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Abstract. If F (z) is a newform of weight 2λ and D is a fundamental discriminant, then
let L(F ⊗ χD, s) be the usual twisted L-series. We study the algebraic parts of the central
critical values of these twisted L-series modulo primes `. We show that if there are two
D (subject to some local conditions) for which the algebraic part of L(F ⊗ χD , λ) is not
0 (mod `), then there are infinitely many such D. These results depend on precise non-
vanishing results for the Fourier coefficients of half-integral weight modular forms modulo
`, which are of independent interest.

1. Introduction

Given a normalized newform

F (z) :=

∞
∑

n=1

a(n)qn ∈ S2λ(Γ0(N)),

we define the modular L-series

L(F, s) :=

∞
∑

n=1

a(n)n−s.

The central critical values

L(F, λ)

are of great importance in number theory. Perhaps the most prominent indication of their
importance comes from the conjecture of Birch and Swinnerton-Dyer, which relates the
analytic properties of the L-function of a weight 2 newform F (z) with integral coefficients to
the rank and the order of the Tate-Shafarevich group of the associated elliptic curve E/Q.

More generally, if ψ is a Dirichlet character, then we define the twisted L-series

(1.1) L(F ⊗ ψ, s) :=

∞
∑

n=1

ψ(n)a(n)n−s.

Deep results of Waldspurger [33], of Bump, Friedberg, and Hoffstein [8], of Murty and Murty
[22], of Iwaniec [13], and of others (in various cases) establish non-vanishing results for central
critical values of quadratic twists of modular L-functions and their derivatives. Combined
with work of Gross and Zagier [11] and Kolyvagin [18] these non-vanishing results lead to
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a proof of the weak Birch and Swinnerton-Dyer conjecture for elliptic curves over Q with
analytic rank ≤ 1 (see, for example, Chapter 3 of [9] for a good expository treatment).

The central critical values themselves are typically transcendental. However, Shimura
proved the existence of periods for the values of the twisted L-series given in (1.1) at integral
arguments. In particular, if D is the discriminant of a quadratic number field, then let χD

denote the corresponding Kronecker character. After Theorem 1 of [30] it is known that
there exists a period Ω ∈ C× such that

(1.2)
L(F ⊗ χD, λ)|D|λ− 1

2

Ω
∈ Q for all fundamental D with (−1)λD > 0

(in fact, Shimura proves that Ω may be selected so that these values all lie in the number field
KF generated over Q by the coefficients of F ). We note that if ε is the sign of the functional
equation for L(F, s), then L(F ⊗ χD, λ) is trivially zero for all D with χD(−N)ε = −1.

If ` ≥ 5 is prime, then we fix an extension v` of the usual `-adic valuation on Q to an
algebraic closure Q. With this notation, Ono and Skinner ([23], Corollary 1) proved that for
all but finitely many primes ` there are infinitely many fundamental discriminants D such
that

(1.3) εD > 0 and v`

(

L(F ⊗ χD, λ)|D|λ− 1

2

Ω

)

= 0.

A local version of this result ([23], Corollary 2) is also given.
If N is odd and square-free, Bruinier [5] showed that for all primes ` outside of a finite

set (which is described in terms of the Hecke eigenvalues of F ), there are infinitely many
fundamental discriminants D such that

(1.4) (−1)λD > 0 and v`

(

L(F ⊗ χD, λ)|D|λ− 1

2

Ω

)

= 0.

In this paper we will prove a different type of result. For primes p | N , let εp ∈ {±1}
be the eigenvalue of F (z) under the Atkin-Lehner involution wN

p (see §3 for details). In the
next section, we will state a precise non-vanishing theorem (Theorem 2.2) for the coefficients
of half-integral weight modular forms modulo `. Combining this with work of Kohnen [16],
we will prove the following.

Theorem 1.1. Suppose that N and λ are positive integers with N odd and square-free, that
F (z) =

∑∞
n=1 a(n)qn ∈ Snew

2λ (Γ0(N)) is a normalized newform, and that Ω ∈ C× is any period
for F (z) satisfying (1.2). Suppose also that ` ≥ 5 is a rational prime, and that the minimum

(1.5) min

{

v`

(

L(F ⊗ χD, λ)|D|λ− 1

2

Ω

)}

,

taken over all fundamental D with (−1)λD > 0 and
(

D
p

)

= εp for all p | N , is attained

for two distinct fundamental discriminants D. Then the minimum is attained for infinitely
many such D.

Remark. In this paper we employ Kohnen’s theory because of its explicit nature. More
general results relating coefficients of half-integral weight modular forms to twisted L-values
have been proved by Waldspurger [34].
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Remark. It will be clear from the proof of Theorem 1.1 that the minimum in (1.5) exists.
This is also implied by the fact that it is possible to select a “good” period Ω; in other words,
a period for which the relevant L-values are integral at `, but are not all zero (mod `).

Remark. We make the important remark that Theorem 1.1 is optimal. In particular, there
exist forms F (z) for which the minimum in (1.5) is achieved exactly once. Here we give one
such example, which has been discussed by Kohnen and Zagier [17] and by Bruinier and Ono
[6].

Let ∆(z) be the unique normalized eigenform of weight 12 on Γ0(1), let G4(z) := 1/240 +
∑∞

n=1 σ3(n)qn be the usual Eisenstein series of weight 4, and let θ(z) :=
∑

n∈Z
qn2

. Define

g(z) =

∞
∑

n=1

c(n)qn :=
60

2πi
(2G4(4z)θ

′(z) −G′
4(4z)θ(z)).

By results of Kohnen and Zagier (see Section 6 below for a complete discussion) there exists
a period Ω such that for every positive fundamental discriminant D we have

(1.6) c(D)2 =
L(∆ ⊗ χD, 6)D

11

2

Ω
.

On the other hand, it is easy to verify that

(1.7) g(z) ≡
∞
∑

n=1

(

n
5

)

qn2

(mod 5).

