ARITHMETIC PROPERTIES OF THE PARTITION FUNCTION

SCOTT AHLGREN AND MATTHEW BOYLAN

1. INTRODUCTION AND STATEMENT OF RESULTS

Let \(p(n) \) denote the number of partitions of the positive integer \(n \); \(p(n) \) is the number of representations of \(n \) as a non-increasing sequence of positive integers (by convention, we agree that \(p(0) = 1 \) and that \(p(n) = 0 \) if \(n < 0 \)). The study of the arithmetic properties of \(p(n) \) has a long and rich history; see, for example, the works of Andrews, Atkin, Dyson, Garvan, Kim, Stanton, and Swinnerton-Dyer [An, An-G, At1, At-SwD, D, G-K-S]. These works have their origins in the groundbreaking observations of Ramanujan [R1, R2, R3, R4]. In Ramanujan’s own words [R3],

I have proved a number of arithmetical properties of \(p(n) \) … in particular that

\[
p(5n + 4) \equiv 0 \pmod{5},
\]

(1.1)

and

\[
p(7n + 5) \equiv 0 \pmod{7}.
\]

(1.2)

I have since found another method which enables me to prove all of these properties and a variety of others, of which the most striking is

\[
p(11n + 6) \equiv 0 \pmod{11}.
\]

(1.3)

There are corresponding properties in which the moduli are powers of 5, 7, or 11. … It appears that there are no equally simple properties for any moduli involving primes other than these three.

Recently (see [A], [O], [A-O]) it has been shown that in one sense, congruences like Ramanujan’s original three examples are quite common. After these works, for example, it is now known that if \(M \) is any integer coprime to 6, then there exist integers \(a \) and \(b \) such that

\[
p(an + b) \equiv 0 \pmod{M} \text{ for all } n.
\]

The first author thanks the National Science Foundation for its support through grant DMS 01-34577. The second author thanks the National Science Foundation for its support through a VIGRE postdoctoral fellowship.
However, these congruences are much more complicated than (1.1)–(1.3); for example, one of
the simplest congruences modulo 13 (which was first recorded by Atkin and O’Brien [At-Ob]) is
\[
p(59^4 \cdot 13n + 111247) \equiv 0 \pmod{13}.
\]

In general, if \(\ell \) is a prime, then by a Ramanujan congruence modulo \(\ell \) we will mean a
congruence of the form
\[
p(\ell n + \beta) \equiv 0 \pmod{\ell} \quad \text{for all } n
\]
with some fixed \(\beta \in \mathbb{Z} \).

A natural quantification of Ramanujan’s statement is the assertion that the congruences
(1.1)–(1.3) are the only ones of their kind. In other words,

Conjecture 1. Suppose that \(\ell \) is prime. If there is a Ramanujan congruence modulo \(\ell \), then
the congruence must be one of (1.1), (1.2), or (1.3).

Here we prove

Theorem 1. Conjecture 1 is true.

We also consider another classical conjecture regarding the arithmetic of the partition
function. In particular, we recall the conjecture of Newman [N1].

Conjecture 2. (Newman’s Conjecture). If \(M \) is a positive integer, then for every integer
\(0 \leq r < M \) there are infinitely many non-negative integers \(n \) such that \(p(n) \equiv r \pmod{M} \).

Atkin, Kolberg, Newman, and Klöve [At2, Ko, N1, Kl] proved the conjecture for \(M = 2, 5, 7, 13, 17, 19, 29, \) and 31. In work of the first author [A] and Ono [O], conditions are obtained
which (presumably) allow one to check the proof of the conjecture for any \(M \) coprime to 6. For
prime values of \(M \) these conditions were recently simplified by Bruiner and Ono [B-O]. This
allowed them to verify the truth of Newman’s Conjecture for every prime \(M < 2 \times 10^5 \) with
the possible exception of \(M = 3 \).

Combining a result of Bruiner and Ono [B-O] (see the end of Section 3 for a precise statement
of the relevant theorem) with Theorem 1 yields the following as an immediate corollary.

Corollary 2. Newman’s Conjecture is true for every prime modulus \(M \) with the possible
exception of \(M = 3 \). Moreover, if \(\ell \geq 5 \) is prime, then we have
\[
\# \{ 0 \leq n \leq X : p(n) \equiv r \pmod{\ell} \} \gg_{r, \ell} \begin{cases} \sqrt{X} / \log X & \text{if } 1 \leq r \leq \ell - 1, \\ X & \text{if } r = 0. \end{cases}
\]

The proof of Theorem 1 depends on a careful study of the filtration of certain modular forms
related to the partition function (this is the minimal weight at which the reductions of these
forms can be realized as modular forms modulo \(\ell \); see Section 2 for details). In the second part
of the paper we investigate a closely related topic; for every prime \(\ell \geq 5 \) and every \(j \geq 1 \) we
determine the minimal weight \(k \) at which a natural generating function for partitions can be
found as a modular form of weight \(k \) modulo \(\ell^j \). To state the result requires some notation.
If \(\ell \geq 5 \) is prime and \(j \geq 1 \) is an integer, then we define \(1 \leq \beta_{\ell,j} \leq \ell^j - 1 \) as the unique integer for which

\[
24\beta_{\ell,j} \equiv 1 \pmod{\ell^j}.
\]

