COEFFICIENTS OF HALF-INTEGRAL
WEIGHT MODULAR FORMS MODULO #

SCcOTT AHLGREN AND MATTHEW BOYLAN

ABSTRACT. Suppose that £ > b5 is prime, that j > 0 is an integer, and that F'(z) is a half-integral
weight modular form with integral Fourier coefficients. We give some general conditions under
which the coefficients of F' are “well-distributed” modulo #J. As a consequence, we settle many
cases of a classical conjecture of Newman by proving, for each prime power £/ with £ > 5, that the
ordinary partition function p(n) takes each value modulo £/ infinitely often.

1. INTRODUCTION.

Suppose that A > 0 and N > 1 are integers with 4 | N, and that x is a real Dirichlet
character modulo N. In this paper we will study the Fourier coefficients of half-integral weight
modular forms

F(z):= ) a(n)g" € Sy; 1 (To(V), x) N Z[[g]]- (L.1)

If M is a positive integer, we say that the coefficients of F' are well-distributed modulo M if,
for every integer r, we have

log X

VX ifp 20 (mod M),
1 X = dM T
#1<n<X]an)=r (mo )} e M { De if =0 (mod M).

In particular, this condition implies that every residue class modulo M contains infinitely many
coefficients of F. (Of course, one might hope for a better lower bound than VX /log X; we
use the term “well-distributed” for convenience in stating our results.) In a recent paper [B-O
1], Bruinier and Ono prove that if £ is prime and the coefficients of F' are not well-distributed
modulo 4, then F' must have a very special form modulo £ (see below for a precise description
of these results).

After this work, there are some natural questions. First, it is natural to ask what can be said
about the distribution of the coefficients of F' modulo prime powers #/. One would also like to
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determine a simple set of conditions which guarantees the well-distribution of the coefficients of
F modulo #7. Here we shed some light on both of these questions. We begin with an important
result which follows from the arguments in [B-O 1].

Theorem 1. Suppose that A is a non-negative integer, that N is a positive integer with 4 | N,
that x 1s a real Dirichlet character modulo N, and that

o

F(z) =) a(n)g" € Syy1(To(N), x) N Z[[q]]-

n=1

Let £ be an odd prime and let j be a positive integer. Then at least one of the following is true:
(1) The coefficients of F(z) are well-distributed modulo £’ .

(2) There are finitely many square-free integers ny, ng, ..., ny for which
t o] )
)= Z Z a(n;m*)g™™  (mod £).
i=1 m=1

Remark. Theorem 1 (and Theorem 2.3) of [B-O 1] are stated for an arbitrary odd modulus M.
However, these results do not hold as stated except in the case when M is prime (i.e. the j =1
case of Theorem 1 above; see [B-O 2]).

Given Theorem 1, it is natural to ask what can be said about modular forms F(z) whose
Fourier coefficients are supported on finitely many square classes modulo ¢. For the analogous
question in characteristic zero, we have the following result of Vignéras.

Theorem ([V, Théoréme 3]). Suppose that A is a non-negative integer, that N is a positive
integer with 4 | N, and that F(z) € My 1(T1(N)). If there are finitely many square-free
integers ny,Na, ..., ns for which

t e’}
=33 a(mm?)gm,

1=1 m=0
then A\ =0 or 1 and F(z) is a linear combination of theta series.

In [B], Bruinier obtains mod ¢ analogues of the theorem of Vignéras. Bruinier shows, for
example, that if F'(z) is a common eigenform of the half-integral weight Hecke operators T'(p?),
then F'(z) can have the form displayed in part (2) of Theorem 1 only for primes £ in a certain
finite set (which is defined explicitly in terms of the Hecke eigenvalues A;.)

As an indication of the most one might hope for in positive characteristic, we recall the
following conjecture of Balog, Darmon, and Ono.

Conjecture A ([B-D-O, §2]). Suppose that A is a non-negative integer, that N is a positive
integer with 4 | N, and that £ is an odd prime. If F(z) € My 1(I'\(N)) N Z[[g]] s a modular

form whose coefficients are almost all (but not all) divisible by £, then either A =0 (mod 1)
or A=1 (mod 52).
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In our main result, we prove that if F'(z) is a modular form whose coefficients are supported
on finitely many square classes modulo /4, then, as predicted by this conjecture, the possible
values of A\ are restricted. To state the result requires some notation. If n is a non-negative
integer, then we define the integer @ € {0,...,£ — 2} by

n:=n (mod/¢—1). (1.2)
Then for each non-negative integer A, we define the integer i) by
A=A+l -1). (1.3)

Using this notation, we have the following result.