By combining (1.6) and (1.7) we see that the minimum in (1.5) is attained only when D = 1.

We now consider an application of this theorem to the study of Tate-Shafarevich groups of
elliptic curves over Q. Suppose that E/Q is an elliptic curve with odd, square-free conductor
N . Let f(z) be the weight two newform on Γ0(N) associated to E by the work of Wiles
[35], and let L(E, s) = L(f, s) be the L-function associated to E. For each fundamental
discriminant D let ED be the D-quadratic twist of E. If ωD is the invariant differential on
ED, then we define

Ω(ED) :=

∫

ED(R)

|ωD|,

and

D0 :=

{

D if D is odd,

D/4 if D is even.

Then, for negative fundamental discriminants D, we find that

(1.8) Ω(ED) =
Ω(E−4)
√

|D0|
.

Let X(E) denote the Tate-Shafarevich group of E and let Tam(E) denote the Tamagawa
number of E. We have Tam(E) =

∏

p cp, where cp := |E(Qp)/E0(Qp)| is the usual local index

(see, for example, [31], §16 of Appendix C). The conjecture of Birch and Swinnerton-Dyer
predicts that if L(ED, 1) 6= 0, then

(1.9)
L(ED, 1)

Ω(ED)
=

|X(ED)|
|ED(Q)tor|2

Tam(ED).
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For convenience, we let Sha(ED) be the order of X(ED) as predicted by Birch and Swinnerton-
Dyer.

From (1.9) and (1.8) we obtain, for negative D such that L(ED, 1) 6= 0,

(1.10)
L(ED, 1) ·

√

|D0|
Ω(E−4)

=
Sha(ED)

|ED(Q)tor|2
Tam(ED).

To get a feel for Theorem 1.1 in this context, let ` be a fixed odd prime. We consider the
issue of replacing the period Ω(E−4) in (1.10) by a period Ω∗ with the property that the
values

(1.11)
L(ED, 1) ·

√

|D0|
Ω∗

are all integral at `, but are not all divisible by `. Suppose that ` = 5 or 7 and that some
twist ED with (D,N) = 1 has `-torsion, but that v`(Sha(ED) · Tam(ED)) ≤ 1. It is clear
(for example, by considering the Fourier expansions of the associated weight two modular
forms) that no other twist ED with (D,N) = 1 can have `-torsion. Therefore, we see that if
the period Ω∗ has the properties described above, then all but exactly one of the values in
(1.11) will be divisible by `. Therefore Theorem 1.1 is natural in this context.

In Conjecture F of [18], Kolyvagin speculates that ifE/Q is an elliptic curve with L′(E, 1) 6=
0, then there exists a D (satisfying a “Heegner hypothesis”) with

(1.12) L(ED, 1) 6= 0 and v`(Sha(ED)) = 0.

Ono and Skinner ([23], Corollaries 2 and 3) prove, given an elliptic curve E, that for all but
finitely many primes `, there exist infinitely many D for which (1.12) holds.

An application of Theorem 1.1 gives more information in this direction. As before, let εp
denote the eigenvalue of f(z) under the involution wN

p .

Theorem 1.2. Let E/Q be an elliptic curve with odd, square-free conductor N . Suppose that
` ≥ 11 is prime. Suppose further that there exist two negative fundamental discriminants D
such that

(1)
(

D
p

)

= εp for all p | N .

(2) L(ED, 1) 6= 0.
(3) v`(Sha(ED)) = 0.

Then there exist infinitely many negative fundamental discriminants such that (1)–(3) hold.

Remark. It is natural to ask under what conditions we can replace conclusion (3) in Theo-
rem 1.2 with the more desirable conclusion

(1.13) v`(|X(ED)|) = 0.

In the case when E has complex multiplication, then the work of Rubin [26] implies that,
for those D satisfying (2) and (3), (1.13) is true for all ` ≥ 5.

Suppose that E is an elliptic curve with conductor N as in the statement of Theorem 1.2,
and that E does not have complex multiplication. Suppose further that εp = 1 for all
p | N . Then every negative fundamental discriminant D which satisfies (1) also satisfies the
Heegner hypothesis D ≡ � (mod 4N), and so we may apply the results of Kolyvagin [18].
In particular, suppose that

(1) D is odd.
(2) E has analytic rank equal to one.
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(3) ` is a prime for which the `-adic representation of the Tate module of E is surjective
(this excludes only finitely many `).

(4) ` - 2 · Tam(E) · c(E) · Sha(E) (where c(E) is the Manin constant).

Then Corollary E of [18] guarantees that (1.13) is in fact implied by (2) and (3) of Theo-
rem 1.2. Note that in the simplest case (i.e. when N = p is prime), the condition εp = 1 is
equivalent to the natural condition that sign(E,Q) = −1.

One would naturally like to weaken the Heegner hypothesis D ≡ � (mod 4N), which is
restrictive if N is composite. Along these lines, suppose that E is an elliptic curve as in the
statement of Theorem 1.2 with the properties that E has analytic rank equal to one and that
sign(E,Q) = −1. Let D be a negative fundamental discriminant which satisfies conditions

(1) and (2) of Theorem 1.2 and set K := Q(
√
D). Then (using, for example, the explicit

description in Theorem 3.17 of Darmon’s book [9]) we find that sign(E,K) = −1. It follows
(see Theorem 4.18 of [9]) that there is a non-trivial Heegner system (arising from a Shimura
curve parametrization) attached to the pair (E,K). In this setting, Zhang has proved an
analog of the Gross-Zagier formula (see [36] or Theorem 4.19 of [9]). In view of these facts,
it seems reasonable to expect that an analog of Kolyvagin’s Corollary E should hold for all
of the discriminants which satisfy (1) and (2) of Theorem 1.2 (but we do not know of such
a statement in the literature). Such a result would, as in the case when all εp = 1, allow
one to replace (3) by the conclusion (1.13) for those primes ` outside of an explicit finite set
depending on the elliptic curve E.

