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Abstract. Let p(n) be the ordinary partition function. We show, for all integers r and s

with s ≥ 1 and 0 ≤ r < 3s, that

#{n ≤ X : n ≡ r (mod 3s) and p(n) 6≡ 0 (mod 3)} �
r,s

√
X

log X
.

We also prove a similar result on the non-vanishing of p(n) modulo ` ∈ {5, 7, 11}.

1. Introduction and statement of results.

A partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is n. We denote by p(n) the number of partitions of n. By convention, we set p(0) := 1.
Euler showed that the generating function for p(n) satisfies

(1.1)

∞
∑

n=0

p(n)qn =

∞
∏

m=1

1

1 − qm
.

Among the most well-known contributions of Ramanujan to the study of partitions are
the congruences which now bear his name. These are, for all integers n ≥ 0,

p(5n + 4) ≡ 0 (mod 5)(1.2)

p(7n + 5) ≡ 0 (mod 7)(1.3)

p(11n + 6) ≡ 0 (mod 11).(1.4)

After Ramanujan, relatively few linear congruences for p(n) beyond (1.2), (1.3), (1.4), and
their extensions modulo powers of 5, 7, and 11 had been discovered until recent work of
Ahlgren and Ono [3, 5, 11]. They proved, for every modulus M coprime to 6, that there are
infinitely many arithmetic progressions An + B, none contained in any other, such that

p(An + B) ≡ 0 (mod M) for all n.

By contrast, less is known about p(n) modulo 2 or 3. In this paper, we consider the following
conjecture.

Conjecture S. Let r and t be integers with 0 ≤ r < t.

(1) There are infinitely many integers n ≡ r (mod t) such that p(n) 6≡ 0 (mod 2).

(2) There are infinitely many integers m ≡ r (mod t) such that p(m) 6≡ 0 (mod 3).

Remark 1. Subbarao [15] conjectured (1) in 1966, while Ahlgren and Ono conjectured (2)
in 2001 [4, Conjecture 5.2]. For other conjectures and problems on the arithmetic of p(n),
many of which remain unsettled, the reader should consult [12, Section 5.4].
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Remark 2. Conjecture S implies that there are no linear congruences for p(n) modulo 2 or 3.

Remark 3. In earlier work, Ono [10] proved the “even” analogue of (1): For all integers r
and t with 0 ≤ r < t, there are infinitely many n ≡ r (mod t) such that p(n) ≡ 0 (mod 2).
Combined with an estimate of Serre [9], this work gives

#{n ≤ X : n ≡ r (mod t) and p(n) ≡ 0 (mod 2)} �
r,t

√
X.

In recent unpublished work, Ono has also proved that there are infinitely many n for which
p(n) ≡ 0 (mod 3) using a generalization of Borcherds’ theory of automorphic infinite prod-
ucts. However, his result is not refined to the point where one knows that there are infinitely
many such n in any fixed arithmetic progression.

We now summarize the main results on Conjecture S. Prior to the mid 1990’s, part (1)
was known (see [10] for references) for every arithmetic progression r (mod t) with

t ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 40}.
In [10], Ono showed that if there is at least one integer n ≡ r (mod t) with p(n) 6≡ 0
(mod 2), then there are infinitely many such n. Hence, to verify part (1) of Conjecture S for
a fixed arithmetic progression r (mod t), it suffices to give a single integer n ≡ r (mod t) for
which p(n) 6≡ 0 (mod 2). This was done by Ono in [10] for every arithmetic progression r
(mod t) with t ≤ 105 and by Ono and the author in [6] for every arithmetic progression whose
modulus is a power of 2, thus providing the first infinite family of arithmetic progressions
for which part (1) of Conjecture S is true.

Theorem 1.1. Let r and s be integers with s ≥ 1 and 0 ≤ r < 2s. Then part (1) of

Conjecture S holds for the arithmetic progression r (mod 2s). Moreover, we have

#{n ≤ X : n ≡ r (mod 2s) and p(n) 6≡ 0 (mod 2)} �
r,s

√
X

log X
.

The estimate in Theorem 1.1 follows from our work together with a theorem of Ahlgren
[1, Theorem 1.4].