Further, we define the even integer \(k_{t,j} \) by

\[
k_{t,j} := \begin{cases} \\
\frac{\ell^{j-1}(\ell-1)}{2} - \frac{1}{2} \left(\frac{24\beta_{\ell,j-1}}{\ell^j} + 1 \right) = \frac{(\ell^{j-1}+1)(\ell-1)}{2} - 12 (\lfloor \ell/24 \rfloor + 1) & \text{if } j \text{ is odd}, \\
\ell^{j-1}(\ell - 1) - \frac{1}{2} \left(\frac{24\beta_{\ell,j-1}}{\ell^j} + 1 \right) = \ell^{j-1}(\ell - 1) - 12 & \text{if } j \text{ is even}.
\end{cases}
\]

If \(k \) is an even integer, then we denote by \(M_k \) the space of holomorphic modular forms of weight \(k \) for \(\text{SL}_2(\mathbb{Z}) \). We will prove the following.

Theorem 3. If \(\ell \geq 5 \) is prime and \(j \) is a positive integer, then there exists a modular form \(F_{\ell,j}(z) \in M_{k_{t,j}} \cap \mathbb{Z}[q] \) such that

\[
\sum_{n=0}^{\infty} p(\ell^j n + \beta_{\ell,j})q^n = \prod_{n=1}^{\infty} (1 - q^n)^{24\beta_{\ell,j-1}} \cdot F_{\ell,j}(z) \pmod{\ell^j}.
\]

(1.4)

Remark 1. We recall the fact (see, for example, Théorème 1 of [S]) that if \(f \in M_k \cap \mathbb{Z}[q] \), \(g \in M_k \cap \mathbb{Z}[q] \) have \(f \equiv g \pmod{\ell^j} \) and \(f \not\equiv 0 \pmod{\ell} \), then \(k \equiv k' \pmod{\ell^{j-1}(\ell - 1)} \).

Therefore, we see that the weight \(k_{t,j} \) guaranteed by Theorem 3 is minimal in the sense that it can be reduced only in the case when \(\sum_{n=0}^{\infty} p(\ell^j n + \beta_{\ell,j})q^n \equiv 0 \pmod{\ell} \).

Remark 2. We also remark that \(k_{t,j} < 0 \) if and only if \(j = 1 \) and \(\ell = 5, 7, \) or 11. Therefore (1.1), (1.2), and (1.3) follow immediately from Theorem 3.

Remark 3. In the case when \(j = 1 \), this result has been obtained independently by K. S. Chua and H. H. Chan [C].

Theorem 3 is closely related to a claim made by Ramanujan in his Lost Notebook (see §15 of [Be-O]). In the case when \(j = 1 \), Ramanujan asserted that (1.4) holds for some modular form \(F_{\ell,1} \in M_{\ell-13} \), which is indeed the case if \(5 \leq \ell \leq 23 \); in the general case, \(\ell - 13 \) should be replaced by \(\ell - 13 - 12 \cdot \lfloor \ell/24 \rfloor \). For \(\ell \leq 23 \) Ramanujan computed the modular form \(F_{\ell,1} \) explicitly; he obtained, for example,

\[
\sum_{n=0}^{\infty} p(13n + 6)q^n \equiv p(6) \cdot \prod_{n=1}^{\infty} (1 - q^n)^{11} \pmod{13},
\]

\[
\sum_{n=0}^{\infty} p(17n + 5)q^n \equiv p(5) \cdot \prod_{n=1}^{\infty} (1 - q^n)^7 \cdot E_4(z) \pmod{17}
\]

(here \(E_4 \) denotes the usual normalized Eisenstein series of weight 4 on \(\text{SL}_2(\mathbb{Z}) \)).

In the next section we collect some facts which we shall need from the theory of modular forms. In Section 3, we prove Theorem 1 and Corollary 2, and in Sections 4 and 5 we prove Theorem 3.
2. Preliminaries on modular forms modulo ℓ.

In this section we recall some facts about modular forms modulo ℓ. One may consult, for example, [SwD] or [S] for details. Throughout we will suppose that ℓ is a fixed prime with $\ell \geq 5$. If k is an even integer, then we denote by M_k the complex vector space of holomorphic modular forms of weight k with respect to $\text{SL}_2(\mathbb{Z})$. Each modular form f in such a space has a Fourier expansion

$$f(z) = \sum_{n=0}^{\infty} a(n)q^n \quad (q := e^{2\pi iz}).$$

If $f \in M_k \cap \mathbb{Z}[[q]]$, then $\tilde{f} := f \pmod{\ell} \in \mathbb{F}_\ell[[q]]$. We define the space of weight k modular forms modulo ℓ by

$$\widetilde{M}_k := \left\{ \tilde{f} : f \in M_k \cap \mathbb{Z}[[q]] \right\}.$$

The filtration of a modular form $f \in M_k \cap \mathbb{Z}[[q]]$ is defined by

$$w(f) := \inf\{k' : \tilde{f} \in \widetilde{M}_{k'}\}.$$

If $f \in M_k \cap \mathbb{Z}[[q]]$ and $g \in M_{k'} \cap \mathbb{Z}[[q]]$ have $\tilde{f} \equiv \tilde{g} \not\equiv 0 \pmod{\ell}$, then we must have $k \equiv k' \pmod{\ell - 1}$. It follows that if $f \in M_k \cap \mathbb{Z}[[q]]$ has $\tilde{f} \not\equiv 0 \pmod{\ell}$, then $w(f) \equiv k \pmod{\ell - 1}$. Moreover, we see that $w(f) = -\infty$ if and only if $\tilde{f} \equiv 0 \pmod{\ell}$. We define the theta operator on formal power series by

$$\Theta \left(\sum_{n=0}^{\infty} a(n)q^n \right) := \sum_{n=1}^{\infty} na(n)q^n.$$

We have the following fundamental lemma.