2. Coefficients of half-integral weight modular forms modulo `

The results in the first section depend on non-vanishing results (mod `) for the Fourier
coefficients of half-integral weight modular forms. The main result in this section, which is
of independent interest, gives a precise (mod `) analogue of a well-known result of Vignéras
for half-integral weight modular forms in characteristic zero.

Suppose that N is a positive integer with 4 | N , that χ is a Dirichlet character defined
modulo N , that λ ≥ 0 is an integer, and that

(2.1) f(z) =
∞
∑

n=1

a(n)qn ∈ Sλ+ 1

2

(Γ0(N), χ)

is a half-integral weight cusp form. Partly because of their connections to the issues discussed
in the first section, the coefficients a(n) are a central object of study in number theory.

Let ` ≥ 5 be prime. Here we will study half-integral weight cusp forms whose reduction
modulo ` has few non-vanishing coefficients. Cusp forms of this type have been investigated
recently by a number of authors, including the present authors [2], [3], Bruinier [5], Bruinier
and Ono [6], [7], and Ono and Skinner [23].

The single-variable theta series of weights 1/2 and 3/2 provide the simplest examples of
modular forms of half-integral weight with few non-vanishing coefficients. If ε ∈ {0, 1}, and
φ is a nontrivial Dirichlet character modulo r which satisfies φ(−1) = (−1)ε, then (see, for
example, Section 2 of [29]) these theta series have the form

(2.2) ψ(φ, z) :=

∞
∑

m=−∞

mεφ(m)qm2 ∈ Mε+ 1

2

(Γ0(4r
2), φχε

−1).

In characteristic zero, a well-known result of Vignéras states that half-integral weight modu-
lar forms with many vanishing coefficients must in fact be linear combinations of these theta
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series. To be precise, we have the following (a different proof of this result was given by
Bruinier [4]).

Theorem 2.1 ([32], Théorème 3). Suppose that λ ≥ 0 is an integer, that N is a positive
integer with 4 | N , and that F (z) ∈ Mλ+ 1

2

(Γ1(N)). If there are finitely many square-free

integers n1, n2, . . . , nt for which

F (z) =
t
∑

i=1

∞
∑

m=0

a(nim
2)qnim2

,

then λ = 0 or 1 and F (z) is a linear combination of theta series.

If ` is a prime, it is natural to seek (mod `) analogues of this result. For this purpose, we
introduce more notation. Suppose that f(z) is given by (2.1) and has algebraic coefficients.
Let ` ≥ 5 be a rational prime, let K be a number field containing the coefficients a(n) as
well as the values of χ, let v be a place of K over `, and let Ov denote the corresponding
valuation ring. By the principle of “bounded denominators” (see §5 of [28]) we may suppose
after normalization that

(2.3) a(n) ∈ Ov for all n.

If mv is the maximal ideal of Ov then by a standard abuse of notation we will write (mod v)
to mean (mod mv). We will consider primes v such that there are finitely many distinct
square-free integers n1, . . . , nt with

(2.4) f(z) ≡
t
∑

i=1

∞
∑

m=1

a(nim
2)qnim

2 6≡ 0 (mod v).

In the representation (2.4) we will always suppose that for each i ∈ {1, . . . t} there is some
mi with a(nim

2
i ) 6≡ 0 (mod v).

Bruinier [5] and Ono and Skinner [23] obtained (mod `) analogues of the result of
Vignéras. Suppose that f(z) is a half-integral weight eigenform. Ono and Skinner showed
(under the additional assumption that f(z) is “good”, which was later removed by Mc-
Graw [21] and Jimenez-Urroz and Ono [14]) that if f(z) satisfies (2.1) and (2.3) and is an
eigenform of the half-integral weight Hecke operators, then it can have the form (2.4) for
only finitely many primes `. Using different methods, Bruinier [5] proved the same result
(with no additional assumption). In addition, Bruinier’s method gives a description of the
exceptional finite set of primes ` in terms of the Hecke eigenvalues of f(z). These results
lead to statements (1.3) and (1.4) discussed in the last section. Bruinier and Ono (see [6] or
Proposition 4.1 below) later refined Bruinier’s result.

More recently, the present authors [2] have placed restrictions on the weight of modular
forms f(z) which can satisfy (2.4). To be precise, write

(2.5) λ = λ+ iλ(`− 1),

where λ ∈ {0, . . . , `− 2} and iλ ≥ 0. If, for example, ` - ni for some i, then Theorem 2 of [2]
implies that

(2.6) λ ≤ 2iλ + 1.

We remark that Theorem 2 of [2] is stated only for rational primes `. However, the proof
can be extended to treat arbitrary primes v. We also remark that the inequality (2.6) plays
a vital role in the resolution of many cases of a classical conjecture of Newman regarding
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the distribution modulo `j of values of the ordinary partition function (see Theorem 5 of
[2]). In a brief addendum [3] we note that the inequality (2.6) is sharp for certain modular
forms. For example, let Ek(z) denote the usual Eisenstein series of weight k, let η(z) denote
the Dedekind eta-function, and let Θ := q d

dq
be Ramanujan’s differential operator. Then for

each prime ` ≥ 5, the cusp form

(2.7) E`+1(8z)η
3(8z) ≡ Θη3(8z) ≡

∞
∑

n=0

(−1)n(2n+ 1)3q(2n+1)2 (mod `)

has λ = 3 and iλ = 1, so that the inequality (2.6) reads 3 ≤ 3.
Our main result in this section is a precise (mod `) version of the theorem of Vignéras in

the following sense. Suppose that f(z) is a modular form satisfying (2.1), (2.3), and (2.4),
and suppose further that f is an eigenform modulo v. Our result states that, just as in the
example (2.7), f(z) (mod v) arises from the image of a single-variable theta series under
iterated application of the theta-operator.