Theorem 2. Suppose that A > 2 is an integer, that N is a positive integer with 4 | N, and
that x is a real Dirichlet character modulo N. Suppose that

F(z) = a(n)q" € Sxy1 (To(N), x) N Z[[q]]-

Suppose further that £ > 5 is a prime such that £t N and such that F(z) Z 0 (mod £), and that
there are finitely many square-free integers ny, na, ..., n; such that

F(z) = Z Z a(nimz)q”im2 (mod £). (1.4)

Then the following are true:
(1) If £t n; for some i, then

(2) If£| n; for alli and X < 52, then

~ L—1
)\S2Z)\—T
. T - f—
(3) If £ | n; for all i and X > 51, then
~ £+3
)\SQZ)\ %

For convenience, we record the following easy corollary of Theorem 2.
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Corollary 3. Suppose that A > 2 is an integer, that N is a positive integer with 4 | N, and
that x is a real Dirichlet character modulo N. Suppose that

oo

F(z) =) a(n)q" € Sxy3(To(N),x) NZ{[q]].

n=1

Suppose further that £ > 5 is a prime such that £1 N and such that F(z) £ 0 (mod £), and that
F(z) has the form (1.4). Then the following are true:

(1) If X< 52, then X < 2i\ + 1.
(2) If X > 52, then X < 26y + &2,

As another corollary, we obtain a result in the direction of a mod £ analogue of the result of
Vignéras for forms F'(z) whose weight is small compared with £. In particular, the following is
immediate after Corollary 3.

Corollary 4. Suppose that F(z) is a form satisfying the hypotheses of Theorem 2 (so that in
particular F(z) has the form (1.4) ). Suppose further that A < £—2. Then X € {0,1, Z_Tl, e"'Tl, “’TS}

One might hope for a mod £ analogue of the result of Vignéras in the following form.

Conjecture B. Suppose that F(z) is a form satisfying the hypotheses of Theorem 2. Then
either A=0 (mod 52) or A=1 (mod 52).

The truth of Conjecture B (together with Theorem 1) would imply a weak version of the
conjecture of Balog, Darmon, and Ono mentioned above (see also Conjecture B of [B-D-O]).

Remarks.

(1) The hypothesis that £ { N is necessary in Theorem 2 (notice that this hypothesis is
not present in Conjecture A). To see this, let 7(z) denote Dedekind’s eta-function, and
consider the modular form f;(2) := n(242)n*(2)/n(£z), which is a cusp form of weight
£/2 on I'g(576¢) with quadratic Nebentypus. Since 7n(24z) = Znez(—l)"q(6"+1)2 and
nt(z)/n(£z) =1 (mod £), we see that fi has the form (1.4); however we have A = 5%
and i) = 0, which is against the assertion in part (1).

(2) To illustrate the quality of the bounds in parts (1) and (3) of Theorem 2, we consider two
examples. First let fo(2) := 1n3(82)Ey—1(2), where Fp_1(2) =1 mod £ is the normalized
Eisenstein series of weight £— 1 on SLy(Z). Since 73(82) = Y. (=1)"(2n+1)g+1?*,
we see that the hypotheses of part (1) are satisfied. We have A = 1 and iy = 1, so that
the inequality in part (1) reads 1 < 3.

For an example in part (3), we define f3(z) := n%(242). We have X = 152 and iy = 0,
so the hypotheses of part (3) are satisfied. In this case the asserted inequality reads
=1 43

’ These2 examples illustrate that the inequalities in the first and third parts are fairly
sharp. For an example in the second case we may take f1(z) := 1% (24z); here we have

XZO&HdiAZ%.



COEFFICIENTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS MODULO # 5

(3) When applying Theorems 1 and 2 in tandem to the question of well-distribution modulo
#7, one would start with a modular form F' (mod #7). If F is not well-distributed modulo
¢, then after Theorem 1 one is reduced to the study of F' (mod £). When passing from
F (mod #’) to F (mod £) one may be able to reduce the value of A used in Theorem 2.
This is certainly the case in our application of these results below.

As an application of (and a motivation for) these results, we consider a classical conjecture
of M. Newman [N] on the distribution of the values of the ordinary partition function p(n)
modulo positive integers M. We recall that p(n) is the number of ways to write the positive
integer n as the sum of a non-increasing sequence of positive integers.

Newman’s Conjecture. If M is a positive integer, then for every integer r there are infinitely
many non-negative integers n such that p(n) = r (mod M).