In this paper, we furnish the first infinite family of arithmetic progressions for which
part (2) of Conjecture S is true. Our methods also apply to the study of the non-vanishing
of p(n) modulo 5 and 7. We prove

Theorem 1.2. Let s ≥ 1 be an integer.

(1) Suppose that r is an integer with 0 ≤ r < 3s. Then part (2) of Conjecture S holds for

the arithmetic progression r (mod 3s). Moreover, we have

#{n ≤ X : n ≡ r (mod 3s) and p(n) 6≡ 0 (mod 3)} �
r,s

√
X

log X
.

(2) There is an integer gs 6≡ 4 (mod 5) such that for all integers u with 0 ≤ 5u+gs < 5s,

we have

#{n ≤ X : n ≡ 5u + gs (mod 5s) and p(n) 6≡ 0 (mod 5)} �
u,s

√
X

log X
.
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(3) There is an integer hs 6≡ 5 (mod 7) such that for all integers v with 0 ≤ 7v+hs < 7s,

we have

#{n ≤ X : n ≡ 7v + hs (mod 7s) and p(n) 6≡ 0 (mod 7)} �
v,s

√
X

log X
.

Remark 1. The methods we use to prove Theorem 1.2 are natural adaptations and general-
izations of the methods used to prove Theorem 1.1. Most (if not all) of the results in Sections
2-4 are stated for ` ∈ {3, 5, 7}, but also hold for ` = 2.

Remark 2. Theorem 1.2 continues to hold for ` = 11, and the proof in this case is a modifi-
cation of the proof for ` ∈ {5, 7}. In particular, one can show that if s ≥ 1 is an integer, then
there is an integer is 6≡ 6 (mod 11) such that for all integers w with 0 ≤ 11w + is < 11s, we
have

#{n ≤ X : n ≡ 11w + is (mod 11s) and p(n) 6≡ 0 (mod 11)} �
w,s

√
X

log X
.

To see this, one observes that the proof of Theorem 1.2 for ` ∈ {5, 7} depends on Lemma 2.2.
In turn, Lemma 2.2 relies crucially on the existence of the Ramanujan congruences modulo
` ∈ {5, 7} and the fact that, for ` ∈ {5, 7}, a modular mod ` Galois representation ramified
only at ` must be reducible. Therefore, in view of the Ramanujan congruence modulo 11, to
produce a generalization of Lemma 2.2 to ` = 11, we need to study modular mod 11 Galois
representations ramified only at 11. Unfortunately, there is an irreducible modular Galois
representation of this type arising from the fact that

∆(z) ≡ η2(z)η2(11z) (mod 11),

where η(z) is Dedekind’s eta-function. This representation is induced by the Galois action
on the 11-torsion points of X0(11). Using fundamental lemmas of Swinnerton-Dyer [16,
Lemma 7] and Ono and Skinner [13], one can show that there exists a set of primes m ≡ −1
(mod 11) (which satisfy some other complicated conditions coming from the properties of
X0(11)) for which the conclusion of Lemma 2.2 holds for ` = 11. We emphasize that for the
purpose of proving Theorem 1.2 and its analogue for ` = 11, we merely require the existence
of such primes; a simple, explicit description is not necessary. However, a simple, explicit
description of the primes m in Lemma 2.2 is possible when ` ∈ {5, 7} since the associated
modular mod ` Galois representations are reducible in these cases.

Before giving the proof of Theorem 1.2, we cite an important fact due to Ahlgren [2].

Theorem 1.3. Let ` be an odd prime, and let r and t be integers with 0 ≤ r < t. Suppose

that there is an integer n ≡ r (mod t) such that p(n) 6≡ 0 (mod `). Then we have

#{n ≤ X : n ≡ r (mod t) and p(n) 6≡ 0 (mod `)} �
r,t

√
X

log X
.

Let ` ∈ {3, 5, 7}, and let s ≥ 1. In view of Theorem 1.3, to prove Theorem 1.2 for a
fixed arithmetic progression r (mod `s), it suffices to exhibit a single n ≡ r (mod `s) with
p(n) 6≡ 0 (mod `). We devote Sections 2-4 of this paper to this task. In Section 2, we relate
modular forms to partitions. In particular, we state a precise lemma on the non-vanishing
of modular form coefficients modulo `, and we show that its truth implies Theorem 1.2.
In Section 3, we study the non-vanishing of modular form coefficients modulo `, and in
Section 4, we use the results from Section 3 to complete the proof of Theorem 1.2.
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2. Modular forms and partitions.