We now fix some notation. Suppose that f(z) is a half-integral weight modular form
which satisfies (2.1), (2.3), and (2.4) with λ ≥ 1. If λ = 1, we also require that f(z) be in
the orthogonal complement (with respect to the Petersson inner product) of the subspace
of S 3

2

(Γ0(N), χ) spanned by single-variable theta series. We further suppose that f(z) is a

Hecke eigenform modulo v; in other words, that, for each prime p with p - N`, there is an
algebraic integer λp such that

(2.8) f(z)
∣

∣T (p2, λ+ 1
2
, χ) ≡ λpf(z) (mod v)

(we enlarge K if necessary to ensure that it contains the eigenvalues λp).

If t ∈ Z, and the discriminant of Q(
√
t) is D, then we denote by χt :=

(

D
•

)

the Kronecker
character of conductor |D|. If χ is a Dirichlet character, we let χ∗ be the Dirichlet character
defined by χ∗ := χλ

−1χ (the value of λ will always be clear from context).
We will prove the following analogue of the theorem of Vignéras.

Theorem 2.2. Suppose that f(z) satisfies (2.1), (2.3), (2.4), and (2.8). Then the following
are true.

(1) The form f(z) is supported on a single square class modulo v. In other words, we
have t = 1 and

f(z) ≡
∞
∑

m=1

a(n1m
2)qn1m2

(mod v).

(2) For every integer m0 ≥ 1, we have
∑

gcd(m,Nn1m0`)=1

a(n1m
2
0m

2)qn1m2 ≡ a(n1m
2
0)

∑

gcd(m,m0)=1

χn1
(m)χ∗(m)mλqn1m2

(mod v).

Remark. Here we do not assume that ` - N . We stress that if we are in the case when ` - N ,
then the weight inequalities given in Theorem 2 of [2] hold for every modular form f(z)
satisfying the hypotheses of Theorem 2.2.

Remark. Define ελ ∈ {0, 1} by

(2.9) ελ := λ (mod 2).
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If M ≥ 1 is an integer, we denote by χtriv
M the trivial character modulo M . Using the notation

from (2.2), (2.5), and (2.9), we define

gm0
(z) :=

1

2
Θ

λ−ελ
2 ψ(χtriv

m0
χn1

χ∗, z).

Note that gm0
(z) is not itself a half-integral weight modular form. It is, however, congruent

modulo v to a form in the space M
ελ+ 1

2
+

λ−ελ
2

(`+1)
(Γ0(N

2n2
1m

2
0), χχn1

). We may restate the

second conclusion of Theorem 2.2 in the following way (see Section 3 for precise definitions
of the operators involved):

(2.10) (f(z) | Un1m2
0
) ⊗ χtriv

Nn1`m0
≡ a(n1m

2
0)gm0

(z) (mod v).

This is the most natural way to construct forms satisfying (2.1), (2.3), (2.4), and (2.8). The
main thrust of Theorem 2.2 is that every form of this type arises via such a construction.

Remark. A calculation shows that the image of a form as in Theorem 2.2 under the Shimura
lift (see (3.14)) is congruent (mod v) to the image of a weight two Eisenstein series under
the operator Θλ−1.

In the third section we pause to describe some of the objects and operators which we
require. In Section 4 we prove Theorem 2.2 in the case when ` - N . The proof involves several
theoretical tools. In particular, it requires the q-expansion principle (which is important
in the work of Bruinier and Ono on the partial determination of the action of the half-
integral weight Hecke algebra on forms satisfying (2.1), (2.3), and (2.4)), Shimura’s theory
of half-integral weight modular forms, the theory (due to Deligne and Serre) of residual
Galois representations attached to integer weight eigenforms, and the work of Ribet and
Swinnerton-Dyer on the determination of the possible images of these representations. In
Section 5 we reduce the general case to the case when ` - N . Finally, in the last section we
use Theorem 2.2 together with results of Kohnen in order to prove the results stated in the
first section.

3. Background on modular forms

Here we briefly collect some of the facts which we will require regarding modular forms
(see, for example, [15], [28], or [29] for details). Suppose that λ is a non-negative integer,
that N is a positive integer with 4 | N , and that χ is a Dirichlet character defined modulo
N . Suppose that

f(z) =
∞
∑

n=1

a(n)qn ∈ Sλ+ 1

2

(Γ0(N), χ).

For each prime p - N , there is a Hecke operator

T (p2, λ+ 1
2
, χ) : Sλ+ 1

2

(Γ0(N), χ) → Sλ+ 1

2

(Γ0(N), χ)

whose action is given by

(3.1) f(z) | T (p2, λ+ 1
2
, χ) =

∞
∑

n=1

(

a(p2n) +
(

n
p

)

χ∗(p)pλ−1a(n) + χ∗(p2)p2λ−1a(n/p2)
)

qn.
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We denote this operator simply by T (p2, λ+ 1
2
) when the character χ is trivial. Additionally,

for each prime p, there are operators Vp and Up whose actions are given by

f(z) | Vp =
∞
∑

n=1

a(n)qnp = f(pz),

f(z) | Up =

∞
∑

n=1

a(np)qn =
1

p

p−1
∑

j=0

f

(

z + j

p

)

.(3.2)

We have

(3.3) Vp : Sλ+ 1

2

(Γ0(N), χ) → Sλ+ 1

2

(Γ0(Np), χχp).

If 4p | N , then we have

(3.4) Up : Sλ+ 1

2

(Γ0(N), χ) → Sλ+ 1

2

(Γ0(N), χχp).

Suppose that r is a positive integer, that φ is a Dirichlet character defined modulo r, and
that χ has conductor s. Set M := lcm(N, r2, rs). Then by Lemma 3.6 of [29], the twist
f(z) ⊗ φ :=

∑∞
n=1 φ(n)a(n)qn has

(3.5) f(z) ⊗ φ ∈ Sλ+ 1

2

(Γ0(M), χφ2).