Atkin, Kolberg, Newman, and Klgve [At, Kol, N, Kl| proved the conjecture for M = 2, 5, 7,
13, 17, 19, 29, and 31 (the M = 11 case follows in a similar manner). Some conditional results
were obtained in work of Ono, the first author, and Bruinier and Ono [O], [A], [B-O 1]. In
particular, in [B-O 1] it is shown, for primes ¢ > 13, that if Newman’s conjecture is false for
{4, then p(£"+1) =0 (mod ¢) for all n. Recently [A-B] the present authors have shown that for

So(U5) e 20 mod o), (15)

each prime ¢/ > 13 we have
it follows that Newman’s conjecture is true for all primes £ > 5.

Here we show that Newman’s Conjecture is in fact true for all prime powers. In particular,
we have

Theorem 5. If ¢ > 5 is prime and j > 1 is an integer, then Newman’s Conjecture is true for
the modulus #7. Moreover, we have

: VX ifp £ 0 (mod £
#{0 <n<X : p(n) =r (mOd gJ)} >0 Tog X if r # (mO ‘),
X if r =0 (mod #7).

In Section 2 we give some preliminaries. In Section 3 we sketch the proof of Theorem 1, using
arguments of [B-O 1]. In Section 4 we prove Theorem 2. Here we employ a result of Bruinier and
Ono which restricts the possible image of a modular form satisfying (1.4) under the half-integral
weight Hecke algebra. We also require properties of the Shimura correspondence, the theory of
modular Galois representations, and the theory of modular forms in positive characteristic. In
the final section, we prove Theorem 5. Here the main tools are Theorem 2, together with the
non-vanishing result (1.5) described above.

2. PRELIMINARIES.

Suppose that A is a non-negative integer, that N is a positive integer with 4 | N, and that
X is a Dirichlet character defined modulo N. Then we denote by Sy, 1(I'o(IN), x) the usual

complex vector space of cusp forms of weight )\-I—% on I'g(N) with character x. If k is an integer
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and N is a positive integer, then we denote by My (I'1(IV)) the space of weight k¥ modular forms
on I'; (V) and by Si(I'1(N)) the subspace of cusp forms; we have the decomposition

M (1 (N)) @Mk Lo(N

where the sum runs over all Dirichlet characters modulo N. For background, one may consult,
for example, [Kob].
For each prime p t N, there is a Hecke operator

T(*, A %) = Sary(To(V),x) = Sxy g (To(N), x);

the action of this operator on Fourier expansions is given by

(Z a(n)qn) T (0% A x)
=3 (at®n) + (2) X" @ a(n) + x* G aln/p?) 7, (21)

where x* is the Dirichlet character defined by

o= (S8, (22)

n

We shall also require the Shimura correspondence [Sh]. If A > 2, then for each positive
square-free integer ¢, we have the Shimura lift

Sh; : Syy1(To(N),x) = Saa(To(N), x%) (2.3)

defined in the following way: if F'(z) := 32,7 a(n)q" € Sy, 1 (To(N), x), then Shy(f)(2) :=
Yoo 1 Ar(n)g™, where the coefficients A.(n) are given by

ZAt L(s— A+ 1,xxex2y) - Y aftn’
n=1

here xy_; and x; denote the Kronecker characters for the fields Q(i) and Q(v/%), respectively.
The Shimura correspondence commutes with the action of the Hecke operators T'(p?, A, x) and
T (p, 2, x?) (where the latter denotes the Hecke operator of index p on the integral weight space
S2x(To(N), x?))-

We next record some facts about modular forms modulo ¢. Suppose that K is an algebraic
number field and that O is its ring of integers. Let £ be a rational prime and let v be a place of
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K over £. Let O, be the corresponding valuation ring and let m,, be its maximal ideal. Then
for any N we define the O,-module

M, (T1(N))y = Mg (T'1(N)) N Oy [[g]]-

We also define
F, := O,/m,

(by a standard abuse of notation we will write (mod v) to mean (mod m,)). Then, given a
modular form

F=> a(n)g* € Mp(T1(N))o,
we may consider its reduction
7= al)g" € R, [lg]).
Given a form f € My (T'1(N)), whose reduction is non-zero, we define the filtration w(f) by
w(f) := min{k" : there exists g € My:(T'1(N)), such that f = g}.
Then we have _
w(f) =k (mod¥—1). (2.4)

We define the theta operator by its effect on Fourier expansions:

) (Z a(n)q") = Z na(n)q"

A well-known result of Serre and Swinnerton-Dyer [SwD, S1] describes the effect of © on the
reduction modulo /4 of a modular form of level one. The results of Serre and Swinnerton-Dyer
have been generalized by Katz [Ka] and Gross [G] to forms of higher level. In particular, we
have the following (see [G, §4]).

Proposition 2.1. Suppose that k > 2, that N > 4, and that £{ N. With the above notation,
suppose that f € My(I'1(N)), is a form whose reduction (mod v) is non-zero. Then

w(©f) <w(f)+£+1,
with equality if w(f) 20 (mod £).