Lemma 2.1 ([SwD, Lemmas 3, 5]). The operator Θ maps \widetilde{M}_k to $\widetilde{M}_{k+\ell+1}$. Moreover, if $f \in M_k \cap \mathbb{Z}[[q]]$ for some k, and $\tilde{f} \not\equiv 0 \pmod{\ell}$, then $w(\Theta f) \leq w(f) + \ell + 1$, with equality if and only if $w(f) \not\equiv 0 \pmod{\ell}$.

We define the operator U on formal power series by

$$\left(\sum_{n=0}^{\infty} a(n)q^n \right) | U := \sum_{n=0}^{\infty} a(\ell n)q^n.$$

We also recall that for each prime ℓ we have the Hecke operator $T_\ell : M_k \to M_k$ whose action on a form $f = \sum_{n=0}^{\infty} a(n)q^n \in M_k$ is given by

$$f | T_\ell = \sum_{n=0}^{\infty} \left(a(\ell n) + \ell^{k-1} a(n/\ell) \right) q^n.$$

From this we see that, on each space \widetilde{M}_k, the operators U and T_ℓ agree modulo ℓ; in particular we conclude that U maps each space \widetilde{M}_k into itself. Moreover, we have the relationship

$$\left(f | U \right)^\ell \equiv f - \Theta^{\ell-1} f \pmod{\ell} \quad (2.1)$$

for all $f \in \mathbb{Z}[[q]]$. Finally, we recall the fact [S, §2.2, Lemme 1] that if $f \in M_k \cap \mathbb{Z}[[q]]$ for some k, then for each $i \in \mathbb{N}$ we have

$$w(f^i) = iw(f). \quad (2.2)$$
3. Proof of Theorem 1.

That there are no Ramanujan congruences modulo 2 or 3 follows from the fact that \(p(0) = 1, \ p(1) = 1, \) and \(p(2) = 2. \) Now suppose that \(\ell \geq 5 \) is prime. Kiming and Olsson [K-Ol, Theorem 1] proved that if for some \(\beta \in \mathbb{Z} \) there is a congruence

\[
p(\ell n + \beta) \equiv 0 \pmod{\ell} \quad \text{for all } n,
\]

then we must have \(24\beta \equiv 1 \pmod{\ell} \). We define the positive integer \(\delta_\ell \) by

\[
\delta_\ell := \frac{\ell^2 - 1}{24}.
\]

In order to prove Theorem 1 it will, in view of this discussion, suffice to prove

Theorem 3.1. If \(\ell \geq 13 \) is prime, then

\[
\sum_{n=0}^{\infty} p(\ell n - \delta_\ell)q^n \not\equiv 0 \pmod{\ell}.
\]

The proof of Theorem 3.1 occupies most of this section. Let

\[
\Delta(z) := q \prod_{n=1}^{\infty} (1 - q^n)^{24}
\]

be the unique normalized cusp form of weight 12 for \(\text{SL}_2(\mathbb{Z}) \). For the duration we will suppose that

\[
\ell \geq 13.
\]

We now define

\[
f_\ell(z) := \Delta^{\delta_\ell}(z).
\]

Since

\[
\prod_{n=1}^{\infty} (1 - q^n)^{-1} = \sum_{n=0}^{\infty} p(n)q^n,
\]

we have

\[
f_\ell(z) = q^{\delta_\ell} \prod_{n=1}^{\infty} \frac{(1 - q^n)^{\ell^2}}{(1 - q^n)^{\ell}} = \prod_{n=1}^{\infty} (1 - q^{\ell n})^{\ell} \cdot \sum_{n=0}^{\infty} p(n - \delta_\ell)q^n \pmod{\ell}.
\]

Therefore

\[
f_\ell|U \equiv \prod_{n=1}^{\infty} (1 - q^n)^{\ell} \cdot \sum_{n=0}^{\infty} p(\ell n - \delta_\ell)q^n \pmod{\ell}.
\]

We conclude from (3.2) that if there is a Ramanujan congruence modulo \(\ell \), then \(f_\ell|U \equiv 0 \pmod{\ell} \), or, in other words, \(w(f_\ell|U) = -\infty \).

As in [K-Ol], we must study the filtration of the forms \(\Theta f_\ell, \Theta^2 f_\ell, \cdots \). We record two short lemmas for convenience.
Lemma 3.2. (c.f. Lemma 2 of [K-Ol]). If \(m, \ell \in \mathbb{N} \), and \(\ell \geq 5 \) is prime, then
\[
w(\Theta^m f_\ell) \geq w(f_\ell) = \frac{\ell^2 - 1}{2}.
\]