The proofs of our theorems require the theory of modular forms (see, for example, [8] for
details). We begin by fixing notation. Let k ≥ 4 be an even integer. We denote by Mk

the finite-dimensional complex vector space of holomorphic modular forms of weight k on
SL2(Z). Setting q := e2πiz , we identify a modular form f(z) ∈ Mk with its q-expansion,

f(z) =

∞
∑

n=0

af (n)qn.

The subspace of cusp forms in Mk, denoted by Sk, consists of forms f(z) with af(0) = 0.
The principal cusp form of interest to us is the Delta function of Ramanujan, given by

(2.1) ∆(z) := q

∞
∏

n=1

(1 − qn)24 ∈ S12.

Let s ≥ 1 be an integer, and let ` ∈ {3, 5, 7}. For integers n ≥ 1, we define integers
as,`(n) by

(2.2)
∞
∑

n=1

as,`(n)qn :=

{

∆(z)
`2s

−1

8 if ` = 3

∆(z)
`2s

−1

24 if ` ∈ {5, 7}.

We also define, for every integer j ≥ 0, integers rs,`(j) by

∞
∑

j=0

rs,3(j)q
3·9sj :=

∞
∏

n=1

(1 − q3·9sn),(2.3)

∞
∑

j=0

rs,`(j)q
`2sj :=

∞
∏

n=1

(1 − q`2sn) if ` ∈ {5, 7}.(2.4)

The following proposition establishes a recursive formula modulo ` for the modular form
coefficients as,`(n) in terms of partition values in certain arithmetic progressions modulo
powers of `2.

Proposition 2.1. Let n ≥ 1 be an integer, and let ` ∈ {3, 5, 7}.
(1) We have

as,`(n) ≡















∞
∑

j=0

rs,`(j)p

(

n− `2s
−1

8

3
− `2sj

)

(mod `) if ` = 3

∞
∑

j=0

rs,`(j)p
(

n −
(

`2s−1
24

)

− `2sj
)

(mod `) if ` ∈ {5, 7}.

(2) If n ≡ 0 or 2 (mod 3), then we have as,3(n) ≡ 0 (mod 3).

(3) If ` ∈ {5, 7} and n ≡ 0 (mod `), then we have as,`(n) ≡ 0 (mod `).
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Proof. We prove the ` = 3 case of (1). The proofs of the ` = 5 and 7 cases are similar.
Computing modulo 3 using (1.1), (2.1), (2.2), and (2.3), we obtain

∞
∑

n=1

as,3(n)qn = q
9
s
−1

8

∞
∏

n=1

(1 − qn)3·9s ·
∞
∏

m=1

1

(1 − qm)3

≡ q
9
s
−1

8

∞
∏

n=1

(1 − q3·9sn) ·
∞
∏

m=1

1

1 − q3m

≡
(

∞
∑

j=0

rs,3(j)q
3·9sj

)

·
(

∞
∑

k=0

p(k)q3k+ 9
s
−1

8

)

≡
∞
∑

n=0

(

∞
∑

j=0

rs,3(j)p

(

n − 9s−1
8

3
− 9sj

)

)

qn (mod 3).

To prove (2), we note that 9s−1
8

≡ 1 (mod 3) for all s ≥ 1. Therefore, if n ≡ 0, 2 (mod 3),
part (1) of the proposition implies that as,3(n) ≡ 0 (mod 3). To prove (3) for ` = 5 (respec-
tively ` = 7), we observe by (1.2) (respectively (1.3)) that for every integer n,

p

(

`n − `2s − 1

24
− `2sj

)

≡ 0 (mod `).

For ` ∈ {5, 7}, it now follows by part (1) of the proposition that as,`(`n) ≡ 0 (mod `). �

The following lemma gives, for our purposes, the crucial non-vanishing properties modulo `
of the coefficients as,`(n).

Lemma 2.2. Let s ≥ 1 be an integer, and let ` ∈ {3, 5, 7}. There is an integer ns,` ≥ 1
such that

(1) ns,` 6≡
{

0, 2 (mod `) if ` = 3

0 (mod `) if ` ∈ {5, 7}.
(2) as,`(ns,`) 6≡ 0 (mod `).