3. PROOF OF THEOREM 1.

As mentioned above, this result is proved by the arguments of [B-O 1]; therefore we give
only a brief account of the proof here. To begin, suppose that F(z) = > 7 a(n)¢" €
Sx+1(To(N),x) N Z[[g]] is a modular form as given in the hypotheses. If M is a positive
integer, then define the set of prime numbers

S(F,M):={p : p=1 (mod NM), F(2)|T(p*, A\, x) =2F(z) (mod M)}.

Combining properties of the Shimura correspondence with a result of Serre (see, for example,
Lemma 2.2 of [B-O 1]) it can be shown that the set S(F, M) contains a positive proportion of
the primes.
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Lemma 3.1. Suppose that M is an odd positive integer. If there exists po € S(F,M) and a
positive integer ng for which (;‘—8) = —1 and ged(a(nog), M) = 1, then the coefficients of F(z)
are well-distributed modulo M .

Proof. By Lemma 2.1 of [B-O 1], it follows under these hypotheses that, for every integer r,
there exists an integer n, for which a(n,) = r (mod M). The lemma now follows as in the
proof of Theorem 1 of [B-O 1]. O

Suppose that a modular form F(z) as in Theorem 1 does not have well-distributed coefficients
modulo #/. Then we may, after Lemma, 3.1, suppose that every p € S(F,#’) and every integer
n with a(n) Z 0 (mod £) have the property that (%) € {0,1}. Following the argument in the
proof of Theorem 2.3 of [B-O 1], we conclude that there are finitely many square-free integers
ni, Na,...,Nn; for which

Il

Z Z a(nim2)q”’m2 (mod £).

i=1 m=1

F(z)

This proves Theorem 1. [J

4. PROOF OF THEOREM 2.

The proof of Theorem 2 is much more involved. As in the hypotheses, assume that F(z) €
Sx+1(Lo(N), x) NZ[[g]] and that £ is a prime with £ N and £ > 5 such that F(z) has the form

(1.4). Given such a modular form, we may, after reordering the n;, assume that there exists an
integer m; for which
a(nym?) Z0 (mod £).

We begin with a lemma.

Lemma 4.1. Suppose that F(z) = Y oo, a(n)g™ is a modular form as in the hypotheses of
Theorem 2. Suppose that F(z) has the form (1.4), and that there exists an integer nym? such
that

a(nim?) #0 (mod £). (4.1)

Then there exist primes p1,...,ps, distinct from £, and a modular form
G(2) € Sx;1(To(Np: . ..p7), x) N Z[[g]]

with -
G(z) = Z a(nlrrf)q”””2 #Z0 (mod 4).

m=1
ged(m,[Tpi)=1

Proof. Select a prime p; > £ for which (%) = —1, but for which (Z—I) = 1. We may clearly

suppose that p; > nim?2. Let X;,rli" denote the trivial character modulo p; then we define the
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modular form G1(z) € Sx;1 (To(Np1), x) N Z[[g]] by

Gl(Z) = B
t—1 00
= Z a(n;m?)g™™ (mod /)
i=1 m=l
i\ _ pitm
(pi)=1
If we iterate this process (at most) ¢ — 1 times, we obtain primes py,...,ps as described in the

lemma and a modular form
G(2) € Sy;1(Co(NDE ... p3), x) N Z[g],
with .
G(z) = Z a(nlm2)q"1m2 (mod 2).
m=1
ged(m,[[pi)=1
Since ged(nim?, [ p;) = 1, we see from (4.1) that G(2) #0 (mod £). O

An important tool in our proof is a result of Bruinier and Ono which gives information about
the possible images of modular forms F'(z) of the form (1.4) under the half-integral weight Hecke
algebra. Here we record this result.

Theorem 4.2 ([B-O 1, Thm. 3.1]). Let F(z) be as in (1.1), and suppose that M is a positive
odd integer which is coprime to N. Suppose that p { NM is prime, and that there ezists a
number €, € {—1,1} such that

F(z) = Z a(n)¢™ (mod M).
(5)€{0.en}

Then
(p—DFE)|T®, A X) = ex*®0) @+ 2" (@ —1)F(2) (mod M).

Given a form F'(z) of the form (1.4) and a prime £ { N, we let G(z) € Sati (To(Np?...p2), %)
be the modular form given by Lemma 4.1. For convenience, we define

No := Npi---p}.