Proof of Lemma 3.2. By (2.2) we have \(w(f_\ell) = \delta_\ell w(\Delta) = \frac{\ell^2 - 1}{2} \). Now note that \(f_\ell = q^\delta_\ell + \ldots \), so that
\[
\Theta^m f_\ell = \delta_\ell^m q^\delta_\ell + \ldots \not\equiv 0 \pmod{\ell}.
\]
Suppose that \(w(\Theta^m f_\ell) = k \) and set \(d := \dim M_k > 0 \). We recall the well known fact that \(M_k \)
has a basis \(\{g_0, \ldots, g_{d-1}\} \) of forms with integral coefficients which have the form
\[
g_0 = 1 + \ldots, \quad g_1 = q + \ldots, \quad g_2 = q^2 + \ldots, \quad \ldots, \quad g_{d-1} = q^{d-1} + \ldots
\]
(such a basis can be constructed using \(\Delta(z) \) and the Eisenstein series of weights 4 and 6 on \(\text{SL}_2(\mathbb{Z}) \)). Considering this fact, it is clear from (3.3) that \(d \geq \frac{\ell^2 - 1}{2} + 1 \). On the other hand, by
classical dimension formulas we have \(d \leq \frac{k}{12} + 1 \). Therefore \(k \geq \frac{\ell^2 - 1}{2} \), as claimed. \(\Box \)

Lemma 3.3. Suppose that \(\ell \geq 5 \) is prime and let \(f_\ell = \Delta^\delta_\ell \). Then either
\[
(1) \quad w(\Theta^{\ell - 1} f_\ell) \equiv 0 \pmod{\ell}, \quad \text{or} \quad
(2) \quad w(\Theta^{\ell - 1} f_\ell) = w(f_\ell) = \frac{\ell^2 - 1}{2}.
\]
Moreover, in the first case we have \(w(f_\ell | U) > 0 \).

Remark. We note that, in view of Theorem 5.1 below, we always have \(w(f_\ell | U) \leq \ell - 1 \).

Proof of Lemma 3.3. We have \(\Theta^\ell f \equiv \Theta f \pmod{\ell} \) for all \(f \in \mathbb{Z}[[q]] \). Therefore, using Lemma 2.1, we see that \(w(\Theta^\ell f_\ell) = w(\Theta f_\ell) = \frac{\ell^2 - 1}{2} + \ell + 1 \). Using Lemma 2.1 again and the fact that
\[
w(f_\ell) = \frac{\ell^2 - 1}{2},
\]
the assertion regarding the two possible values of \(w(\Theta^{\ell - 1} f_\ell) \) follows.

We turn to the other assertion. Combining (2.1) and (2.2), we see that
\[
w(f_\ell | U) = \frac{1}{\ell} w(f_\ell - \Theta^{\ell - 1} f_\ell).
\]

If we are in the first case, then \(w(\Theta^{\ell - 1} f_\ell) \equiv 0 \pmod{\ell} \). Suppose by way of contradiction that \(w(f_\ell | U) \leq 0 \). Then (3.4) would imply that \(f_\ell - \Theta^{\ell - 1} f_\ell \) is constant modulo \(\ell \); it is then clear that this constant must be zero. In other words, we would be led to the conclusion that \(f_\ell \equiv \Theta^{\ell - 1} f_\ell \pmod{\ell} \), which is impossible since \(w(f_\ell) = \frac{\ell^2 - 1}{2} \not\equiv 0 \pmod{\ell} \). \(\Box \)

We now turn to the proof of Theorem 3.1. Suppose by way of contradiction that \(\ell \geq 13 \) is a prime for which
\[
\sum_{n=0}^{\infty} p(\ell n - \delta_\ell) q^n \equiv 0 \pmod{\ell}.
\]
Then \(w(f_\ell | U) = -\infty \), and so, by Lemma 3.3, we must have
\[
w(\Theta^{\ell - 1} f_\ell) = w(f_\ell) = \frac{\ell^2 - 1}{2}.
\]
If it were the case that \(w(\Theta^{\ell-2} f_{\ell}) \not\equiv 0 \pmod{\ell} \), then by Lemma 2.1 and (3.5) we would have
\[
w(f_{\ell}) = w(\Theta^{\ell-1} f_{\ell}) = w(\Theta^{\ell-2} f_{\ell}) + \ell + 1,
\]
which contradicts Lemma 3.2. Therefore we must have
\[
w(\Theta^{\ell-2} f_{\ell}) \equiv 0 \pmod{\ell}.
\] (3.6)

Since \(w(f_{\ell}) = \frac{\ell^2 - 1}{2} \), iterating Lemma 2.1 shows that \(w(\Theta^{rac{\ell+1}{2}} f_{\ell}) \equiv 0 \pmod{\ell} \). Then, again using Lemma 2.1, we see that there exists \(\alpha \geq 1 \) such that
\[
w(\Theta^{rac{\ell+1}{2}} f_{\ell}) = \frac{\ell^2 - 1}{2} + \frac{\ell + 3}{2} \cdot (\ell + 1) - \alpha(\ell - 1).
\] (3.7)
Together, Lemma 3.2 and (3.7) imply that
\[
\alpha \leq \frac{\ell + 3}{2(\ell - 1)} \cdot (\ell + 1) = \frac{\ell + 5}{2} + \frac{4}{\ell - 1}.
\]
Therefore, since \(\ell > 5 \), we conclude that \(1 \leq \alpha \leq \frac{\ell + 5}{2} \).

