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ABsTRACT. Let p(n) denote the ordinary partition function. Subbarao conjectured that in
every arithmetic progression r (mod t) there are infinitely many integers N = r (mod t)
for which p(N) is even, and infinitely many integers M = r (mod t) for which p(M) is odd.
We prove the conjecture for every arithmetic progression whose modulus is a power of 2.

1. INTRODUCTION AND STATEMENT OF RESULTS

A partition of a non-negative integer n is a non-increasing sequence of positive integers
whose sum is n. It is well known, by the work of Euler, that the generating function for
p(n) is given by the infinite product

oo [ee]
1
(1) > e =] ;=7 =1+a+20"+3¢° +5¢" +7¢" +---.

Although it is widely believed that p(n) is equally often even and odd, little is known.
In this note we consider the following conjecture due to M. Subbarao [7].

Conjecture. (Subbarao) For any arithmetic progression v (mod t), there are infinitely
many integers M = r (mod t) for which p(M) is odd, and there are infinitely many
integers N = r (mod t) for which p(N) is even.

Works by F. Garvan, O. Kolberg, M. Hirschhorn, D. Stanton and M. Subbarao (see
[5] for references) verified this conjecture for every arithmetic progression with modulus

te{1,2,3,4,5,6,8,10,12, 16,20, 40}.
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More recently, the second author [5] was able to prove the conjecture for every arithmetic
progression with modulus ¢ < 10°.

This was obtained by combining two results. The first result in [5] establishes that in
every arithmetic progression 7 (mod t) there are infinitely many integers N = r (mod t)
for which p(N) even. Obviously, this settles the “even case” of the conjecture. However,
the “odd case” of the conjecture remains open. The second result in [5] shows that there
are infinitely many integers M = r (mod t) for which p(M) is odd, provided there is at
least one such M. Unfortunately, the possibility remains that there are rogue progressions
r (mod t) for which p(N) is even for every N = r (mod t).

With the aid of a computer, one may presumably use the results in [5] to prove the
conjecture for many more moduli t. Unfortunately, the total number would be finite. In
this note we exhibit the first infinite family of moduli ¢ for which we are able to settle
the conjecture.

Theorem 1. If s is a positive integer, then Subbarao’s Conjecture is true for every
arithmetic progression with modulus t = 2°.

Combined with works by S. Ahlgren [Th. 1.4, 1] and J.-P. Serre [Th. 3, 4], this result
immediately implies the following corollary.

Corollary 2. If s is a positive integer and 0 < r < 2%, then

#{N=r (mod 2°) : N<X and p(N)=0 (mod 2)} >, VX,
#{M=r (mod2°) : M <X and p(M)=1 (mod 2)} >,,VX/logX.

In §2 we present a proposition which implies Theorem 1, and in §3 we prove it.
2. AN IMPORTANT PROPOSITION

We begin by recalling Ramanujan’s Delta function, the unique cusp form of weight 12
with respect to the full modular group SLo(Z). It is given by the infinite product

(2) H (1 —q™)** = q— 24¢® + 252¢> — - - - (q := €?™ throughout).
If s > 1 is a positive integer, then define integers as(n) by
(3) A(z) D3 = Z as(n

The following lemma relates the parity of these coefficients to the parity of the partition
function in arithmetic progressions (mod 4°).
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Lemma 2.1. If s > 1 is a positive integer, then define integers rs(j) by

1+Z7‘s )g® 4 :—H(l—q

Then we have

4°—1

) ("

- 4sj> (mod 2).

Proof. By (1) and (2), we find that

(4°-1)/3
A(z)(4s_1)/3 — ( H 1 _q )
= ¢(4°-1)/3 H H ( ) (mod 2)

n=1
1+er 84s (

||M8

)gBrt it 3—1) (mod 2).

The result follows by comparing coefficients.
Q.E.D.
The next proposition is vital for our result.

Proposition 2.2. If s > 1 is a positive integer, then there is an odd positive integer ng
for which as(ns) is odd with the additional property that

as(ns£?) =1 (mod 2)
for every prime £t 2n.