Then for every prime p 1t Noni1£, Theorem 4.2 applies to the modular form G(z) with M = ¢
and €, = (%) We conclude, for every prime p{ Ngni£ with p Z 1 (mod £), that

G(2)|T(P* A x) = &x* () (0 +p*)G(2) (mod ¢). (4.2)
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Recalling from §2 the definition of the Shimura lifting (and the assumption that A > 2), we
define the integral weight modular form

f(2) := Shy, (G) € S2x(To(No)) N Z[[q]]-

It is clear that f(z) Z 0 (mod £). Using (4.2) and the fact that the Shimura correspondence
commutes with the action of the Hecke operators, we find, for every prime p { Nonif with p #Z 1
(mod £), that

FIT(,2)) = ex* () (0 +p*71)f  (mod £). (4.3)

We now apply a general result of Deligne and Serre [D-S, Lemme 6.11]. Using this result,
we conclude that there exists a number field K and a place v over £, together with a non-zero
modular form f'(z) € S2x(T'o(No)) N Oy[g]], such that for all primes p t Nynqf with p # 1
(mod £), there exists b(p) € O, with

F'(2)|T(p,22) = b(p) f'(2), (4.4)

and
b(p) = epx*(p)(P* +p*")  (mod v). (4.5)

By the theory of newforms, we may write
F1(2) = i fi(8;2), (4.6)
j=1

where each f; is a newform of weight 2\ and level dividing Ny, each d; is a divisor of Ny, and
the a; are non-zero algebraic numbers. For convenience, let us set

9(z) = f1(2). (4.7)
From (4.4) and (4.6) we conclude, for each prime p with p{ Nonif and p # 1 (mod £), that
9(2)|T(p,2X) = b(p)g(2). (4.8)

After enlarging K if necessary, we may suppose that it contains the coefficients of g as well
as all of the Ny-th roots of unity. We fix for the duration a place v of K over £. As in the
second section, we denote by F, the residue field of O,, and we write

g(2) == b(n)g"

(note that the definition of the numbers b(p) for primes p with p { Nyn1£ and p Z 1 (mod ¥)
is consistent with (4.8)). By the work of Deligne and Serre (see Thm. 6.7 of [D-S]) there is
attached to ¢g(z) a semisimple residual Galois representation

p: Gal(Q/Q) — GLa(F,), (4.9)



COEFFICIENTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS MODULO # 11

unramified outside of Ny/, such that for all primes p { NoZ, we have

Tr(p(Froby,)) = b(p) (mod v), (4.10)

Det(p(Frob,)) = p**~! (mod v). (4.11)

We let G, C GLy(TF,) be the image of p, and we let P, C PGL2(TF,) be the projectivization
of G,. Given the information (4.5), we will investigate the possibilities for G, and P,.

We begin with a lemma whose proof follows arguments of Swinnerton-Dyer [SwD, Lemma
2] and Ribet [R2, Thm. 2.1].

Lemma 4.3. Let p be a representation as in (4.9), and suppose that £ | ‘Gv|. Then either p is
reducible or G,, contains a conjugate of SLo(Fy).

Proof of Lemma 4.3. We view GLy(IF, ) as acting on a two-dimensional vector space V over F,,,
and we choose o € GG, of exact order £. Then there is a unique one-dimensional subspace W of
V which is an eigenspace of o with eigenvalue 1. If every element of G, has W as an eigenspace,
then p is upper-triangular (i.e. reducible). If this is not the case, then let o1 € G, map W to
another one-dimensional subspace W;. After a suitable change of basis, we may suppose that

for some v € F,, we have
(11 4 (10
o=\ 1) ©wor = v 1)

A classical result of Dickson (see Thm. 2.8.4 of [Go]), implies that

ware (3 12 9)

It follows in this case that G, contains a conjugate of SLy(IFy); this proves the lemma. O

Lemma 4.4. Suppose that g(z) is the newform given in (4.7), and let p be the representation
attached to g as in (4.9). Then G, does not contain a conjugate of SLo(Fy).

Proof of Lemma 4.4. After replacing p if necessary by a conjugate representation, it suffices to
show that G, does not contain SLq(Fy). Suppose by way of contradiction that SLy(F,) C G,.
Let x, be the mod ¢ cyclotomic character, and consider the representation

pxxe : Gal(Q/Q) — GL»(F,) x F}.

