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ODD COEFFICIENTS OF WEAKLY HOLOMORPHIC MODULAR

FORMS

Scott Ahlgren and Matthew Boylan

1. Introduction

Suppose that N is a positive integer, that w is an integer, and that

(1.1) f(z) =
∑

a(n)qn, q := e2πiz

is a weakly holomorphic modular form of integral or half-integral weight w
2 on the

congruence subgroup Γ1(N). By a weakly holomorphic modular form we mean a
function f(z) which is holomorphic on the upper half-plane, meromorphic at the
cusps, and which transforms in the usual way under the action of Γ1(N) on the upper
half-plane (see, for example, [13] for generalities on modular forms of half-integral
weight). We denote the space of such forms by Mw

2
(Γ1(N)). Now, suppose that L is

an algebraic number field, v is a place of L over 2, and Ov is the local ring at v. We
assume that the coefficients a(n) in (1.1) belong to Ov , and if mv is the maximal ideal
of Ov , then we write (mod v) to mean (mod mv). We will consider the question of
estimating the number of integers n for which a(n) 6≡ 0 (mod v).

For a well-studied example, let p(n) be the ordinary partition function. Many
authors have considered the problem of estimating the number of odd values of p(n).
Among other references, one may see [1], [5], [15], [16], [17], [18], [19], [22], or [24].
To see the connection to the general situation above, we recall the definition of the
Dedekind eta-function:

(1.2) η(z) := q
1
24

∞
∏

n=1

(1 − qn) =
∑

m∈Z

(−1)mq
(6m+1)2

24 .

Then we have the identity
∞
∑

n=0

p(n)q24n−1 =
1

η(24z)
∈ M−1

2
(Γ1(576))

(this example will be discussed in more detail below).
We return to the general situation. To see the best that one might hope to prove,

we recall the definition of the usual theta function

(1.3) θ(z) := 1 + 2

∞
∑

n=1

qn2 ∈ M 1
2
(Γ1(4)).
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It is therefore possible for a form as in (1.1) to have only one non-vanishing coefficient
modulo 2. For another example, we note that for all integers j the modular form

(1.4) f(z) :=
∑

a(n)qn =
η(24z)

θ(z)j
≡

∑

m∈Z

(−1)mq(6m+1)2 (mod 2)

lies in M−j
2 + 1

2
(Γ1(576)). From (1.4), it follows that

(1.5) #{n ≤ X : a(n) 6≡ 0 (mod 2)} �
√

X.

In this paper we will obtain a general lower bound which is quite close to the upper
bound in (1.5). In particular we will prove the following.

Theorem 1.1. Suppose that O is the ring of integers of an algebraic number field,

that v is a place over the prime 2, that N is a positive integer, and that w is an

integer. Let f(z) =
∑

a(n)qn ∈ Mw
2
(Γ1(N)) ∩ Ov((q)) and suppose that f(z) is not

congruent to a constant modulo v. Then for any K > 0 we have

#{n ≤ X : a(n) 6≡ 0 (mod v)} �
√

X

log X
(log log X)K ,

where the implied constant depends on f and K.

There is an analogous result in the case when ` is an odd prime (the proof, as we
shall see, is easier in this case). For completeness we record the result here.

Theorem 1.2. Suppose that O is the ring of integers of an algebraic number field,

that v is a place over an odd prime `, that N is a positive integer, and that λ is an

integer. Suppose that f(z) =
∑

a(n)qn ∈ Mλ+ 1
2
(Γ1(N)) ∩Ov((q)) and that f(z) 6≡ 0

(mod v). Then for any K > 0 we have

#{n ≤ X : a(n) 6≡ 0 (mod v)} �
√

X

log X
(log log X)K ,

where the implied constant depends on f , `, and K.