Suppose now that \(j \) is the least integer with \(1 \leq j \leq \frac{\ell - 5}{2} \) for which \(w(\Theta^{rac{\ell+1}{2} + j} f_{\ell}) \equiv 0 \pmod{\ell} \) (such a \(j \) exists by (3.6)). Then by Lemma 2.1 and (3.7) we have
\[
w(\Theta^{rac{\ell+1}{2} + j} f_{\ell}) = \frac{\ell^2 - 1}{2} + \left(\frac{\ell + 1}{2} + j \right) (\ell + 1) - \alpha(\ell - 1) \equiv j + \alpha \equiv 0 \pmod{\ell}.
\]
Since \(1 \leq \alpha \leq \frac{\ell + 5}{2} \) and \(1 \leq j \leq \frac{\ell - 5}{2} \), this implies that \(\alpha = \frac{\ell + 5}{2} \). Therefore (3.7) becomes
\[
w(\Theta^{rac{\ell+3}{2}} f_{\ell}) = \frac{\ell^2 - 1}{2} + \frac{\ell + 3}{2} \cdot (\ell + 1) - \frac{\ell + 5}{2} \cdot (\ell - 1) = \frac{\ell^2 - 1}{2} + 4.
\] (3.8)

To finish the proof of Theorem 3.1, note that
\[
\Theta^{rac{\ell+3}{2}} f_{\ell} = \delta_{\ell}^{rac{\ell+3}{2}} q^{\ell} + \cdots = \delta_{\ell}^{rac{\ell+3}{2}} q^{\frac{\ell^2 - 1}{24}} + \cdots
\] (3.9)
Let
\[
E_k(z) := 1 + 240 \sum_{n=1}^{\infty} \sum_{d \mid n} d^k q^n = 1 + 240q + \cdots
\]
be the usual Eisenstein series of weight 4 on \(\text{SL}_2(\mathbb{Z}) \). Since \(\frac{\ell^2 - 1}{2} \equiv 0 \pmod{12} \), a basis for \(M_{\frac{\ell^2 - 1}{2} + 4} \) is given by
\[
\{ E_4 \cdot E_4^{\frac{\ell^2 - 1}{2}}, E_4 \cdot \Delta \cdot E_4^{\frac{\ell^2 - 1}{2} - 3}, \ldots, E_4 \cdot \Delta^{\frac{\ell^2 - 1}{24}} \}.
\] (3.10)
In view of (3.8), (3.9), and (3.10) we must have

\[
\Theta \frac{t+3}{2} f_\ell \equiv \delta \frac{t+3}{2} E_4 \cdot f_\ell \pmod{\ell}.
\]

(3.11)

Now

\[
f_\ell = q^{\delta_\ell} (1 - q)^{t\frac{t-1}{2}} \equiv q^{\delta_\ell} + q^{\delta_\ell+1} + \ldots \pmod{\ell}.
\]

Therefore

\[
\Theta \frac{t+3}{2} f_\ell \equiv \delta \frac{t+3}{2} q^{\delta_\ell} + (\delta_\ell + 1) \frac{t+3}{2} q^{\delta_\ell+1} + \ldots \pmod{\ell}.
\]

(3.12)

Further, we have

\[
\delta \frac{t+3}{2} E_4 \cdot f_\ell \equiv \delta \frac{t+3}{2} (1 + 240q + \ldots) (q^{\delta_\ell} + q^{\delta_\ell+1} + \ldots) \equiv \delta \frac{t+3}{2} q^{\delta_\ell} + 241 \cdot \delta \frac{t+3}{2} q^{\delta_\ell+1} + \ldots \pmod{\ell}.
\]

Together with (3.11) and (3.12), this shows that

\[
(\delta_\ell + 1) \frac{t+3}{2} \equiv 241 \cdot \delta \frac{t+3}{2} \pmod{\ell}.
\]

(3.13)

Since \(1/\delta_\ell \equiv -24 \pmod{\ell}\), (3.13) yields

\[
(-23)^2 \cdot (-23) \frac{t-1}{2} \equiv 241 \pmod{\ell},
\]

which in turn (note that \(\ell = 23\) is impossible) implies that

\[
\pm 529 \equiv 241 \pmod{\ell}.
\]

Theorem 3.1 follows since

\[
529 + 241 = 770 = 2 \cdot 5 \cdot 7 \cdot 11,
\]

and

\[
529 - 241 = 288 = 2^5 \cdot 3^2.
\]

This establishes Theorem 1. \(\square\)

Proof of Corollary 2. For the primes \(\ell \geq 13\), Corollary 2 follows immediately from Theorem 1 together with the following result of Bruinier and Ono [B-O].

Theorem ([B-O], Theorem 4). If \(\ell \geq 5\) is prime then at least one of the following is true:

1. *Newman’s Conjecture* is true for \(M = \ell\) and

\[
\#\{0 \leq n \leq X : p(n) \equiv r \pmod{\ell}\} \gg_r, \ell \begin{cases} \sqrt{X}/\log{X} & \text{if } 1 \leq r < \ell, \\ X & \text{if } r = 0. \end{cases}
\]

2. There is a Ramanujan congruence modulo \(\ell\).

Although the density results stated in Corollary 2 for \(\ell = 5, 7,\) and 11 are not given explicitly in [B-O], a modification of the arguments in that paper shows that the results remain true for these primes. Therefore we include them in the statement of Corollary 2 for completeness. \(\square\)
4. Modular forms on $\Gamma_0(\ell^j)$.