Since the projection of the image onto the first factor contains SLa(Fy ), and PSLo(Fy) is simple,
it follows that

SL3(Fp) x 1 = Comm(SLy(F;)) x 1 C (p X x¢)(Comm(Gal(Q/Q))) C Im(p X x¢)-

Now choose v € SLy(Fy). In view of the assertion above, we may find o € Gal(Q/Q) such
that

(p X xe) (@) = (7, 1)
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Fix any prime p with p{ Ngn1£ and p Z 1 (mod £). By the Chebotarev Density Theorem, there
are infinitely many primes ¢ for which

(p % xe)(Froby) = (p x x¢)(Frob, o). (4.12)

Notice that x;(Frob,) = ¢ (mod £) and that x(Frob, o) = xs(Frob,)xe(c) = p mod Z.
Therefore, it follows from (4.12) that

p=gq (mod?). (4.13)
Using (4.13) together with (4.10) and (4.5), we conclude that
Tr(p(Frob,)) = £ Tr(p(Froby)). (4.14)
On the other hand, from (4.12) we see that
Tr(p(Frob,)) = Tr(p(Frob, o)) = Tr(p(Froby) - ).

b

If we set A := p(Frob,) = (CCL d

that

) € GLy(F, ), then the last line together with (4.14) implies

Tr(Av) = £ Tr(A). (4.15)
Notice that (4.15) holds for all v € SLo(F,). From this it is easy to get a contradiction. For

(1) _11> in (4.15) shows that ¢ = 0. By

(1) _11> in (4.15) shows that d = 0; this

and successively v = (

example, setting v = ((1) 1

symmetry we see that b = 0. Finally, setting v =
proves the lemma. [

After the last two lemmas, we may conclude that p is reducible in the case when ¢ | |G,|. If,
on the other hand, £ 1 |G, |, then we have the following possibilities for P, (see [S2, Prop. 16]):

(1) P, is cyclic.
(2) P, is dihedral.
(3) P, is isomorphic to A4, Sy, or As.

To examine these cases, we argue as in [R2, p. 189]. If P, is cyclic, then we find that p is
reducible. If P, is dihedral, then there is a non-trivial quadratic character ¢ modulo Nyf such
that

¢(p) =—1 = b(p) =0 (mod v). (4.16)

Using (4.5), we conclude from (4.16) that for primes p { ny we have
¢(p) =—1 = p+1=0 (mod?),

which is clearly false. Therefore P, is not dihedral.
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If P, is A4, Sy, or As, then for each prime p{ Nof, we have either

b(p)?
p2)\—1

=0,1,2,4 (mod v),

or
b(p)* —3p™b(p)® +p* 2 =0 (mod v).

A case-by-case calculation using (4.5) shows that if £ > 5, then each of these possibilities
leads to a contradiction. (For example, the second displayed congruence together with (4.5)
implies that p* + p®> +p? + p+ 1 = 0 (mod £) for all p { Nyni£ with p #Z 1 (mod £), which is
clearly false.) It follows that P, is neither A4, S4, nor As when ¢ > 5.

After Lemmas 4.3 and 4.4 and the above discussion, we may assume, under the hypotheses
of Theorem 2, that p is reducible. Recall that the field K contains all Ny-th roots of unity.
Since p is semisimple, we may conclude that there are Dirichlet characters 1; and 12 modulo
Ny (viewed as characters of Gal(Q/Q) in the usual way, and with values in I, ) and that there
are integers 0 < m,m’ < £ — 2 for which

p =Xy ®haxy (4.17)

In particular, for all primes p { No¢, (4.17) implies that

Tr(p(Froby)) = ¢1(p)p™ + $a(p)p™ (mod v), (4.18)
Det (p(Frob,)) = 41 (p)1h2(p)p™ ™ (mod v). (4.19)

Comparing (4.11) and (4.19) for sufficiently many p, we find that

m' +m=2\—1 (mod £ — 1),
Py =7 .
Therefore, m’ + m is odd, so we may assume that m’ > m.

If x is a Dirichlet character and k is a positive integer, then we define the multiplicative
function oy, by

Trx(n) = x(d)d*.

d|n

For convenience, we denote by 1 the Dirichlet character (mod Np) with values in O, whose
reduction modulo v is 1;. The proof of Theorem 2 requires Lemma 4.5, whose proof follows
the lines of [SwD, Lemma 8] and [R1, Lemma 4.6].

Lemma 4.5. Suppose that g(z) is the newform given by (4.7) and that the representation p
attached to g(z) is given by (4.17) with m' > m. Then we have m’' + mf+ 1 < 2.

Proof. Recall that the newform g given by (4.7) has Fourier coefficients b(n) € O,. Using (4.10)
and (4.18) we find, for all primes p { Non14, that

b(p) =¥ (P)p™ T —my2(p) (mod v). (4.20)
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Since g is a newform, it follows that for all primes p { Non1£ and all integers j > 2, we have

b(p?) = b(p’")b(p) — P Tb(p? ). (4.21)

Using (4.20), (4.21), and the multiplicativity of the Fourier coefficients of g, it follows by
induction that for all n with ged(n, Noni£) = 1, we have

b(n) = ()N 0 —mp2(n)  (mod v). (4.22)

To complete the proof we require the following fact.

