) x cG,x

E4(z) −243 108
13

E4(3z) −3 108
13

E4(z) −27 2916
13

E4(3z) −27 −204
13

E3,4.∞(z) −27 −243
13

�

Remark 4. One may combine the objects we consider in various ways to obtain further
identities. For example, we have:

(1) f2,8(z) = H2,−64(z) · E2,8,0(z).
(2) f3,6(z) = H3,−27(z) · E3,6,0(z).
(3) H2,512(z) · E6(z) = H2,8(z) · E6(2z).
(4) H2,−256(z) · E4(z) = H2,−16(z) · E4(2z).
(5) H3,−243(z) · E4(z) = H3,−3(z) · E4(3z).

Observe that identities (3) and (4) follow from the tables in the proof of Theorem 1.2.
Remark 2 following Theorem 1.2 states that analogous results hold for (N, k) ∈ {(2, 10), (3, 8)}.

For (N, k) = (2, 10), these results follow from the proof of Theorem 1.2 and the identities

(2.12) E∗2,2(z)f2,8(z) = f2,10(z), E∗2,2(z)E2,8,∞(z) = E2,10,∞(z) +
11520

527
· f2,10(z).
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For example, the proof of Theorem 1.2 part (1) for (G(z), x) = (E6(2z), 8) gives

H2,8(z) · E6(2z)− E2,8,∞(z) =
576

17
· f2,8(z).

Multiplying both sides by E∗2,2(z) and using (2.12), we conclude that

∞∑
m=1

A2,10,E∗2,2(z)E6(2z),m(8)qm = H2,8(z) · E∗2,2(z)E6(2z)− E2,10,∞(z) =
1728

31
· f10,2(z).

It follows that a2,10(m) = 0 if and only if A2,10,E∗2,2(z)E6(2z),m(8) = 0. Similar results hold for

(N, k) = (3, 8) using the proof of Theorem 1.2 and the identities

E∗3,2(z)f3,6(z) = f3,8(z), E∗3,2(z)E3,6,∞(z) = E3,8,∞(z) +
6804

533
· f3,8(z).

Furthermore, one can derive variants of the results of Theorem 1.2 in certain cases. For
example, when N = 5, we observe that Γ0(5) has elliptic points of order 2 represented by
τ ∈ {2+i

5
, 3+i

10
}. For such τ , we note that j(τ) = j(5τ) = 1728. With ψ5,1(x) and ψ5,2(x) as in

(2.8), we determine that 1728x5 = ψ5,1(x) and that 1728x = ψ5,2(x), and we conclude using
Fourier expansions that

φ5

(
2 + i

5

)
= −11− 2i, φ5

(
3 + i

10

)
= −11 + 2i.

To pursue this example, we define the auxiliary form

g5(z) :=
η10(z)

η2(5z)
= 1 +O(q) ∈M4(Γ0(5)).

Using the identities

E∗5,2(z)φ5(z) =
E2,5,∞(z)g5(z)

f5,4(z)
, φ5(z)2 + 22φ5(z) + 125 =

E∗5,2(z)2g5(z)

f 2
5,4(z)

,

we find that

H5,−11+2i(z)H5,−11−2i(z) = g5(z)

and that

H5,−11+2i(z)H5,−11−2i(z)− E5,4,∞(z) = −125

13
· f5,4(z),

H5,−11+2i(z)H5,−11−2i(z) · E∗5,2(z)− E5,6,∞(z) = −125

31
· f5,6(z).