Remark. Let v and f(z) be as in the hypotheses of Theorem 1.2. Then the theorem
shows that f(z) cannot be congruent to a non-zero constant modulo v (when f(z)
is holomorphic, this is a special case of a result of Koblitz [12]). As stated, the
theorem is not true for forms of integral weight, since in this case there are forms
which are congruent to 1 modulo `. In the case of holomorphic integral weight forms,
more precise asymptotics for the number of non-vanishing coefficients modulo ` are
available (see, for example, Theorem 1 of [25] or Theorem 4.7 of [26]).

We give some examples of these results.

Example 1. Let p(n) be the ordinary partition function. As mentioned above,

1

η(24z)
=

∞
∑

n=0

p(n)q24n−1 = q−1 + . . .

is a weakly holomorphic modular form of weight −1/2 on Γ1(576). It follows that

the number of n ≤ X for which p(n) is odd is �
√

X
log X (log log X)K for any integer K.

This recovers a recent result of Nicolas [17] which improved previous results of Mirsky
[15], Nicolas, Ruzsa, and Sárközy [18], Ahlgren [2], and Nicolas [16]. Our method of
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proof, in fact, is similar in spirit to that of Nicolas. Ono has informed us that he can
dramatically improve the lower bound for this particular modular form, although a
written paper is not yet available.

Example 2. If f(z) =
∑

a(n)qn ∈ Mw
2
(Γ1(N)), t is a positive integer, and r is an

integer, then standard arguments show that

∑

n≡r (mod t)

a(n)qn ∈ Mw
2
(Γ1(N

′))

for some N ′. Therefore the estimates above apply equally well to coefficients in any
arithmetic progression. We note that Theorem 1.1 quantifies a result of Ono and
Wilson [23] in the odd case.

Applying this principle to the modular form in Example 1, we deduce the following
corollary from the theorems above.

Corollary 1.3. Suppose that ` is prime and that r (mod t) is an arithmetic progres-

sion. Suppose that there exists n ≡ r (mod t) such that p(n) 6≡ 0 (mod `). Then for

any K > 0 we have

#{n ≤ X : n ≡ r (mod t), p(n) 6≡ 0 (mod `)} �
√

X

log X
(log log X)K ,

where the implied constant depends on t, `, and K.

Corollary 1.3 is related to a conjecture of Subbarao [27] which asserts that in any
progression r (mod t) there are infinitely many odd values and infinitely many even
values of p(n) (see Chapter 5.3 of the book of Ono [22] or the survey [21] for a good
description of work on this problem). In particular, Corollary 1.3 improves results of
Ahlgren [1], [2] and Ono [19] in the “odd case” of this conjecture (and also answers
Problem 5.47 of the book of Ono [22]).

Of course, the problem of proving the existence of the first non-vanishing coefficient
remains. In this direction, Boylan and Ono [7] (in the case when ` = 2) and Boylan
[6] (in the case when ` = 3) have verified the hypothesis of the corollary for all r
when t is a power of `. A result of Ono [20] implies that the hypothesis is “usually”
satisfied. A result of the present authors [3] implies that

∑

p(`n + r)qn 6≡ 0 (mod `)
when ` ≥ 13 is prime.

Example 3. One could take for an example any half-integral weight weakly holomor-
phic modular form f(z) on Γ1(N) which is an “eta-quotient” (i.e. f(z) =

∏

δ|N ηrδ (δz)

where
∑

δ|N δrδ ≡ 0 (mod 24)).

Example 4. Many other examples of such weakly holomorphic modular forms have
been recently studied; we mention here the crank generating functions studied by
Mahlburg [14], various rank generating functions (and, more generally, holomorphic
parts of certain weakly holomorphic Maass forms of weight 1/2) studied by Bringmann
and Ono [8], and Bringmann, Ono, and Rhoades [9], and generating functions for
traces of singular moduli (see, e.g., Zagier [28] or Bruinier and Funke [10]).
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2. Proof of Theorem 1.1

Let N be a positive integer, w be an integer, and

(2.1) f(z) =
∑

a(n)qn ∈ Mw
2
(Γ1(N))

be as in (1.1). To begin, we recall the notion of the twist of a modular form. Suppose
that T is a positive integer and suppose that χ is a Dirichlet character modulo T . If
f(z) is as in (2.1) then the twist of f by χ is

(2.2) f(z) ⊗ χ :=
∑

χ(n)a(n)qn ∈ Mw
2
(Γ1(NT 2)).