We next record some commutation relations between these operators (see §3 of [28] for
some of these). Suppose as above that f(z) =

∑∞
n=1 a(n)qn ∈ Sλ+ 1

2

(Γ0(N), χ). If p and p′

are primes with p - N , then we have

(3.6) (f(z) | Vp′) | T (p2, λ+ 1
2
, χχp′) =

(

f(z) | T (p2, λ+ 1
2
, χ)
)

| Vp′.

If also 4p′ | N , then we have

(3.7) (f(z) | Up′) | T (p2, λ+ 1
2
, χχp′) =

(

f(z) | T (p2, λ+ 1
2
, χ)
)

| Up′ .

Finally, if φ is a trivial or quadratic character defined modulo r, and p - Nr is prime, then
we have

(3.8) (f(z) ⊗ φ) | T (p2, λ+ 1
2
, χ) =

(

f(z) | T (p2, λ+ 1
2
, χ)
)

⊗ φ.

We define G to be the group extension of GL+
2 (R) whose elements are pairs (M,φ(z)),

where M =

(

r s
t u

)

∈ GL+
2 (R) and φ(z)2 = α det(M)−

1

2 (tz + u), with |α| = 1. Then the

slash operator is given by

(3.9) (f |λ+ 1

2

(M,φ))(z) := φ(z)−(2λ+1)f(Mz).

If A =

(

a b
c d

)

∈ Γ0(4), then we define

εd :=

{

1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4),

and

j(A, z) := ε−1
d

(

c
d

)

(cz + d)
1

2 ,

and we set A∗ := (A, j(A, z)) ∈ G.
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If p | N is a prime such that gcd(p,N/p) = 1, then there are integers a and b for which
pb− (N/p)a = 1, and we define

(3.10) WN
p :=

((

p a
N pb

)

, χ−1(p)
− 1

2p−
1

4 (Nz + pb)
1

2

)

∈ G.

The Fricke (or Atkin-Lehner) involution (see [15], p. 39) is defined by

f → f |λ+ 1

2

WN
p .

It takes Sλ+ 1

2

(Γ0(N), χ) to Sλ+ 1

2

(

Γ0(N), χ
(

·
p

))

.

If p is a prime with 4p | N , then write Γ0(N/p) as the disjoint union

(3.11) Γ0(N/p) =

µ
⋃

j=1

Γ0(N)Aj.

If we assume that the character χ is definable modulo N/p, then (see, for example, [28], §3)
we have the trace operator

TrN
N/p : Sλ+ 1

2

(Γ0(N), χ) → Sλ+ 1

2

(Γ0(N/p), χ)

defined by

(3.12) TrN
N/p :=

µ
∑

j=1

χ(aj)A
∗
j .

If in addition we assume that p2 - N , then µ = p+ 1, and we may take
{(

1 0
0 1

)}

∪
{(

1 0
N 1

)(

1 j
0 1

)}p−1

j=0

as the complete set of coset representatives in (3.11). Using (3.2), (3.9), (3.10), (3.11), and
(3.12), a calculation shows that the trace operator may be written as

(3.13) TrN
N/p(f) = f + χ−1(p)

−(λ+ 1

2
)p−

λ
2
+ 3

4

(

f |λ+ 1

2

WN
p

)

| Up.

Note that formula (3.13) is derived in [15] (on pages 66 and 67) in the case when N/4 is odd
and square-free. The proof in this case is the same.

We briefly recall some facts about the Shimura correspondence (see [29] for details). If
λ ≥ 2, then for every square-free integer t ≥ 1, we have the Shimura lift

Sht : Sλ+ 1

2

(Γ0(N), χ) → S2λ(Γ0(N), χ2).

If f(z) =
∑

a(n)qn, then the Shimura lift is defined by Sht(f(z)) :=
∑∞

n=1At(n)qn, where
the coefficients At(n) are given by

(3.14)

∞
∑

n=1

At(n)n−s = L(s− λ+ 1, χχtχ
λ
−1) ·

∞
∑

n=1

a(tn2)n−s.

The most important fact for our purposes is that each Shimura lift commutes with the
actions of the Hecke operators of index p2 and p on the respective spaces. If λ = 1, the
situation is slightly different: the lift Sht takes the orthogonal complement (with respect
to the Petersson inner product) of the subspace of S 3

2

(Γ0(N), χ) spanned by single-variable

theta series to the space S2(Γ0(N), χ2).
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We briefly discuss integral weight modular forms; we do not suppose here that 4 | N . If

γ =

(

a b
c d

)

∈ GL+
2 (R), then we define the integral weight slash operator by

(f |k γ)(z) := (det γ)
k
2 (cz + d)−kf(γz).

If a prime p | N has gcd(p,N/p) = 1, then there are integers a and b for which bp−(N/p)a =
1, and we define

(3.15) wN
p :=

(

p a
N pb

)

.

If χ is a real character, then the Atkin-Lehner involution

F → F |k wN
p

sends Mk(Γ0(N), χ) to itself. In the case where N = p, we may write the matrix in (3.15)
simply as

wp =

(

0 −1
p 0

)

If N is square-free, and F (z) ∈ Sk(Γ0(N)) is a newform, then for each p | N there is an
integer εp ∈ {±1} for which

(3.16) F (z) |k wN
p = εpF (z).

4. The proof of Theorem 2.2 when ` - N

In this section we prove Theorem 2.2 in the case when ` - N . Using an argument of
Bruinier [5], the next result was proved by Bruinier and Ono ([6], Theorem 3.1) in the case
when χ is a real character and K = Q. Since the proof in the general case follows the
arguments in these two works, we will not include the details here. The proof relies in a
crucial way on the q-expansion principle of arithmetic geometry.