3. An alternate viewpoint: Harmonic Weak Maass Forms

In [13], Ono gives two proofs of Theorem 1.1 for weight k = 12. The first follows from
manipulation of (2.2) and (2.3) via facts on classical modular forms. The second follows
from interplay between modular forms and harmonic weak Maass forms. Using facts in [5],
both methods extend to prove the remaining cases of Theorem 1.1. In this section we sketch
the main ideas in the proof of Theorem 1.2 from the viewpoint of harmonic weak Maass
forms. We begin with some definitions; throughout we assume the notation from Section 1.
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We recall the definition of a harmonic weak Maass form. Let z = x+ iy ∈ H. We require
the weight k hyperbolic Laplacian, denoted by

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

A harmonic weak Maass form of weight k on Γ0(N) is a smooth function f on H satisfying:

(i) For all M = ( a bc d ), we have (f |kM)(z) = f(z).
(ii) ∆kf = 0.

(iii) There is a polynomial Pf =
∑
n≤0

c+
f (n)qn ∈ C[q−1] such that f(z) − Pf (z) = O(e−εy)

as y →∞ for some ε > 0. One requires analogous conditions at all cusps.

For a fixed cusp, one calls the corresponding polynomial Pf in (iii) the principal part of the
expansion at the cusp. We denote the vector space of forms satisfying (i)-(iii) by Hk(Γ0(N)).
For details on harmonic weak Maass forms, see [16] for example.

Let k ≥ 2 and N ≥ 1 be integers. Important examples of forms in H2−k(Γ0(N)) include
non-holomorphic Poincaré series, as we now describe. For details on series of this type, see
[6] or [7]; for details on the special functions required to define these series, see [1] or [2]. Let
s ∈ C, let y ∈ R − {0}, let e(x) := e2πix, and let Mν,µ be the usual M -Whittaker function
with parameters µ, ν. We define

Ms(y) := |y|
k
2
−1Msgn(y)(1− k

2 ),s− 1
2
(|y|),

and we define

φs(z) :=Ms(4πy)e(x).

We let Γ0(N)∞ denote the stabilizer of ∞ in Γ0(N). For matrices M =

(
a b
c d

)
∈ SL2(Z),

we define the slash operator |kM (see [11] for example) on functions f(z) in the usual way,
and we define χtriv

N (M) := χtriv
N (d). We may now define the non-holomorphic Poincaré series

(3.1) FN,2−k(z) :=
1

(k − 1)!

∑
M∈Γ0(N)∞\Γ0(N)

(
χtriv
N (M)−1φk/2 (−z) |2−k M

)
∈ H2−k(Γ0(N)).

To describe q-expansions for FN,2−k(z), we require Γ(a, x), the incomplete Gamma-function.
One may canonically decompose FN,2−k(z) as a sum of holomorphic and non-holomorphic
parts, writing

FN,2−k(z) = F+
N,2−k(z) + F−N,2−k(z),

with

F+
N,2−k(z) := q−1 +

∞∑
n=0

a+(n)qn,

F−N,2−k(z) := − 1

(k − 2)!
Γ(k − 1, 4πy)q−1 +

∞∑
n=1

a−(n)Γ(k − 1, 4πny)q−n;

exact formulae for the a+(n) and a−(n) are given in [6]. We note that for N ∈ S, we have

a+(0) =

{
− 2k
Bk(Nk−1)

N = 2, 3, 5, 7, 13,
2k
Bk

N = 1.
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We now describe the interplay between newforms fN,k(z) as in (1.7) and harmonic weak
Maass forms FN,2−k(z) as in (3.1). We require the differential operator

ξ2−k := 2iy2−k · ∂
∂z
.

This operator satisfies ξ2−k : H2−k(Γ0(N)) → Sk(Γ0(N)). If || · || denotes the Petersson
product on Sk(Γ0(N)), then one can show that ξ2−k(FN,2−k(z)) = ||fN,k(z)||−2 · fN,k(z). As
such, we say that FN,k(z) is good for fN,k(z). For the complete definition of what it means
for a form in H2−k(Γ0(N)) to be good for a normalized newform in Sk(Γ0(N)), see [10].