Suppose that v is a place over 2 and that f(z) =
∑

a(n)qn ∈ Ov((q)) is a modular
form satisfying the hypotheses of Theorem 1.1. Let n0 be the least integer n with
a(n) 6≡ 0 (mod v). We claim that there is no loss of generality in assuming that
n0 6= 0. For, if n0 = 0, then since by hypothesis f(z) is non-constant modulo v, there
is a least positive integer n1 with a(n1) 6≡ 0 (mod v). Let s be a positive integer
with gcd(s, n1) = 1 and let χtriv

s be the trivial character modulo s. Then we have
f(z) ⊗ χtriv

s ∈ Mw
2
(Γ1(Ns2)) and

f(z) ⊗ χtriv
s =

∑

gcd(n,s)=1

a(n)qn ≡ a(n1)q
n1 + · · · 6≡ 0 (mod v).

The claim follows, since a lower bound for the coefficients of f(z)⊗χtriv
s clearly implies

the same lower bound for the coefficients of f(z).
Before proceeding we require two further operators. Let N and m be positive

integers, let w be an integer, and let F (z) =
∑

a(n)qn ∈ Mw
2
(Γ1(N)). Then define

Um and Vm via the formulas

F (z) | Um :=
∑

a(mn)qn,(2.3)

F (z) | Vm :=
∑

a(n)qmn.(2.4)

We have

Um, Vm : Mw
2
(Γ1(N)) 7→ Mw

2
(Γ1(Nm)).

Let sgn(n0) denote the sign of n0. We have the following lemma.

Lemma 2.1. Let O be the ring of integers of an algebraic number field and let v be

a place over 2. Suppose that N is a positive integer, that w is an integer, and that

f(z) =
∑

a(n)qn ∈ Mw
2
(Γ1(N)) ∩ Ov((q)) satisfies the hypothesis of Theorem 1.1.

Suppose further that n0 is the least integer n with a(n) 6≡ 0 (mod v) and that n0 6= 0.
Then there are positive integers M = M(f) and j0 = j0(f) with the following property:

For all j ≥ j0(f), there is a positive integer k = k(f, j) and a cusp form

fj(z) =

∞
∑

n=1

aj(n)qn ∈ Sk(f,j)(Γ1(M)) ∩ Ov [[q]]

which satisfies the congruence

(2.5) 0 6≡ fj(z) ≡
(

f(z) | U|n0|
)

·
∞
∑

n=0

q2j(2n+1)2 ≡ a(n0)q
2j+sgn(n0) + · · · (mod v).
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Proof. Multiplying f(z) by θ(z) if necessary, we may assume that w/2 ∈ Z. From
(2.3) we see that f(z) | U|n0| ∈ Mw

2
(Γ1(N · |n0|)) and that

(2.6) f(z) | U|n0| ≡
∞
∑

n=sgn(n0)

a(|n0|n)qn ≡ a(n0)q
sgn(n0) + · · · 6≡ 0 (mod v).

Next, recall that

∆(z) = q + · · · ∈ S12(Γ1(1))

satisfies

∆(z) ≡
∞
∑

n=0

q(2n+1)2 (mod 2).

For all non-negative integers j, it follows that ∆2j

(z) ∈ S12·2j (Γ1(1)) and that

(2.7) ∆2j

(z) ≡ ∆(2jz) ≡
∞
∑

n=0

q2j(2n+1)2 ≡ q2j

+ · · · (mod 2).

Since the poles of f(z) | U|n0| (if it has any) are supported at the cusps and since
∆(z) is a cusp form, there is a positive integer j0 such that for each integer j ≥ j0,

the product (f(z) | U|n0|) · ∆2j

(z) vanishes at all cusps. Setting M = N · |n0|, we
define fj(z) by

fj(z) :=
(

f(z) | U|n0|
)

· ∆2j

(z) ∈ Sw
2 +12·2j (Γ1(M)).