In this section we will suppose that $\ell \geq 5$ is prime and that $j \geq 1$. If χ is a Dirichlet character defined modulo ℓ^j and k is a positive integer, then we denote by $M_k(\Gamma_0(\ell^j), \chi)$ the usual space of holomorphic modular forms of weight k and character χ for $\Gamma_0(\ell^j)$.

If $f(z)$ is a function of the upper half-plane and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2^+(\mathbb{Q})$, then we define the slash operator by

$$ (f|_k \gamma)(z) := (\det \gamma)^{\frac{k}{2}} (cz + d)^{-k} f(\gamma z). $$

If m is a positive integer, then we define operators U_m and V_m on formal power series by

$$ \left(\sum_{n=0}^{\infty} a(n)q^n \right) | U_m := \sum_{n=0}^{\infty} a(mn)q^n, $$

$$ \left(\sum_{n=0}^{\infty} a(n)q^n \right) | V_m := \sum_{n=0}^{\infty} a(n)q^{mn}. $$

If $f(z) = \sum_{n=0}^{\infty} a(n)q^n$ and $k \in \mathbb{Z}$, then we have

$$ f(z)|U_m = \frac{1}{m} \sum_{j=0}^{m-1} f\left(\frac{z + j}{m} \right) = m^{\frac{k}{2} - 1} \sum_{j=0}^{m-1} f|_k\left(\begin{array}{cc} 1 & j \\ 0 & m \end{array} \right). \quad (4.1) $$

If $j \geq 1$, then the map $f \mapsto f|U_\ell$ takes $M_k(\Gamma_0(\ell^j), \chi)$ into itself, while the map $f \mapsto f|V_\ell$ takes $M_k(\Gamma_0(\ell^j), \chi)$ into $M_k(\Gamma_0(\ell^{j+1}), \chi)$. We define W_ℓ by

$$ W_\ell := \left(\begin{array}{cc} 0 & -1 \\ \ell & 0 \end{array} \right); $$

if χ is a real character, then the Fricke involution

$$ f \mapsto f|_k W_\ell $$

maps $M_k(\Gamma_0(\ell), \chi)$ into itself.

If $f \in M_k(\Gamma_0(\ell))$ then we define the trace of f by

$$ \text{Tr}(f) := f + \ell^{1-\frac{k}{2}}(f|_k W_\ell)|U_\ell. \quad (4.2) $$

We recall two important properties of these operators.

Proposition 4.1 [At-L, Lemma 17]. Suppose that ℓ is prime and that $f \in M_k(\Gamma_0(\ell^j))$.

1. If $j \geq 2$, then $f|U_\ell \in M_k(\Gamma_0(\ell^{j-1}))$.
2. If $j = 1$, then $\text{Tr}(f) \in M_k$.

Finally, we recall that Dedekind’s eta-function is given by

$$\eta(z) := q^{\frac{z}{24}} \prod_{n=1}^{\infty} (1 - q^n).$$

If \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \), then we have the transformation formula

$$\eta \left(\frac{az + b}{cz + d} \right) = \epsilon_{a,b,c,d} \cdot (cz + d)^{\frac{n}{2}} \cdot \eta(z),$$

where \(\epsilon_{a,b,c,d} \) is a 24-th root of unity (we always take the branch of the square root having non-negative real part). As a special case of this formula, we have

$$\eta(-1/z) = \sqrt{z/i} \cdot \eta(z).$$

5. The Proof of Theorem 3.

For the duration we will fix a prime \(\ell \geq 5 \) and a positive integer \(j \). We define

$$f_{\ell,j}(z) = \frac{\eta^{\ell^j}(\ell^j \cdot z)}{\eta(z)}.$$

Using standard facts (see, for example, [G-H] or [N2]), we see that

$$f_{\ell,j}(z) \in M_{\frac{24\beta_{\ell,j} - 1}{\ell^j}} \left(\Gamma_0(\ell^j), (\frac{\ell}{\ell^j})^j \right).$$

(5.1)

For convenience, we define

$$r_{\ell,j} := \frac{24\beta_{\ell,j} - 1}{\ell^j} = \begin{cases} 24 \cdot \left(\lfloor \ell/24 \rfloor + 1 \right) - \ell & \text{if } j \text{ is odd}, \\
23 & \text{if } j \text{ is even}, \end{cases}$$

and

$$\lambda_{\ell,j} := \begin{cases} \frac{r_{\ell,j} - 1}{2} + \frac{r_{\ell,j-1}(\ell - 1)}{2} & \text{if } j \text{ is odd}, \\
\frac{r_{\ell,j} - 1}{2} + \ell^{j-1}(\ell - 1) & \text{if } j \text{ is even}. \end{cases}$$

We will show that Theorem 3 is a consequence of the following result.

Theorem 5.1. If \(\ell \geq 5 \) is prime, and \(j \geq 1 \) is an integer, then there is a modular form \(G_{\ell,j}(z) \in M_{\lambda_{\ell,j}} \cap \mathbb{Z}[q] \) such that \(f_{\ell,j}(z) | U_{\ell^j} \equiv G_{\ell,j}(z) \pmod{\ell^j} \).