Remark 5. More generally, suppose that F (z) = F+(z)+F−(z) ∈ H2−k(Γ0(N)) is good for a
newform f(z) ∈ Sk(Γ0(N)) and that p - N is prime. Theorem 1.4 of [10] gives the following
necessary condition for the vanishing of coefficients af (p) of f(z) in terms of algebraicity of
coefficients a+(n) of F+(z). Let ordp(n) denote the highest power of p dividing the integer
n. If af (p) = 0, then for all n with ordp(n) odd, a+(n) is algebraic. Theorem 1.3 of [10]
asserts that if f(z) has complex multiplication, then for all n, a+(n) is algebraic. A question
of Ono [16] asks whether the converse is true.

We now describe how the polynomials AN,k,G,`(z) in (1.14) arise from harmonic weak
Maass forms. Recall that the forms fN,k(z) have Fourier coefficients aN,k(n). Let TN,k(m)
denote the usual Hecke operator of weight k, level N , and index m. Since the fN,k(z) are
newforms, they satisfy, for all primes ` 6= N ,

fN,k(z) | TN,k(`) = aN,k(`)fN,k(z).

Therefore, for a fixed prime ` 6= N , we define

LN,k,`(z) := `k−1(FN,2−k(z) | TN,2−k(`)− `1−kaN,k(`)FN,2−k(z)).

Arguing as in [5, Proposition 3.1] or [9, Section 7], one can show, since FN,k(z) is good for
fN,k(z), that F−N,2−k(z) is an eigenform for TN,2−k(`) with eigenvalue `1−kaN,k(`). It follows

that LN,k,`(z) ∈M !
2−k(Γ0(N)) and that

LN,k,`(z) = `k−1(F+
N,2−k(z) | TN,2−k(`)− `1−kaN,k(`)F

+
N,2−k(z))

= q−` − aN,k(`)q−1 + a+(0)(σk−1(`)− aN,k(`)))

+
∞∑
n=1

(
`k−1a+(`n)− aN,k(`)a+(n) + a+

(n
`

))
qn.

In order to obtain a convenient closed-form expression for LN,k,`(z), we require an auxiliary
modular form G(z) as in Section 1:

G(z) =
∞∑
n=0

bG(n)qn = 1 + · · · ∈Mk−2(Γ0(N)).

By construction, the forms LN,k,`(z) and LN,k,`(z) · G(z) ∈ M !
0(Γ0(N)) have non-vanishing

principal parts at infinity, but vanish at the cusp zero. We compute

LN,k,`(z) ·G(z) =
∑̀
n=0

bG(n)qn−` − aN,k(`)
1∑

n=0

bG(n)qn−1 + a+(0)(σk−1(`)− ak,N(`)) +O(q).
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With φN(z) as in (1.9) and AN,k,G,m(x) as in (1.14), we observe that

AN,k,G,`(φN(z))− aN,k(`)AG,N,k,1(φN(z))

and LN,k,`(z)·G(z) have the same principal part at infinity. Since both forms are holomorphic
at zero, their difference is

LN,k,`(z) ·G(z)− (AN,k,G,`(φN(z))− aN,k(`)AN,k,G,1(φN(z))) ∈M0(Γ0(N)).

Hence, it is constant. In particular, the difference vanishes at infinity and is therefore equal
to zero, from which we conclude that

(3.2) LN,k,`(z) =
AN,k,G,`(φN(z))− aN,k(`)AN,k,G,1(φN(z))

G(z)
.

Now, recall that LN,km,`(z) ∈ M !
2−k(Γ0(N)). Hence, if G(z) ∈ Mk−2(Γ0(N)) vanishes at

τ ∈ H, then AN,k,G,`(φN(z)) − aN,k(`)AN,k,G,1(φN(z)) must also vanish. Using the valence
formula, we recover the results in Theorem 1.2; see, for example, Remark 3.