Proposition 4.1. Suppose that

f(z) =

∞
∑

n=1

a(n)qn ∈ Sλ+ 1

2

(Γ0(N), χ)

has coefficients in the ring of integers OK of a number field K, that m is an ideal of OK

coprime to N , and that p is a rational prime coprime to N and m. If there is an εp ∈ {±1}
such that

f(z) ≡
∑

“

n
p

”

∈{0,εp}

a(n)qn (mod m),

then

(p− 1)f(z) | T (p2, λ+ 1
2
, χ) ≡ εpχ

∗(p)(pλ + pλ−1)(p− 1)f(z) (mod m).

Theorem 2.2 in the case when ` - N follows from the next two propositions.

Proposition 4.2. Suppose that f(z) satisfies hypotheses (2.1), (2.3), (2.4), (2.8), and that
` - N . Then t = 1.
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Proof. Since f has bounded denominators, we may suppose without loss of generality under
these hypotheses that f ∈ OK[[q]]. Recall that for each i there is an integer mi ≥ 1 such
that a(nim

2
i ) 6≡ 0 (mod v). Suppose that i ∈ {1, . . . , t}. Then, following the argument of

Lemma 4.1 of [2], we can find primes pi,1, . . . , pi,si
, each greater than `, and a modular form

fi(z) ∈ Sλ+ 1

2

(Γ0(Np
2
i,1 . . . p

2
i,si

), χ) ∩ OK [[q]] with the property that

(4.1) fi(z) ≡
∑

gcd(m,
Q

j pi,j )=1

a(nim
2)qnim2 6≡ 0 (mod v).

Each form fi(z) can be constructed from f(z) by iteratively taking twists of linear combi-
nations of twists by trivial and quadratic characters defined modulo the primes pi,j. Let
N0 be the least common multiple of N and all of the p2

i,j. Then we have ` - N0 and
fi(z) ∈ Sλ+ 1

2

(Γ0(N0), χ) for each i. Moreover, using (3.8) together with (2.8), we see that

for each i, and for all p - N0`, we have

(4.2) fi(z)
∣

∣T (p2, λ+ 1
2
, χ) ≡ λpfi(z) (mod v).

In view of (4.1), Proposition 4.1 implies that for each p with p - N0`, p > max{ni}, and
p 6≡ 1 (mod `), we have

(4.3) fi(z)
∣

∣T (p2, λ+ 1
2
, χ) ≡

(

ni

p

)

χ∗(p)(pλ + pλ−1)fi(z) (mod v).

Combining (4.2) and (4.3), we see that

(4.4)
(

ni

p

)

=
(

nj

p

)

for 1 ≤ i, j ≤ t and for p - N0`, p 6≡ ±1 (mod `), p > max{ni}.

From (4.4) we deduce that t = 1. If not, then let ni = p1 · · · pr and nj = q1 · · · qs be two
distinct elements of {n1, . . . , nt}. We may suppose without loss of generality that ni and nj

are coprime and that s ≥ 1. If nj = 2, then any large p such that p 6≡ ±1 (mod `) (recall
that ` ≥ 5), p ≡ 5 (mod 8), and such that p is a quadratic residue modulo each of p1, . . . , pr

gives a contradiction to (4.4). If nj 6= 2 then suppose that q1 is odd. Let p be a large
prime such that p 6≡ ±1 (mod `), p ≡ 1 (mod 8), such that p is a quadratic residue modulo
each of p1, . . . , pr and modulo each of the odd primes among q2, . . . , qs, and such that p is
a quadratic non-residue modulo q1. With this choice of p, (4.4) fails to hold (note that this
argument works also when q1 = `). �

The next proposition is the main step towards the second assertion of Theorem 2.2 in the
case when ` - N .

Proposition 4.3. Suppose that f(z) satisfies hypotheses (2.1), (2.3), (2.4), and (2.8), and
that ` - N . Let n1 be the square-free integer given by Proposition 4.2, so that we have

f(z) ≡
∞
∑

m=1

a(n1m
2)qn1m2 6≡ 0 (mod v).

Then for all p - Nn1` we have

f(z)
∣

∣T (p2, λ+ 1
2
, χ) ≡ λpf(z) (mod v),

where

(4.5) λp ≡
(

n1

p

)

χ∗(p)(pλ + pλ−1) (mod v).
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Remark. Proposition 4.1 implies that (4.5) holds for p - Nn1` and p 6≡ 1 (mod `). Therefore
the content of Proposition 4.3 is to make the same assertion for primes in this residue class.

Proof. Recalling from Section 3 the definition of the Shimura lifting, we define F (z) :=
Shn1

(f(z)) ∈ S2λ(Γ0(N), χ2) ∩ Ov[[q]]. Using the fact that the Shimura correspondence
commutes with the action of the Hecke operators, we find from (2.8) that

F (z)
∣

∣T (p, 2λ, χ2) ≡ λpF (z) (mod v) for p - N`.

Let mv be the maximal ideal of Ov, and let Fv := Ov/mv be the residue field. By
Théorème 6.7 of [10], there exists a continuous semisimple representation

ρ : Gal(Q/Q) → GL2(Fv),

unramified outside of N`, and such that for primes p - N` we have

Tr(ρ(Frobp)) ≡ λp (mod v),(4.6)

Det(ρ(Frobp)) ≡ χ2(p)p2λ−1 (mod v).(4.7)

Following the arguments of Section 4 of [2] (see in particular (4.9)-(4.17) of that work),
we conclude from (4.6) and the remark above that the representation ρ is reducible. Since ρ
is semisimple, it follows (as in the proof of Theorem 2.1 of [24]) that ρ can be written as a
direct sum

(4.8) ρ = ψ1χ
m′

` ⊕ ψ2χ
m
`

where ψ1 and ψ2 are Dirichlet characters unramified outside N (viewed as characters of
Gal(Q/Q) in the usual way), χ` : Gal(Q/Q) → F×

` is the mod ` cyclotomic character, and
m and m′ are integers defined modulo `−1. Comparing (4.7) and (4.8) for sufficiently many
primes p, we conclude that m′ + m ≡ 2λ − 1 (mod ` − 1) and that ψ1ψ2 = χ2. We may
suppose that 0 ≤ m < m′ ≤ `− 2.