To show that Theorem 5.1 implies Theorem 3, we begin by observing that

$$f_{\ell,j} | U_{\ell^j} = \prod_{n=1}^{\infty} (1 - q^n)^{\ell^j} \cdot \sum_{n=0}^{\infty} p(\ell^j n + \beta_{\ell,j}) q^{n + \frac{r_{\ell,j} + n}{24}} = p(\beta_{\ell,j}) q^{\frac{r_{\ell,j} + 1}{24}} + \cdots.$$
By Theorem 5.1, there exists $G_{t,j} \in M_{\lambda_{t,j}} \cap \mathbb{Z}[q]$ such that $f_{t,j}|U_{t} \equiv G_{t,j} \pmod{\ell^j}$. We may clearly suppose that $G_{t,j}$ vanishes to order at least $\frac{r_{t,j} \ell^j}{24}$ at ∞. Using the fact that

$$
\lambda_{t,j} = k_{t,j} + \frac{r_{t,j} \ell^j}{2},
$$

we conclude that

$$
G_{t,j}(z) = \Delta(z)^{\frac{r_{t,j} \ell^j}{24}} \cdot F_{t,j}(z),
$$

where $F_{t,j}(z) \in M_{k_{t,j}}$. By (5.2) we then have

$$
\prod_{n=1}^{\infty} (1 - q^n)^{\ell^j} \cdot \sum_{n=0}^{\infty} p(\ell^j n + \beta_{t,j}) q^{n + \frac{r_{t,j} \ell^j}{24}} \equiv \Delta^{\frac{r_{t,j} \ell^j}{24}}(z) \cdot F_{t,j}(z) \pmod{\ell^j},
$$

from which Theorem 3 follows immediately.

We turn, therefore, to the proof of Theorem 5.1. We define

$$
h_{t,j}(z) := \left(\frac{\eta^j(z)}{\eta(\ell z)} \right)^{\ell^j-1}.
$$

We begin by recording some basic properties of this modular form.

Lemma 5.2. Suppose that $\ell \geq 5$ is prime and that $j \geq 1$. Then

1. $h_{t,j}(z) \in M_{\frac{j(j-1)}{2}(t-1)} \left(\Gamma_0(\ell), \left(\frac{\ell}{\ell} \right) \right)$.
2. $h_{t,j}(z) \equiv 1 \pmod{\ell^j}$.
3. $h_{t,j}(z)|\frac{j(j-1)}{2}(t-1) W_\ell = \ell^{\frac{j(j-1)}{2}} (\frac{i}{\ell})^{rac{j-1}{2}} \cdot \left(\frac{\eta^j(\ell z)}{\eta(\ell z)} \right)^{\ell^j-1}.

Proof of Lemma 5.2. The first assertion follows from standard facts [G-H, N2], and the second is clear from the fact that

$$
\prod_{n=1}^{\infty} \frac{1 - q^n}{1 - q^{\ell n}} \equiv 1 \pmod{\ell}.
$$

The third follows from a computation using (4.4). \hfill \Box

Now define

$$
\rho_{t,j} := \begin{cases}
1 & \text{if } j \text{ is odd}, \\
2 & \text{if } j \text{ is even}.
\end{cases}
$$

Then define

$$
g_{t,j} := \left\{ f_{t,j} \cdot (h_{t,j}^{\rho_{t,j}}|V_{t-1}) \right\}|U_{t}^{j-1}.
$$

Using (5.1), Lemma 5.2, and Proposition 4.1, we see that

$$
g_{t,j} \in M_{\lambda_{t,j}}(\Gamma_0(\ell));
$$
moreover it is clear that \(g_{t,j} \) has integral coefficients. A straightforward argument shows that
\[
g_{t,j} = f_{t,j} | U_{t,j-1} \cdot h_{t,j}^{\rho_{t,j}}.
\]
Therefore, we see by (4.2) that
\[
\text{Tr}(g_{t,j} |_{\lambda_{t,j}} W_t) = \left\{ f_{t,j} | U_{t,j-1} \cdot h_{t,j}^{\rho_{t,j}} \right\} |_{\lambda_{t,j}} W_t + \ell^{1 - \frac{\lambda_{t,j}}{2}} \cdot \left\{ f_{t,j} | U_{t,j-1} \cdot h_{t,j}^{\rho_{t,j}} \right\} | U_t. \tag{5.3}
\]
Since the map \(f \mapsto f|_k W_t \) preserves the field of rationality of a modular form \(f \in M_k(\Gamma_0(\ell)) \), each of the three summands in (5.3) has rational coefficients. Moreover, we have
\[
\left\{ f_{t,j} | U_{t,j-1} \cdot h_{t,j}^{\rho_{t,j}} \right\} | U_t \equiv f_{t,j} | U_{t,j} \pmod{\ell^j}. \tag{5.4}
\]
We will prove the following.

Lemma 5.3. If \(\ell \geq 5 \) is prime and \(j \geq 1 \), then we have
\[
\ell^{\frac{\lambda_{t,j}}{2} - 1} \cdot \left\{ f_{t,j} | U_{t,j-1} \cdot h_{t,j}^{\rho_{t,j}} \right\} |_{\lambda_{t,j}} W_t \equiv 0 \pmod{\ell^j}.
\]

Theorem 5.1 follows immediately from Lemma 5.3, (5.3), and (5.4). Indeed, defining
\[
G_{t,j} := \ell^{\frac{\lambda_{t,j}}{2} - 1} \cdot \text{Tr}(g_{t,j} |_{\lambda_{t,j}} W_t) \in M_{\lambda_{t,j}},
\]
we see from these facts that \(G_{t,j} \) has rational, \(\ell \)-integral coefficients and that
\[
G_{t,j} \equiv f_{t,j} | U_{t,j} \pmod{\ell^j}.
\]

Theorem 5.1 follows (since \(G_{t,j} \) has bounded denominators we may, if necessary, replace \(G_{t,j} \) by \(N \cdot G_{t,j} \) with a suitable integer \(N \equiv 1 \pmod{\ell^j} \)).