For (N, k) ∈ {(2, 10), (3, 8), (5, 4), (5, 6)}, the valence formula reveals no information about
vanishing of G(z) ∈Mk−2(Γ0(N)) at elliptic points. It does, however, yield information when
(N, k) = (7, 4). In this case, M2 (Γ0(7)) = CE∗7,2(z), so it suffices to consider G(z) = E∗7,2(z),
a form with integer coefficients. The valence formula reveals that E∗7,2(z) vanishes at one

or both representatives τ ∈ {−2+ω
7
, 3+ω

7
} of the elliptic points for Γ0(7). By (2.8), the

corresponding values φ7(τ) must be common roots of the polynomials ψ7,1(x) and ψ7,2(x).
We find these common roots to be

x± =
−13± 3i

√
3

2
.

Note that they are not rational integers. As they are complex conjugates, it follows from
(1.13) that the Fourier coefficients of H7,x±(z) are complex conjugates. Therefore, the nu-
merator in (3.2) vanishes at both elliptic points. We conclude that

A7,4,G,`

(
−13± 3i

√
3

2

)
= a7,4(`)A7,4,G,1

(
−13± 3i

√
3

2

)
=

(
8

5
± 3
√

3

2
i

)
a7,4(`).

Hence, for (N, k) = (7, 4), we obtain a vanishing result similar to Theorem 1.2.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and math-
ematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the
Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.

[2] G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and its Applica-
tions, vol. 71, Cambridge University Press, Cambridge 1999.

[3] S. Ahlgren, The theta-operator and the divisors of modular forms on genus zero subgroups, Math. Res.
Lett. 10 (2003), no. 5-6, 787–798.

[4] T. Asai, M. Kaneko, H. Ninomiya, Zeros of certain modular functions and an application, Comment.
Math. Univ. St. Paul. 46 (1997), no. 1, 93–101.

[5] M. Boylan, Arithmetic properties of certain level 1 mock modular forms, Int. J. Number Theory, to
appear.

[6] K. Bringmann and K. Ono, Coefficients of harmonic weak Maass forms, Proceedings of the 2008 Uni-
versity of Florida conference on partitions, q-series, and modular forms, accepted for publication.

[7] J. H. Bruinier, Borcherds products on O(2, `) and Chern classes of Heegner divisors, Lecture Notes in
Mathematics, vol. 1780, Springer-Verlag, Berlin, 2002.



ON THE VANISHING OF FOURIER COEFFICIENTS OF CERTAIN GENUS ZERO NEWFORMS 15

[8] J.H. Bruinier, W. Kohnen, K. Ono, The arithmetic of the values of modular functions and the divisors
of modular forms, Compos. Math. 140 (2004), no. 3, 552–566.

[9] J.H. Bruinier and K. Ono, Heegner divisors, L-functions, and harmonic weak Maass forms, Ann. of
Math., accepted for publication.

[10] J.H. Bruinier, K. Ono, and R.C.Rhoades, Differential operators for harmonic weak Maass forms and
the vanishing of Hecke eigenvalues, Math. Ann. 342 (2008), 673 - 693.

[11] F. Diamond, J. Shurman, A first course in modular forms. Graduate Texts in Mathematics, 228.
Springer-Verlag, New York, 2005.

[12] H. Iwaniec, Topics in classical automorphic forms. Graduate Studies in Mathematics, 17. American
Mathematical Society, Providence, RI, 1997

[13] K. Ono Lehmer’s conjecture on Ramanujan’s tau-function, J. Indian Math. Soc. (N.S.) 2007, Special
volume on the occasion of the centenary year of IMS (1907-2007), 149–163 (2008).

[14] K. Ono A mock theta function for the Delta-function, Proceedings of the 2007 Integers Conference,
Combinatorial Number Theory: Proceedings of the 2007 Integers Conference, de Gruyter, Berlin, 141–
156 (2009).

[15] K. Ono Unearthing the visions of a master: harmonic Maass forms and number theory, Harvard-MIT
Current Developments in Mathematics, International Press, 2008, accepted for publication.

[16] K. Ono Algebraicity of harmonic Maass forms, SASTRA Prize Volume, Ramanujan J., accepted for
publication.
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