Lemma 2.3. Proposition 2.2 implies Theorem 1.

Proof. We begin by noting that Theorem 1 is implied by the truth of Subbarao’s Conjec-
ture for all arithmetic progressions with moduli of the form 4°. Therefore, our objective
is to prove the conjecture in these cases.

By [Main Theorem 1, 5], it suffices to prove the “odd case” of the Subbarao’s Conjec-
ture. Moreover, by [Main Theorem 2, 5|, it suffices to establish that in each arithmetic
progression r (mod 4°) there is at least one integer M = r (mod 4°) for which p(M) is
odd.



4 MATTHEW BOYLAN AND KEN ONO
Suppose that £1 2n is prime. If Proposition 2.2 is true, then Lemma 2.1 implies that

4°—1

862 43—1 s£2
as(nd?)=1=p (n ) + er(j (n—3 - 4sj) (mod 2).

Therefore, it follows that

862 _ 451
(4) D (nT?’ — 4sj) =1 (mod 2)

for some non-negative integer j. Notice that the arguments for the partition function lie
in a fixed arithmetic progression (mod 4°) which is independent of j.

Hence, it suffices to show, by varying the primes ¢, that the numbers % (nséz — 463_ 1)
cover all of the arithmetic progression modulo 4°. This follows by an easy application of

Hensel’s Lemma and Dirichlet’s Theorem on Primes in Arithmetic Progressions.

Q.E.D.

3. PROOF OF THEOREM 1.

In view of Lemma 2.3, it suffices to prove Proposition 2.2. In this section we prove
Proposition 2.2 using the nilpotency of the action of the Hecke operators on the space of
modular forms on SLy(Z) modulo 2.

We begin by fixing notation. If k is a positive integer, then let M} denote the space
of weight k£ modular forms with respect to SLy(Z) (see [3] for background on modular
forms). If p is prime, then let T},

Tp7k : Mk — Mk

denote the usual pth Hecke operator for My. If f(z) =Yo7 ,a(n)g™ € My, then

oo

(5) F) | Tk =Y (alpn) +p* ta(n/p)) ¢"

n=0

Note that a(e) = 0 if @ ¢ Z. If m is a positive integer and f(z) =Y ., a(n)q" € Z[[q]]
has the property that a(n) =0 (mod m) for every n, then we say that

f(z)=0 (mod m).
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Proposition 3.1. If f(z) =Y o> ,a(n)q" € My N Z[[q]] has the property that
f(2) | Tpr =0 (mod 2)
for every prime p, then either f(z) =0 (mod 2) or

oo

f(z)=A2) = Z g2+’ (mod 2).

n=0

Proof. Without loss of generality, we may assume that k is an even integer since every
modular form on SLy(Z) with odd weight is the function which is identically zero. By
(5), we have that

oo

0=f(2) | Tog = Z a(2n)q™.

n=0

Therefore, if a(n) is odd, then n must be odd.

If p is an odd prime, then the coefficient of ¢" in f(z) | T, 5 satisfies
(6) a(pn) +a(n/p) =0 (mod 2).
Therefore, if p { n, then a(pn) = 0 (mod 2). By replacing n by p?n where p { n, (6)
implies that

= a(p®n) + a(pn) = a(p®n) (mod 2).

Arguing in this way, we find that if a(n) is odd, then n must be an odd square.

If p is an odd prime, then (6) implies that

(7) 0 =a(p®n) +a(n) (mod 2)

for every positive integer n. If a(1) is even, then (7) implies that f(z) =0 (mod 2). On
the other hand, if a(1) is odd, then (7) implies that

f(z) = i ¢®" " (mod 2).
n=0

To complete the proof, it suffices to show that

e o] oo 2
A(z) =q H (1—¢%)3 = Z ¢? )" (mod 2).
n=1 n=0

This follows immediately from Jacobi’s Triple Product Identity [Th. 2.8, 2.
Q.E.D.