Writing ψ := ψ1 and using the remark above together with (4.6) and (4.8), we conclude
that, for p - Nn1` and p 6≡ 1 (mod `), we have

(4.9) Tr(ρ(Frobp)) ≡ ψ(p)pm′

+ ψ(p)χ2(p)pm ≡
(

n1

p

)

χ∗(p)(pλ + pλ−1) (mod v).

Suppose that p ≡ −1 (mod `). Then, since m and m′ have opposite parity, (4.9) becomes

ψ(p) − ψ(p)χ2(p) ≡ 0 (mod v).

Therefore, ψ(p) = ψ(p)χ2(p) for some p in every residue class of (Z/NZ)∗; it follows that
ψ = ψχ2. Hence, if p - Nn1` and p 6≡ 1 (mod `), (4.9) becomes

(4.10) Tr(ρ(Frobp)) ≡ ψ(p)(pm′

+ pm) ≡
(

n1

p

)

χ∗(p)(pλ + pλ−1) (mod v).

To finish the proof, suppose first that ` - n1. It suffices to establish (4.10) for primes
p - Nn1` and p ≡ 1 (mod `); for this it is enough to show that for these primes we have

(4.11) ψ(p) =
(

n1

p

)

χ∗(p).

If p - Nn1` has p ≡ 1 (mod Nn1) and p 6≡ 1 (mod `), then (4.10) yields

(4.12) pm′

+ pm ≡ pλ + pλ−1 (mod `).
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If n is a non-negative integer, then we define the integer n ∈ {0, . . . , ` − 2} by n := n
(mod `− 1). Since we can find a prime p satisfying (4.12) in each residue class modulo `, it
follows that

(4.13) {m, m′} = {λ, λ− 1}.
From (4.10) and (4.13) we see that (4.11) holds for p - Nn1` and p 6≡ ±1 (mod `). It follows
that (4.11) holds for all p - Nn1`, which proves the proposition in this case.

Next, suppose that ` | n1. Write n1 = `n′
1 with ` - n′

1. In this case, for p - Nn′
1` and p 6≡ 1

(mod `), (4.10) becomes

(4.14) Tr(ρ(Frobp)) ≡ ψ(p)(pm′

+ pm) ≡
(

(−1)
`−1
2 n′

1

p

)

χ∗(p)(pλ+ `−1

2 + pλ+ `−3

2 ) (mod v).

As in the previous case, it suffices to show for all primes p - Nn′
1` and p ≡ 1 (mod `) that

(4.15) ψ(p) =

(

(−1)
`−1
2 n′

1

p

)

χ∗(p).

If p - Nn′
1` has p ≡ 1 (mod Nn′

1) and p 6≡ 1 (mod `), then (4.14) becomes

pm′

+ pm ≡ pλ+ `−1

2 + pλ+ `−3

2 (mod `).

It follows that

(4.16) {m,m′} = {λ+ `−1
2
, λ+ `−3

2
}.

From (4.14) and (4.16) we find that (4.15) holds for p - Nn′
1` and p 6≡ ±1 (mod `). The

characters involved in (4.15) are defined modulo Nn′
1; it follows that (4.15) holds for all

p - Nn′
1`, which proves the proposition in this case. �

We now turn to the proof of Theorem 2.2 under the assumption that ` - N . Suppose that
f(z) satisfies hypotheses (2.1), (2.3), (2.4), and (2.8). The first assertion in the theorem
follows immediately from Proposition 4.2. We may therefore suppose that

f(z) ≡
∞
∑

m=1

a(n1m
2)qn1m2 6≡ 0 (mod v).

Using Proposition 4.3 and (3.1), we conclude for every prime p - Nn1` and for every positive
integer m0 that

(4.17) a(n1m
2
0p

2) + χ∗(p)
(

n1m2
0

p

)

pλ−1a(n1m
2
0) + χ(p2)p2λ−1a

(

n1m
2
0

p2

)

≡ χ∗(p)
(

n1

p

)

(pλ + pλ−1)a(n1m
2
0) (mod v).

For every p - Nn1m0`, a straightforward induction on j using (4.17) yields

(4.18) a(n1m
2
0p

2j) ≡ a(n1m
2
0)χ

∗(pj)
(

n1

pj

)

pjλ (mod v).

Using (4.18) repeatedly, we obtain, for all integers m ≥ 1 with gcd(m,Nn1m0`) = 1,

a(n1m
2
0m

2) ≡ a(n1m
2
0)χ

∗(m)
(

n1

m

)

mλ (mod v).

This concludes the proof in the case when ` - N . �
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5. Reduction to the case when ` - N .

The general statement of Theorem 2.2 follows directly from the results of the last section
together with the next proposition. We adapt the proof of the analogous result in the integral
weight setting (see Theorem 2.1 of [25]).

Proposition 5.1. Suppose that ` ≥ 5 is prime, that K is a number field, that v is a place
of K over `, and that Ov is the associated valuation ring. Suppose that ` - N , that j ≥ 1 is
an integer, and that

f(z) =

∞
∑

n=1

a(n)qn ∈ Sλ+ 1

2

(Γ0(N`
j), χ) ∩ Ov[[q]].

Suppose for each p - N` that f(z) is an eigenform modulo v of the Hecke operator T (p2, λ+
1
2
, χ). Then there is an integer λ′, a character χ′ modulo N , and a cusp form f ′(z) ∈
Sλ′+ 1

2

(Γ0(N), χ′) ∩ Ov[[q]] such that

f ′(z) ≡ f(z) (mod v)

and such that, for each p - N`, f ′(z) is an eigenform modulo v of the Hecke operator T (p2, λ′+
1
2
, χ′).

Proof. Let Fv := Ov/mv as before, and let r ≥ 1 be the integer for which #Fv = `r. Note
that for all u ∈ Fv, we have

(5.1) u`r

= u.