(3) For every prime m - ns,` with m ≡ −1 (mod `), we have as,`(ns,`m
2) 6≡ 0 (mod `).

We defer the proof of Lemma 2.2 to Section 4. The next proposition highlights the
significance of Lemma 2.2.

Proposition 2.3. Lemma 2.2 implies Theorem 1.2.

Proof. We first prove the proposition in the case ` = 3. By Theorem 1.3, it suffices to show,
for all integers r and s with s ≥ 1 and 0 ≤ r < 9s, that there is an integer Ms,r ≡ r (mod 9s)
for which p(Ms,r) 6≡ 0 (mod 3). By Lemma 2.2, there is a positive integer ns,3 ≡ 1 (mod 3)
such that for every prime m - ns,3 with m ≡ −1 (mod 3), we have as,3(ns,3m

2) 6≡ 0 (mod 3).
Using Proposition 2.1, we see that

0 6≡ as,3(ns,3m
2) ≡

∞
∑

j=0

rs,3(j)p

(

ns,3m
2 − 9s−1

8

3
− 9sj

)

(mod 3).

Hence, it follows that there is an integer j ≥ 0 for which

(2.5) p

(

ns,3m
2 − 9s−1

8

3
− 9sj

)

6≡ 0 (mod 3).
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We emphasize that (2.5) holds for all primes m - ns,3 with m ≡ −1 (mod 3). Using
Hensel’s Lemma, one can show that the quadratic congruence in the variable x,

(2.6)
ns,3x

2 − 9s−1
8

3
≡ r (mod 9s),

has a unique solution x (mod 9s) with x ≡ −1 (mod 3). By Dirichlet’s Theorem, there are
infinitely many primes m ≡ x (mod 9s). In particular, there must be a prime ms,r - ns,3

with ms,r ≡ −1 (mod 3) satisfying (2.6). The result now follows with

Ms,r =
ns,3m

2
s,r − 9s−1

8

3
.

The ` = 5 case differs slightly from the ` = 3 case. Let s ≥ 1 be an integer, and let ns,5 be
the integer whose existence is guaranteed by the ` = 5 case of Lemma 2.2. By Theorem 1.3,
it suffices to show, for all integers r with r ≡ ns,5 − 1 (mod 5) and 0 ≤ r < 25s, that there is
an integer Ns,r ≡ r (mod 25s) for which p(Ns,r) 6≡ 0 (mod 5). We note that r 6≡ 4 (mod 5)
since ns,5 6≡ 0 (mod 5).

To conclude the proof, we argue as in the case of ` = 3, using the properties of ns,5,
Lemma 2.1, Hensel’s Lemma, and Dirichlet’s Theorem to produce an integer Ns,r with the
required properties. The ` = 7 case is similar.

�

3. Modular form coefficients modulo 3, 5, and 7.

In view of Lemma 2.3, it suffices to prove Lemma 2.2. In this section, we use modular
forms modulo primes `, Hecke operators, and Galois representations to develop general tech-
niques for studying the non-vanishing modulo ` ∈ {3, 5, 7} of `-integral Fourier coefficients
of modular forms on SL2(Z).

To begin, let ` be prime, and let f(z) =
∑

a(n)qn and g(z) =
∑

b(n)qn ∈ Mk ∩ Z(`)[[q]],
where Z(`) is the localization of the integers at (`). We say that f(z) ≡ g(z) (mod `) if and
only if for all integers n ≥ 0, a(n) ≡ b(n) (mod `).

For every prime p, there is a Hecke operator Tp,k : Sk 7→ Sk whose action is given by

(3.1)

(

∞
∑

n=0

a(n)qn

)

| Tp,k =

∞
∑

n=0

(

a(pn) + pk−1a

(

n

p

))

qn.

We note that if p - n, then a
(

n
p

)

= 0. We say that f(z) ∈ Sk ∩ Z(`)[[q]] is an eigenform for

the Hecke operator Tp,k modulo ` with eigenvalue λp ∈ Z/`Z if

f(z) | Tp,k ≡ λpf(z) (mod `).

The following lemma gives the key fact underlying the proof of Lemma 2.2.