Using (2.6) and (2.7), we see that the modular forms fj(z) satisfy all of the require-
ments of the lemma. �

Theorem 1.1 will be an easy consequence of the next result.

Theorem 2.2. Suppose that v is a place over 2 and that K is a positive integer.

Let f(z) be as in the hypotheses of Theorem 1.1 and let j0(f) be the integer given by

Lemma 2.1. Then there exists an integer j ≥ j0(f) with the property that, with the

cusp form fj(z) =
∑∞

n=1 aj(n)qn as given by Lemma 2.1, we have

(2.8) #{n ≤ X : aj(n) 6≡ 0 (mod v)} � X

log X
(log log X)K ,

where the implied constant depends on f and K.

To deduce Theorem 1.1 from Theorem 2.2, we use an elementary lemma (c.f. [16],
Lemme 1). Suppose that ` is prime and that v is a place over `. Suppose also that

(2.9) G =

∞
∑

m=m0

aG(m)qm ∈ Ov((q)),

and define, for X > 0, the quantity

P (G, X) := #{n ≤ X : aG(m) 6≡ 0 (mod v)}.

Lemma 2.3. If X > 0 then the following are true.

(1) If F = GH with H ∈ O[[q]] then

P (F, X) ≤ P (G, X)P (H, X − m0).
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(2) If G is as in (2.9) and t is a positive integer, then

P (G | Ut, X) ≤ P (G, tX).

Proof. Write F =
∑

aF (m)qm and H =
∑∞

m=0 aH(m)qm. Then F = GH implies
that

aF (n) =
∑

i+j=n

aG(i)aH(j).

Hence, if aF (n) 6≡ 0 (mod v), then for some i, j with i+j = n we have aG(i)aH(j) 6≡ 0
(mod v). The first assertion follows from the estimates

(2.10) P (F, X) ≤
∑

i+j≤X
aG(i)aH (j)6≡0 (mod v)

1

≤
∑

m0≤i≤X
aG(i)6≡0 (mod v)

1 ·
∑

0≤j≤X−m0
aH (j)6≡0 (mod v)

1 = P (G, X)P (H, X − m0).

For the second assertion, we compute

P (G | Ut, X) =
∑

m≤X
aG(tm) 6≡0 (mod v)

1 =
∑

tm≤tX
aG(tm) 6≡0 (mod v)

1 ≤
∑

j≤tX
aG(j)6≡0 (mod v)

1 = P (G, tx).

�

Suppose that v and f(z) are as in the hypothesis of Theorem 1.1 (as mentioned
at the start of this section, we may assume that f (mod v) does not begin with the
constant term). Let j0(f) be the integer given by Lemma 2.1 and let j ≥ j0(f) be the
integer produced by Theorem 2.2. Using Lemma 2.3 and (2.7) we see that for this j
we have

P (fj , X) ≤ P
(

f | U|n0|, X
)

· P
(

∆2j

, X + 1
)

� P (f, |n0|X) ·
√

X.

It follows from Theorem 2.2 that

P (f, |n0|X) �
√

X

log X
(log log X)K ,

where the implied constant depends on f and K. Theorem 1.1 therefore follows from
Theorem 2.2.

3. Proof of Theorem 2.2

It remains to prove Theorem 2.2. We begin with a lemma which is slightly more
general than required for our particular application. When a = 1 (the case we require
here), M. Filaseta has pointed out that the result follows in a more elementary way
from a theorem of Bang [4] which implies that if n > 6, then 2n − 1 has a primitive
prime divisor (i.e. a prime divisor which does not divide 2d−1 for any positive integer
d < n).

Lemma 3.1. Suppose that ε ∈ {±1} and that K is a positive integer. Suppose that

M ≡ 0 (mod 4) is an integer, and that a ≡ 1 (mod 4) is coprime to M . Then there

exist distinct primes p0, p1, . . . , pK and a positive integer j such that
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(1) pi ≡ a (mod M) for all i.
(2) pi | (2j + ε) for all i.