J.-P. Serre noticed that (see [p. 115, 6] and [p. 251, 7]) the action of the Hecke
algebras on the space of modular forms modulo 2 is locally nilpotent. This implies that
if f(z) € My, N Z[[q]], then there is a positive integer 7 with the property that

f(z) ‘ Tp17k | Tp27k ‘ e ‘ T i7k = 0 (mOd 2)

for every collection of primes p1, p2,...p;. For convenience we make the following defini-
tion.
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Definition 3.2. Suppose that f(z) =Y .- ,a(n)g" € My N Z[[q]] is a modular form for
which

f(z) 20 (mod 2) and f(z)#Z A(z) (mod 2).
We say that f(z) has degree of nilpotency i if there are distinct primes p1,pa, - --pi—1 for
which

f(Z) | Tplak | TP2,k | | Tpi—l,k ?_é 0 (mOd 2)
and

f(Z) | Tﬁl,k | Tg%k ‘ ‘ Tgi’k =0 (mod 2)
for every collection of distinct primes £1,4s,...,4;.

Proposition 3.3. Suppose that f(z) =Y .., a(n)q" € My NZ[[q]] has degree of nilpo-
tency © > 0. Then there are distinct primes py,psa,...p;—1 with the property that

a(nopipz---pi—1) =1 (mod 2)
for every odd square ng which is coprime to p1ps - - pi_1.

Proof. By Proposition 3.1 and the definition of the degree of nilpotency, there are distinct
primes p1, pa,...p;—1 for which

(8) f(z) | Ty ok | T, | o] Tpii ke = A(z) = Zq(2n+1)2 (mod 2).

Define integers b;(n) by

Zbl "= ) |Tp1k7

ZbQ "= f(2) | Ty k | Ty ks

sz lq ) | Tp1,k | Tpa,k | |Tpi—1,k'

By (5), (8), and (9), if ng is an odd square which is coprime to pi1ps - - - p;—1, then
1=bi—1(ng)
= bi—2(nopi—1)
= bi—3(nopi—2pi-1)

= bi(nopep3 -~ - Pi—1)

= a(nop1p2 - - -pi—1) (mod 2).
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This completes the proof.
Q.E.D.

Proof of Proposition 2.2. Let s > 1 be a positive integer, and recall that the integers
as(n) are defined by

S ay(n)g" = A2) D/ = gD/
n=1

It is easy to see that (4° —1)/3 =5 (mod 8). Therefore,

AR £0 (mod2) and AWV EAR) =) ¢* Y (mod 2).

n=0

By Proposition 3.3, there is a positive integer ¢+ > 2 and distinct primes pi, pa,...pi—1
for which

(10) as(nopipa--+pi1) =1 (mod 2)

for every odd square ng which is relatively prime to pips---p;_1. In addition, each of
the primes p1,pa,...,pi_1 is odd. This follows immediately from (5) and the fact that
as(n) is even for every integer n # (4° —1)/3 =5 (mod 8).

Let £ 1 2ngp1ps - - - pi—1 be prime. Define modular forms hg(z), h1(z),...,h;_1(2) by

o0
ho(z) = Zco(n)q” = A(Z)(4S_1)/3 | TZ,k:s;
n=0
hi(z) =Y ei(n)q™ == A(2)* D3 | Ty, | Ty, i,
n=0
ha(2) = Y ca(n)g™ := A() 3 | Tup, | Ty, i, | Tk
n=0

(11)

hi_]_(Z) = ZCi_l(n)qn = A(z)(4s_1)/3 | Tg;ks | Tp17ks | Tp27ks | e | Tpi—laks'
n=0

Here the weight k, is 45! — 4.
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By nilpotency, we have that h; _1(z) =0 (mod 2). Therefore, by (5) we have that

0

C;—1 (nof)
ci—2(nopi—1£)
= ci—3(nopi—2pi—1%)

Il

c1(nop2ps - - - pi—1f)
co(nopips - - - pi—1f)
= as(nop1p2 - Pi—1£%) + as(nop1p2 - - pi—1) (mod 2).

However, this congruence together with (10) implies that
as(nopip2 - -pi—1£>) =1 (mod 2).

This proves Proposition 2.2 with ny, = ngpip2---pi_1.

Q.E.D.
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