Lemma 3.1. Fix ` ∈ {2, 3, 5, 7}. Suppose that for every prime p 6= `, f(z) ∈ Sk ∩Z(`)[[q]] is

an eigenform for Tp,k modulo `. If p ≡ −1 (mod `), then we have

f(z) | Tp,k ≡ 0 (mod `).

Proof. Suppose, for primes p 6= `, that f(z) has eigenvalues λp ∈ Z/`Z for the Hecke opera-
tors Tp,k. A well-known theorem of Deligne [7, Théorème 6.7] states that there is a continuous
semisimple Galois representation

ρ`,f : Gal(Q/Q) 7→ GL2(Z/`Z),
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unramified outside `, such that for all primes p 6= `,

Trρ`,f(Frobp) ≡ λp (mod `).

Now, let χ` : Gal(Q/Q) 7→ (Z/`Z)∗ be the mod ` cyclotomic character. By a result of
Atkin, Serre, and Tate [14, Theorem 3], there is an integer i ≥ 0 such that ρ`,f ⊗ χi

` comes
from an eigenform in Mk with k ≤ ` + 1. If ` ∈ {2, 3, 5, 7} and k ≤ ` + 1, then Sk = {0},
so ρ`,f must be reducible. For all primes p 6= `, we have χ`(Frobp) ≡ p (mod `). Since ρ`,f

is odd (Detρ`,f(c) ≡ −1 (mod `) when c is complex conjugation) and reducible, there are
m, n ∈ Z/(` − 1)Z with m + n odd for which

ρ`,f = χm
` ⊕ χn

` .

Hence, observing that n − m must be odd, if p ≡ −1 (mod `) is prime, then we have

λp ≡ Trρ`,f(Frobp) ≡ pm + pn ≡ pm(1 + pn−m) ≡ 0 (mod `),

which proves the lemma. �

Before giving the principal application of Lemma 3.1, we recall certain facts on modular
forms modulo primes `. Let k ≥ 4 be an even integer. We require the normalized Eisenstein
series of weight k on SL2(Z) defined by

Ek(z) := 1 − 2k

Bk

∞
∑

n=1

∑

d|n

dk−1qn ∈ Mk,

where Bk is the kth Bernoulli number. We note the well-known fact that if ` is prime and
` − 1 | k, then

(3.2) Ek(z) ≡ 1 (mod `).

If j ≥ 1 is an integer, it is also well-known that S12j has bases given by, for example,

{E4(z)3j−3∆(z), . . . , E4(z)3j−3t∆(z)t, . . . , ∆(z)j},(3.3)

{E6(z)2j−2∆(z), . . . , E6(z)2j−2s∆(z)s, . . . , ∆(z)j}.(3.4)

Now, fix ` ∈ {3, 5, 7}, and let f(z) ∈ S12j ∩ Z(`)[[q]]. Using (3.2), (3.3), and (3.4), it follows
that there are integers a1,`, . . . , aj,` ∈ Z/`Z for which

(3.5) f(z) ≡
j
∑

i=1

ai,`∆(z)i (mod `).

In view of (3.5), for such primes `, we also require information on ∆(z)j | T`,12j (mod `).

Proposition 3.2. Fix ` ∈ {3, 5, 7}, and let j ≥ 1 be an integer. There are integers cj,` and

dj,` with 0 ≤ d`,j < j for which

∆(z)j | T`,12j ≡ cj,`∆(z)dj,` (mod `).

Remark. To illustrate, when ` = 3, we have

∆(z)j | T3,12j ≡
{

∆(z)
j

3 (mod 3) if 3 | j

0 (mod 3) if 3 - j.

This follows from formula (3.1), together with the easily verified facts that ∆(z) | T3,12 ≡ 0
(mod 3) and ∆(z)2 | T3,24 ≡ 0 (mod 3).
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We now turn to the principal application of Lemma 3.1.

Lemma 3.3. Fix ` ∈ {3, 5, 7}, let j ≥ 1 be an integer, and let f(z) ∈ S12j ∩ Z(`)[[q]] have

f(z) 6≡ 0 (mod `). Then exactly one of the following must hold.

(1) For every prime p with p ≡ −1 (mod `) or p = `, we have

f(z) | Tp,12j ≡ 0 (mod `).