Proof. If ε = −1, then let p0, . . . , pK be odd primes congruent to a modulo M . The
requirements are satisfied whenever j is a positive integer with

j ≡ 0 (mod lcm(p0 − 1, . . . , pK − 1)).

Suppose then that ε = 1. If n is a positive integer, then let ζn denote a primitive
nth root of unity. Let L be the degree 8 number field defined by

L := Q(i,
4
√

2) = Q(ζ8,
4
√

2).

Then L is the ring class field of the order Z[
√
−64] in the field Q(i). It is known that

a prime p may be written in the form p = x2 + 64y2 if and only if p splits completely

in L, which occurs if and only if the conjugacy class given by the Artin symbol
(

L/Q

p

)

in Gal(L/Q) contains only the identity element. A complete discussion of this topic
can be found in the book of Cox [11]; see in particular Theorems 9.4 and 9.5.

We may assume without loss of generality that 8 | M . Note that 4
√

2 is quadratic

over Q(ζM ) (if 4
√

2 ∈ Q(ζM ) then L would be a non-abelian subfield of Q(ζM )).

Letting K := Q(ζM , 4
√

2), it follows that there exists an automorphism σ ∈ Gal(K/Q)

which takes ζM to ζa
M and interchanges 4

√
2 and − 4

√
2. By the Chebotarev Density

Theorem, a positive proportion of primes p have the property that the conjugacy

classes
(

K/Q

p

)

and 〈σ〉 in Gal(K/Q) are equal. Such primes have p ≡ a (mod M)

and
(

L/Q

p

)

6= {1}, so that p 6= x2 + 64y2 by the discussion above. To summarize, let

S be the set of primes

S := {p : p ≡ a (mod M) and p not of the form x2 + 64y2}.
We have shown that

(3.1) #{p ∈ S : p ≤ X} � X

log X
.

For each p ∈ S, let ep be the order of 2 modulo p, and write

ep = 2fpe′p, with e′p odd.

Since p 6= x2 + 64y2 it follows by a theorem of Gauss that 2 is not a biquadratic
residue modulo p . Therefore fp ≥ 1 for all p ∈ S. (To see this, write 2 ≡ gj (mod p)
where g is a primitive root. Then 4 | (p − 1), but 4 - j, so we must have 2 | ep.) Now
let B be a large positive integer. If p ∈ S and p ≤ 2B , then 1 ≤ fp ≤ B. By (3.1) we

see that the number of such p is easily � 2B/2. If B is sufficiently large, it follows
that there exist distinct primes p0, . . . , pK ∈ S, each ≤ 2B , such that fp0 = · · · = fpK

.
Denote this common value by f , write epi

= 2fep′
i

for each i, and set

j := 2f−1e′p0
. . . e′pK

.

Then 2j ≡ −1 (mod pi) for each i. �

We proceed with the proof of Theorem 2.2. Let v, f(z), and n0 be as in the
hypotheses of Theorem 1.1 and Lemma 2.1, and let K be given. Let M = M(f)
and j0(f) be the integers given by Lemma 2.1. Using (2.5) and Lemma 3.1 we may
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fix distinct odd primes p0, . . . , pK ≡ 1 (mod M) and an integer j ≥ j0(f) with the
property that if a := a(n0) 6≡ 0 (mod v), we have

(3.2) fj(z) ≡ aqm0 + · · · ∈ Sk(Γ1(M))

where

(3.3) m0 = 2j + sgn(n0) = sp0 . . . pK for some s.

(Note that if j satisfies the requirements of Lemma 3.1 then there are arbitrarily large
values of j which satisfy these requirements.)