Lemma 4.6. Suppose that N > 2 is an integer, that x is an even Dirichlet character modulo
N, and that k > 2 is an even integer. Then there is a modular form Fy i, (z) € My(To(N?), x)
whose Fourier expansion at infinity is given by

FN,k)X (Z) = Z Uk—l,X (n)qn'

n=1
ged(n,N)=1

Proof. Let X}{,i" denote the trivial character modulo N. If kK = 2 and x = X}{,i", then we may

take .
FN,2,x§\§i" (Z) = ﬂ ’ (NE2(NZ) - EQ(Z)) ® X?\rflv’

where E5(z) is the usual quasi-modular Eisenstein series of weight 2 on SLy(Z). If £ > 4 and

triv

X = Xn ", then we may take

Bk ri
P o (2) = — 5 Ful(2) @ 0,
where Ej(z) is the normalized Eisenstein series of weight k¥ on SLy(Z) and By is the kth
Bernoulli number. Suppose that x is non-trivial and primitive. Then, by the work of Hecke,
(see, for example, [H, Proposition 5.1.2]) we have Eisenstein series

2k &
Engx(2) =1~ - D oh-1x(n)g" € Mi(To(N), x),
X n=1

where By, , is the kth generalized Bernoulli number associated to x. In this case, we may take

_Bk,x
2k

triv

) ENak)X ® XN °

Fn,x =

Finally, suppose that  is non-trivial and imprimitive; we may then write x = xar X%, where

XM is a primitive character with conductor M | N. In this case we take
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g

We now return to the proof of Lemma 4.5. Set n} := n1/ged(ni,£). Recalling that Ny > 2,
let Fngm/—m+142(2) € Myy—mt1(To(NG),1?) be the modular form given in Lemma 4.6. We
define

oo
E = FNo,m’—m—i-l,lpz ® ¢_1X‘:erw = Z ¢_1(n)0m1_m,¢2 (n)qn

n=1
ged(n,Non!)=1

Using the notation from Section 2, we see that
12
E(2) € My _ i1 (T1(NEDY))w-

Since 0 < m,m' <£—2, we have m' —m + 1 < £ — 1; it follows from (2.4) that

w(E)=m' —m+ 1.

Proposition 2.1 then implies that

Om+lE = Z Y n)n™ oy, g2 (n)g" (4.23)

n=1
ged(n,Non'£)=1

has filtration
w(O@™HE)=m' —m~+1+ (m—+1)(£+1). (4.24)

We next observe that

Og @ xiv, ) = nb(n)q". (4.25)
07y
gcd(n,?\/:mlv,'lE):l

By Proposition 2.1, we have
w(@(g®xg§gvn,l)) <2044+ 1. (4.26)

Using (4.23), (4.25), and (4.22), we see that O™+1E = @(g@x}{%‘;a). Therefore, comparing
(4.24) and (4.26), we find that

m +ml+1< 2\
Lemma 4.5 follows. [

We are now in a position to finish the proof of Theorem 2. We recall that the modular form
G(z) given by Lemma 4.1 has the form

G(z) = Z a(nlm2)q”1m2 (mod 2).
ged(m No/N)=1
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For every prime p { Noni¢ with p # 1 (mod £) we recall that €, = (%1) For such primes p,
(4.5) and (4.18) imply that

P(P)p™ + ¢ (PP = X ()P + M) (mod v). (4.27)

We also recall that 4 | N, that N | Ny, that £ Ny, and that x* is a Dirichlet character modulo
N, while 9 is a Dirichlet character modulo Ny.

Proof of assertion (1) of Theorem 2. This assertion is trivially true for A = 0, 1; we will therefore
suppose that A > 2. By the hypotheses in this case we may suppose without loss of generality
that £t ny. Suppose that p # £ is a prime with p = 1 (mod Nyni) and p Z 1 (mod ¢). For
such a p, (4.27) becomes

p™ +p™ = pr 4l (mod 2). (4.28)

We now notice that we may find a prime p in each residue class modulo £ for which (4.28) holds.
Since A — 1 < X and m < m/, it follows that m = A — 1 and m’ = X. The result now follows
from Lemma 4.5 and (1.3).