(2) There is an integer if,` ≥ 2 for which the following are true:

• There are if,` − 1 distinct primes p1, . . . , pif,`−1 ≡ −1 or 0 (mod `) such that

f(z) | Tp1,12j | · · · | Tpif,`−1,12j 6≡ 0 (mod `).

• For every collection of if,` distinct primes m1, . . . , mif,`
≡ −1 or 0 (mod `),

we have

f(z) | Tm1 ,12j | · · · | Tmif,`
,12j ≡ 0 (mod `).

Remark. If f(z) satisfies (1), we define if,` := 1.

Proof. We will prove the ` = 3 case. The proofs of the other cases are similar. In view of
(3.5), it suffices to prove the lemma with f(z) = ∆(z)j.

We proceed by induction on j. To begin, we observe that for all primes p, ∆(z) is an
eigenform for Tp,12 modulo 3. Therefore, by Lemma 3.1, if p ≡ 2 (mod 3), then
∆(z) | Tp,12 ≡ 0 (mod 3). As noted in the remark following Proposition 3.2, ∆(z) | T3,12 ≡ 0
(mod 3). Hence, ∆(z) satisfies part (1) of the lemma.

Now, fix an integer j ≥ 2. We assume, for every integer k with 1 ≤ k ≤ j − 1, that there
is an integer ik := i∆k,3 ≥ 1 as in the proposition. Set t := max{i1, . . . , ij−1}, and let primes
m1, . . . , mt+1 ≡ −1 or 0 (mod 3) be given. We propose to show that

(3.6) ∆(z)j | Tm1 ,12j | · · · | Tmt+1,12j ≡ 0 (mod 3),

thereby proving the proposition with 1 ≤ i∆j ,3 ≤ t + 1. For every integer s ≥ 1, we define

Gs(z) := ∆(z)s | Tm1,12s | · · · | Tmt,12s ∈ S12s ∩ Z(3)[[q]].

It suffices to show that Gj(z) | Tmt+1,12j ≡ 0 (mod 3). By the definition of t, we have

(3.7) Gs(z) ≡ 0 (mod 3) if 1 ≤ s ≤ j − 1.

If we also have Gj(z) ≡ 0 (mod 3), then (3.6) holds. Thus, we assume that Gj(z) 6≡ 0
(mod 3). We claim, for all primes p, that Gj(z) is an eigenform for Tp,12j modulo 3.

Let p be an arbitrary prime. By (3.5) it follows that there are integers a1,p, . . . , aj,p ∈
{0, 1, 2} for which

(3.8) ∆(z)j | Tp,12j ≡ aj,p∆(z)j +

j−1
∑

i=1

ai,p∆(z)i (mod 3).

Using the commutativity of the Hecke operators, (3.7), and (3.8), we verify that Gj(z) 6≡ 0
(mod 3) is an eigenform for Tp,12j modulo 3:

Gj(z) | Tp,12j = (∆(z)j | Tp,12j) | Tm1,12j | · · · | Tmt,12j

≡ aj,pGj(z) +

j−1
∑

i=1

ai,pGi(z) ≡ aj,pGj(z) (mod 3).
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Lemma 3.1 now implies that if mt+1 ≡ 2 (mod 3), then Gj(z) | Tmt+1,12j ≡ 0 (mod 3).
It remains to show that Gj(z) | T3,12j ≡ 0 (mod 3). We compute as follows, using the

commutativity of the Hecke operators and the remark after Proposition 3.2:

Gj(z) | T3,12j = (∆(z)j | T3,12j) | Tm1,12j | · · · | Tmt,12j ≡
{

G j
3

(z) (mod 3) if 3 | j

0 (mod 3) if 3 - j.

If 3 | j, then j

3
< j − 1, so G j

3

(z) ≡ 0 (mod 3) by (3.7), proving the proposition. �

If ` is prime and f(z) is as in the hypothesis of Lemma 3.3, we define the nilpotency degree

of f(z) modulo ` by

nil`(f) := if,` ≥ 1.

For example, one can show that nil3(∆
7) = 5. Moreover, for ` ∈ {3, 5, 7}, the proof of

Lemma 3.3 shows that if j ≥ 1 is an integer and f(z) ∈ S12j ∩ Z(`)[[q]], then nil`(f) ≤ j.
We now describe how to use nil`(f) to deduce information about coefficients of f(z) which

do not vanish modulo `.