It remains only to prove Lemma 5.3. For the duration, let \(\zeta := \exp(2\pi i/24\ell^j) \), and define
\[
q_{\ell^j} := q^{\frac{1}{\ell^j}}.
\]
We will consider power series in the ring \((\mathbb{Z}[\zeta])/[\zeta^j])\). In view of the third part of Lemma 5.2, it will suffice to show that, in this ring, we have
\[
\ell^{\frac{(2\rho_{t,j},j+1)(j-5)}{4}} \cdot \left\{ f_{t,j} | U_{t,j-1} \right\} |_{\frac{j}{2}, \frac{j-1}{2}} W_t \equiv 0 \pmod{\ell^j}.
\]

By (4.1) and (4.3) we have
\[
\ell^{\frac{(2\rho_{t,j},j+1)(j-5)}{4}} \cdot \left\{ f_{t,j} | U_{t,j-1} \right\} |_{\frac{j}{2}, \frac{j-1}{2}} W_t = \ell^{\frac{(2\rho_{t,j},j+1)(j-5)}{4}} \cdot \sum_{m=0}^{\ell^j-1} f_{t,j} | \frac{j}{2} \cdot \left(\begin{array}{cc} 1 & m \\ 0 & \ell^j-1 \end{array} \right) |_{\frac{j-1}{2}} \left(\begin{array}{cc} 0 & -1 \\ \ell & 0 \end{array} \right)
\]
\[
= \ell^{\rho_{t,j},j} \cdot z^{-\frac{j}{2}} \cdot \sum_{m=0}^{\ell^j-1} \eta^{\frac{1}{2}} \left(\frac{m \ell - \frac{1}{2}}{\ell^j z} \right) \eta^{\ell^j} \left(\frac{m \ell - \frac{1}{2}}{\ell^j z} \right) \eta^{\frac{1}{2}} \cdot \sum_{m=0}^{\ell^j-1} \eta^{\frac{1}{2}} \left(\frac{m \ell - \frac{1}{2}}{\ell^j z} \right), \tag{5.5}
\]

where α_m is some 24-th root of unity.

Fix m with $1 \leq m \leq \ell^{j-1} - 1$, and write $m = \ell^r t$ with $\ell \nmid t$ and $0 \leq r \leq j - 2$. Then there are integers b, d for which $bt + d \ell^{j-r-1} = -1$. Hence,

$$
\begin{pmatrix}
ml
\ell^j
-1
0
\end{pmatrix}
= \begin{pmatrix}
t
\ell^{r+1}
d
\ell^{j-r-1}
b
\end{pmatrix}
\begin{pmatrix}
\ell^{r+1}
0
\ell^{j-r-1}
\end{pmatrix},
$$

where the first matrix on the right is in SL$_2(\mathbb{Z})$. We conclude by (4.3) that

$$
\eta \left(\frac{mlz - 1}{\ell^j z} \right) = \beta_m \cdot \ell^{\frac{r+1}{2}} \cdot z^{\frac{1}{2}} \cdot \eta \left(\frac{\ell^{r+1} z + b}{\ell^{j-r-1}} \right), \tag{5.6}
$$

where β_m is a 24-th root of unity. It follows from (5.6) that if $m \geq 1$, then the term corresponding to m in (5.5) is given by

$$
T_m := \frac{\alpha_m}{\zeta^{\ell^r+1} b \beta_m} \cdot \ell^{\frac{\rho_{t,j} \ell^j - 2j - r - 1}{2}} \cdot q_{\ell^j}^{\frac{\ell^{2j} - \ell^{2r+2}}{2}} \cdot \prod_{n=1}^{\infty} \left(\frac{1 - q^n \ell^j}{1 - \zeta^{24\ell^r+1} b m q_{\ell^j}^{2r+2 n}} \right). \tag{5.7}
$$

Furthermore, applying (4.4) we find that the term corresponding to $m = 0$ in (5.5) is given by

$$
T_0 := \gamma \cdot \ell^{\frac{\rho_{t,j} \ell^j - 2j}{2}} \cdot \frac{\eta^{\ell^j} (z)}{\eta (\ell^j z)}, \tag{5.8}
$$

where γ is a root of unity. Since $\ell \geq 5$ and $j \geq 1$ we have

$$
\frac{\rho_{t,j} \ell^j - 2j - r - 1}{2} > \frac{\rho_{t,j} \ell^j - 3j}{2} \geq j. \tag{5.9}
$$

By (5.7), (5.8), and (5.9) we have $T_m \equiv 0 \pmod{\ell^j}$ in $(\mathbb{Z}[\zeta])[q_{\ell^j}]$ for all m. This proves Lemma 5.3, and with it Theorem 5.1. \qed

Acknowledgements. The authors thank B. Berndt, H.H. Chan, and K. Ono for their valuable comments and suggestions.

References

[Kl] T. Kløve, Recurrence formulae for the coefficients of modular forms and congruences for the partition function and for the coefficients of $j(\tau)$, $(j(\tau) - 1728)^{1/2}$, and $j(\tau)^{1/3}$, Math. Scand. 23 (1969), 133-159.