Proofs of assertions (2) and (3) of Theorem 2. The proof in these cases is similar. Under our
assumption, we have £ | n;. We write nqy = ¢n) with £ 1 n}. If we let p # £ be a prime with
p=1 (mod Nynj) and p Z 1 (mod ¥), then (4.27) becomes

P ™ = T M (mod £). (4.29)

Since (4.29) holds for some prime in each residue class modulo ¢, we conclude that

{m,m'} = A+ 5L, 2+ 53). (4.30)
If 0 < X < 52, then (4.30) implies that

— ¢£-3 , ~ £-1
m—)\+T, m —)\—I—T.
Assertion (2) now follows from Lemma 4.5 and (1.3).
Finally, notice that the third assertion is trivially true for A = E_Tl G143 1f ) > 45
then (4.30) implies that

L+1

_ 41
m=X-"—0m, m =X~

2 )
from which the third assertion follows. O

5. THE PROOF OF THEOREM 5.

We turn to the proof of Newman’s Conjecture for prime power moduli # with £ > 5. We
first suppose that
2> 13.
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By Propositions 1 and 2 of [A], we see, for every integer j > 1, that there exists a modular
form

Fg’j € Sej_u';l_1 (F0(576£)a X12)

with the property that

oo

Fy(2) = Zp<£n+1) " (mod #).

If the coefficients of Fy ;(z) are well-distributed modulo #7, then Theorem 5 for the modulus
47 follows immediately. If the coefficients are not well-distributed modulo £/, then by Theorem 1
we may conclude that Fj ;j(z) has the form (1.4). Now, using the j = 1 case of [A-B, Thm. 3],
we find that there exists a modular form

Fy(z2) € S@ (L'o(576), x12)

such that

In+1
Fy(z) = Fp (2 Zp ( ) " (mod £).
Moreover, Theorem 1 of [A-B] implies that for £ > 13 we have
Fy(z) #0 (mod ¥).

Writing 3_72 = A+ %, we have \ = E_Ts and 7y = 0. This contradicts Corollary 3. Hence,
Theorem 5 is true for each modulus # with £ > 13.

It remains to consider the cases when £ =5, 7, or 11. Here the argument above breaks down
since the Ramanujan congruences imply that Fy(z) = 0 (mod £). Therefore, some additional
work is necessary.

Suppose that £ = 5, 7, or 11, and that 7 > 1 is an integer. Using a construction outlined
in [A-O 1], we see that there exist positive integers N, ; and A, ; together with a quadratic

character x, ; modulo N, ; and a modular form

o

Fpj =Y ap;(n)q" € Sy, 41 (To(Neg), xe5) N Z[[q]
n=1
with the property that
n+1\ .
Fpj(z) = P ( 2 ) q" (mod #). (5.1)

(#)=

If the coefficients of Fy j(z) are well-distributed modulo ¢/, then Theorem 5 for the modulus ¢/
follows immediately.
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Therefore, we will suppose by way of contradiction that the coeflicients of Fy ;(z) are not
well-distributed modulo #. Then Theorem 1 implies that there are finitely many square-free
integers ni, na,...,n, such that

On the other hand (see [A-O 2, (4.1), (4.2), (4.3)]), there are modular forms

fo(2) =) ar(n)g" € 82 _s (To(576), x12) N Z[[g]]

with

fe(z) = D (n;—ll) q" Z0 (mod ¥). (5.3)

In particular we have
fs(2) =n*(242), (5.4)
f7(2) =n?3(242)E3(242) + 31*"(242),
f11(2) =n?3(242)E}?(242) + 5n*"(242) E3 (242)
+ 41" (242) ES (242) + 1°°(242) E2 (242) + 8n''%(242). (5.6)
Combining (5.2), and (5.3), we see that

= Z Z ag(nim2)q"im2 (mod £).

i=1 m=1
Next, we note from (5.4), (5.5), and (5.6), that, for each £ € {5,7,11} we have
ag(23) = 1. (5.7)
Hence, by Lemma 4.1, there are primes p1,...,ps > 23, distinct from ¢, and a modular form

Gy(z) € SﬂT—2 (To(576p3 - - - p3), x12) with

Gy(2)

Z (zg(Zi’)TrL2)q2?’m2 #Z0 (mod 4).
1

ng("T_ pi)=1
Furthermore, by Theorem 4.2 and (2.1), we see that, for every prime p{6-23 - p;---psf with
p#1 (mod 8), we have

2—5 12—3

ae(23p2)+(%3)x*;2<p>p = 00(23) = X (D) (P +p T )ag(23) (mod £).  (5.8)

We observe that ¢, = (%) and that x3j,(p) = (_73) It is then easy to obtain the desired
contradictions. In particular, if £ =5 and p = 7, then (5.8) becomes 3 =2 (mod 5). If { =7
and p = 5, then (5.8) becomes 2 = 5 (mod 7), while if £ = 11 and p = 5 then (5.8) becomes
6 =2 (mod 11). It follows that Theorem 5 holds also when £ =5, 7, or 11. O
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