For each prime p - M there is a Hecke operator Tp : Sk(Γ1(M)) 7→ Sk(Γ1(M))
whose action is described by

(3.4) F (z) | Tp := F | Up + pk−1(〈p〉F ) | Vp,

where 〈p〉 is the usual diamond operator. Recall the decomposition Sk(Γ1(M)) =
⊕χSk(Γ0(M), χ). If p ≡ 1 (mod M) is prime, then the operator 〈p〉 is the identity on
each component of this direct sum. On Sk(Γ1(M)), we therefore have

(3.5) F | Tp = F | Up + pk−1F | Vp if p ≡ 1 (mod M).

Let fj(z) be as in (3.2). Using the factorization (3.3) together with (3.5), we see
that

(3.6) fj(z)|Tp0 | . . . |TpK
≡ aqs + · · · 6≡ 0 (mod v).

We require a general fact about the action of Hecke operators modulo v.

Theorem 3.2. Suppose that O is the ring of integers of an algebraic number field,

that v is a place over the prime `, that M and k are positive integers, and that

F (z) ∈ Sk(Γ1(M)) ∩ Ov[[q]]. Suppose that p′ ≡ 1 (mod M) is prime. Then we have

#{p ≤ X : p ≡ 1 (mod M), F |Tp ≡ F |Tp′ (mod v)} � X

log X
,

where the implied constant depends on F and `.

Proof. This can be proved using a slight modification of an argument of Serre (see
§6.4 of [26]) to treat forms on Γ1(M). �

Applying Theorem 3.2 repeatedly and using (3.6), we obtain sets S0, . . . , SK of
primes, each of positive density and containing only primes congruent to 1 modulo
M , such that whenever qi ∈ Si for i = 0, . . . , K we have

(3.7) fj(z)|Tq0 | . . . |TqK
≡ aqs + · · · 6≡ 0 (mod v).

Suppose in addition that the qi are distinct and coprime to s. Using the definition
(3.5), we conclude from (3.7) that the coefficient on qsq0...qK in fj(z) is congruent to
a modulo v.

It follows that P (fj , X) is at least as large as the number of integers n ≤ X which
can be written in the form

(3.8) n = sq0 . . . qK with distinct qi ∈ Si, each coprime to s.
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An argument of Landau (see Section 2.5 of [17] for a complete discussion) shows that
the number of n ≤ X of the form (3.8) is

� X

log X
(log log X)K ,

where the implied constant depends on K. Theorem 2.2 follows.

4. Proof of Theorem 1.2

Let ` be an odd prime, let O be the ring of integers of a number field, let v be a place
over `, and let f(z) =

∑

a(n)qn ∈ Mλ+ 1
2
(Γ1(N)) ∩ Ov((q)) be as in the hypotheses

of Theorem 1.2. For all non-negative integers j we have η`j

(24z) ∈ S `j

2

(Γ1(576)) and

(4.1) η`j

(24z) ≡ η(24 · `jz) ≡
∑

m∈Z

(−1)mq`j(6m+1)2 (mod `).

Since the poles of f(z) (if it has any) are supported at the cusps and since η(24z) is

a cusp form, it follows that that if j is sufficiently large, then with k := λ + `j+1
2 ∈ Z

we have

(4.2) fj(z) := f(z) · η`j

(24z) ∈ Sk(Γ1(576N)) ∩ Ov[[q]].

In this setting we have the following.

Theorem 4.1. Suppose that O is the ring of integers of a number field, that v
is a place over an odd prime `, that M is a positive integer, and that F (z) =
∑∞

n=1 b(n)qn ∈ Sk(Γ1(M)) ∩ Ov [[q]] has F (z) 6≡ 0 (mod v). Then for all K we

have

#{n ≤ X : b(n) 6≡ 0 (mod v)} � X

log X
(log log X)K ,

where the implied constant depends on F , `, and K.

Proof. Serre states this result for cusp forms on Γ0(N) in §6.5 of [26]; the argument
can be adapted to treat cusp forms on Γ1(N). �

Theorem 1.2 now follows by applying Theorem 4.1 to the form fj(z) in (4.2) and
using (4.1) together with Lemma 2.3.
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