Proposition 3.4. Fix ` ∈ {3, 5, 7}, let j ≥ 1 be an integer, and let

f(z) =
∑

a(n)qn ∈ S12j ∩ Z(`)[[q]] have nil`(f) = if,` ≥ 1.

(1) Suppose that if,` = 1. Then there is an integer rf,` ≥ 1 such that a(rf,`) 6≡ 0 (mod `)
and rf,` is divisible neither by ` nor by primes p ≡ −1 (mod `).

(2) Suppose that if,` ≥ 2. Then there is an integer tf,` ≥ 1 and distinct primes

p1, . . . , pif,`−1 ≡ −1 or 0 (mod `) such that a(tf,`p1 · · · pif,`−1) 6≡ 0 (mod `) and tf,`

is divisible neither by ` nor by primes p ≡ −1 (mod `).

Proof. We prove the proposition for ` = 3. The proofs of the other cases are similar. Using
(3.1), nil3(f) = 1 implies that

f(z) | T3,12j =
∞
∑

n=1

(

a(3n) + 312j−1a
(n

3

))

qn ≡
∞
∑

n=1

a(3n)qn ≡ 0 (mod 3),

from which it follows that

(3.9) a(3n) ≡ 0 (mod 3).

Now, let p ≡ −1 (mod 3) be prime. By the same reasoning, we have

f(z) | Tp,12j =
∞
∑

n=1

(

a(np) + p12j−1a

(

n

p

))

qn ≡ 0 (mod 3),

which gives

(3.10) a(np) ≡ a

(

n

p

)

(mod 3).

Suppose that k ≥ 1 is an integer with p | k. Then there are positive integers r and m with
p - m for which k = mpr. If r is even, then repeated application of (3.10) (with n replaced
by mpb for suitable integers b) yields

(3.11) a(k) = a(mpr) ≡ a(mpr−2) ≡ · · · ≡ a(m) (mod 3).
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If r is odd, then by the same argument, we have

(3.12) a(k) = a(mpr) ≡ a(mpr−2) ≡ · · · ≡ a(mp) ≡ a

(

m

p

)

≡ 0 (mod 3).

Hence, (3.9), (3.11), and (3.12) show that there must be an integer rf,3 with the properties
stated in part (1) of the proposition.

If if := if,3 ≥ 2, then there are distinct primes p1, . . . , pif−1 ≡ −1 or 0 (mod 3) such that

f(z) | Tp1,12j | · · · | Tpif−1,12j 6≡ 0 (mod 3).

For convenience, we define g(z) ∈ S12j ∩ Z(3)[[q]] by

g(z) := f(z) | Tp1,12j | · · · | Tpif−1,12j.

Therefore, the condition that nil3(f) = if implies that nil3(g) = 1.
Now, for all integers n and j with n ≥ 0 and 1 ≤ j ≤ if − 1, we define bj(n) ∈ Z(3) by

∑

b1(n)qn = f(z) | Tp1,12j

∑

b2(n)qn = f(z) | Tp1,12j | Tp2,12j

...
∑

bif−1(n)qn = f(z) | Tp1,12j | · · · | Tpif−1
= g(z).

Since nil3(g) = 1, it follows by part (1) of the proposition that there is an integer tf ≥ 1
which is divisible neither by 3 nor by primes p ≡ −1 (mod 3) and which has bif−1(tf) 6≡ 0
(mod 3). Furthermore, since p1, . . . , pif−1 ≡ −1 or 0 (mod 3), we see that

(3.13) gcd(tf , p1 · · · pif−1) = 1.

Repeatedly using formula (3.1) together with (3.13), we obtain

0 6≡ bif−1(tf ) ≡ bif−2(tfpif−1) − bif−2

(

tf
pif−1

)

≡ bif−2(tfpif−1)

≡ bif−3(tfpif−2pif−1) − bif−3

(

tfpif−1

pif−2

)

≡ bif−3(tfpif−2pif−3)

...
...

≡ b1(tfp1 · · ·pif−1) − b1

(

tfp3 · · ·pif−1

p2

)

≡ b1(tfp2 · · · pif−1)

≡ a(tfp1 · · · pif−1) − a

(

tfp2 · · · pif−1

p1

)

≡ a(tfp1 · · · pif−1) (mod 3).

The lemma follows with tf,3 = tf . �
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4. The proof of Lemma 2.2.

In this section we prove Lemma 2.2, whose truth implies our theorems on the non-vanishing
of partition values modulo ` ∈ {3, 5, 7}. Recall that the lemma gives a uniform description
of infinitely many integers n for which as,`(n) 6≡ 0 (mod `), where the as,`(n) are integers
defined by

∞
∑

n=1

as,`(n)qn :=

{

∆(z)
`2s

−1

8 if ` = 3

∆(z)
`2s

−1

24 if ` ∈ {5, 7}.

Proof. We prove the ` = 3 case of the lemma; the proofs of the other cases are similar. We

first note that for all integers s ≥ 1, ∆(z)
9
s
−1

8 6≡ 0 (mod 3), so there is an integer

is := nil3(∆
9
s
−1

8 ) ≥ 1.

If is = 1, then by part (1) of Proposition 3.4, there is an integer rs,3 ≥ 1 with as,3(rs,3) 6≡ 0
(mod 3) and such that rs,3 is divisible neither by 3 nor by primes p ≡ −1 (mod 3). Now, let
m - rs,3 be prime with m ≡ −1 (mod 3), and for convenience, denote by

ks :=
3(9s − 1)

2

the weight of the cusp form ∆(z)
9
s
−1

8 . Since nil3(∆
9
s
−1

8 ) = 1, we obtain

∆(z)
9
s
−1

8 | Tm,ks
=

∞
∑

n=1

(

as,3(mn) − mks−1
( n

m

))

qn ≡ 0 (mod 3),

which implies, for all integers n ≥ 1, that

(4.1) as,3(nm) ≡ as,3

( n

m

)

(mod 3).

Replacing n by rs,3m in (4.1) yields

as,3(rs,3m
2) ≡ as,3(rs,3) 6≡ 0 (mod 3),

which gives the lemma in this case with ns,3 = rs,3.
Now, suppose that is ≥ 2. By part (2) of Proposition 3.4, there is an integer ts,3 ≥ 1 which

is divisible neither by 3 nor by primes p ≡ −1 (mod 3) and a collection of is−1 distinct primes
p1, . . . , pis−1 ≡ −1 or 0 (mod 3) such that as,3(ts,3p1 · · · pis−1) 6≡ 0 (mod 3). Part (2) of
Proposition 2.1 implies that ts,3p1 · · · pis−1 6≡ 0 (mod 3), so we must have p1, . . . , pis−1 ≡ −1
(mod 3).

Next, we let m - ts,3p1 · · · pis−1 be prime with m ≡ −1 (mod 3). For all integers n and j
with n ≥ 1 and 0 ≤ j ≤ is − 1, we define integers cj(n) by

∑

c0(n)qn = ∆(z)
9
s
−1

8 | Tm,ks

∑

c1(n)qn = ∆(z)
9
s
−1

8 | Tm,ks
| Tp1,ks

...
∑

cis−1(n)qn = ∆(z)
9
s
−1

8 | Tm,ks
| Tp1,ks

| · · · | Tpis−1,ks
.
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Since nil3(∆
9
s
−1

8 ) = is, it follows that for all integers n ≥ 1,

(4.2) cis−1(n) ≡ 0 (mod 3).

In particular, setting n = ts,3m in (4.2), we obtain

cis−1(ts,3m) ≡ 0 (mod 3).

By the same argument as in the proof of Proposition 3.4, using formula (3.1) and the fact
that gcd(ts,3, p1 · · · pis−1) = 1, we obtain

0 ≡ cis−1(ts,3m)

≡ cis−2(ts,3pis−1m)

≡ cis−3(ts,3pis−2pis−1m)

...

≡ c0(ts,3p1 · · · pis−1m)

≡ as,3(ts,3p1 · · · pis−1m
2) − as,3(ts,3p1 · · · pis−1) (mod 3).

Therefore, we have

as,3(ts,3p1 · · · pis−1m
2) ≡ as,3(ts,3p1 · · · pis−1) (mod 3),

which proves the lemma when is ≥ 2 with ns,3 = ts,3p1 · · · pis−1. �
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