We first decompose the character χ into a suitable form. Let ω denote the Teichmüller
character with conductor `, so that ω has order `−1 and coincides with the identity map on
F`. There is a character η of `-power order and `-power conductor, a character ε of conductor
dividing N , and an integer i ≥ 1 such that

χ = εηωi.

We define the Eisenstein series (see, for example [12], Proposition 5.1.2)

Eωi(z) := 1 − 2i

Bi,ωi

∞
∑

n=1

∑

d|n

ωi(d)di−1qn ∈Mi(Γ0(`), ω
i),

where Bi,ωi is the ith generalized Bernoulli number attached to ωi. This series has v-integral
coefficients and satisfies

(5.2) Eωi(z) ≡ 1 (mod v).

We let a ≥ 2 be an even integer for which ar ≥ j and we set

λ̃ := λ`ar +
`ar − 1

2
+ i and ε̃ := ε`

ar

.

Using (5.1), (5.2), and (3.3), we deduce that

(5.3) f(z)`ar

Eωi(z) ≡ f(`arz) ≡ f(z) | V`ar (mod v)

is a modular form in Sλ̃+ 1

2

(Γ0(N`
j), ε̃χi

−1) (to compute the character, recall that in order to

consider a form of integral weight k as a form of half-integral weight, one must twist the
character by χk

−1).
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Next, we define the modular forms

θ(z) := 1 + 2
∞
∑

n=1

qn2 ∈M 1

2

(Γ0(4))

and

h(z) :=
(

f(z)`ar

Eωi(z)θ(`arz)
)

| U`ar =
(

f(z)`ar

Eωi(z)
)

| U`ar · θ(z).
Since the modular form

f(z)`ar

Eωi(z)θ(`arz) ∈ Sλ̃+1(Γ0(N`
ar), ε̃χi+λ̃+1

−1 )

has integral weight and character defined modulo N , Lemma 1 of [19] implies that h(z) ∈
Sλ̃+1(Γ0(N`), ε̃χ

i+λ̃+1
−1 ). Therefore, we find that h(z)

θ(z)
is a meromorphic modular form of weight

λ̃+ 1
2

and character ε̃χi
−1 with respect to Γ0(N`).

On the other hand, by (3.4), we have

h(z)

θ(z)
=
(

f(z)`ar

Eωi(z)
)

| U`ar ∈ Sλ̃+ 1

2

(Γ0(N`
j), ε̃χi

−1).

Combining these facts, it follows that

h(z)

θ(z)
∈ Sλ̃+ 1

2

(Γ0(N`), ε̃χ
i
−1).

Furthermore, using (5.3), we see that

h(z)

θ(z)
=
(

f(z)`ar

Eωi(z)
)

| U`ar ≡ f(z) | V`ar | U`ar ≡ f(z) (mod v).

It remains to lower the level from N` to N . For this purpose we adapt the argument of
Serre ([27], §3.2). As in that work, we define modular forms

E`−1(z) := 1 − 2(`− 1)

B`−1

∞
∑

n=1

∑

d|n

d`−2qn ∈M`−1(Γ0(1)),(5.4)

g(z) := E`−1(z) − `
`−1

2 E`−1 |`−1 w` ∈M`−1(Γ0(`)),(5.5)

where B`−1 is the usual Bernoulli number. From (5.4) and (5.5), it follows that, for all
integers m ≥ 1, g(z) satisfies

g(z)`m ≡ 1 (mod `m+1),(5.6)

g(z) |`−1 w` ≡ 0 (mod `
`+1

2 ).(5.7)

If m ≥ 1 is an integer, we set

λm := λ̃+ `m(`− 1) and fm(z) :=
h(z)

θ(z)
· g(z)`m ∈ Sλm+ 1

2

(Γ0(N`), ε̃χ
i
−1).

By (3.13), we have

TrN`
N (fm(z)) ∈ Sλm+ 1

2

(Γ0(N), ε̃χi
−1).

Using (3.13), (5.6), and (5.7), and adapting the argument of [27], §3.2 to the half-integral
weight setting (we omit the details), we conclude that if m is large enough, then

(5.8) TrN`
N (fm(z)) ≡ f(z) (mod v).
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Hence, if m is an integer for which (5.8) holds, we see that the conclusion of the proposition
holds with λ′ = λm, χ′ = ε̃χi

−1, and f ′(z) = TrN`
N (fm(z)). A calculation using (3.1) shows

that the modular form f ′(z) obtained this way is an eigenform modulo v for the Hecke
operators T (p2, λm + 1

2
, ε̃χi

−1) for all primes p - N`.
�

6. The proof of Theorem 1.1

In this section, we use Theorem 2.2 together with work of Kohnen to prove Theorem 1.1.
Let N ≥ 1 be an odd square-free integer, and let

(6.1) F (z) =
∞
∑

n=1

a(n)qn ∈ Snew
2λ (Γ0(N))

be a normalized newform as in the hypotheses of Theorem 1.1.
By work of Kohnen [15] it is known that the new subspaces Snew

2λ (Γ0(N)) and Snew
λ+ 1

2

(Γ0(4N))

are isomorphic as Hecke modules. In particular, there is a non-zero (and unique up to scalar
multiplication) eigenform

(6.2) g(z) =
∑

(−1)λn≡0,1 (mod 4)

c(n)qn ∈ Snew
λ+ 1

2

(Γ0(4N))

with the same Hecke eigenvalues as F . For every prime p | N , let εp ∈ {±1} denote
the eigenvalue of F (z) for the Fricke involution wN

p (see (3.16)). If D is coprime to N ,

(−1)λD > 0, and c(|D|) 6= 0, then (see, for example, the remark following Corollary 1 of
[16]), we have

(6.3)
(

D
p

)

= εp for all p | N .

By equation (11) of [16], we find that, for every D with (−1)λD > 0 and every integer
n ≥ 1, the coefficients of g(z) and F (z) are related by

(6.4) c(n2|D|) = c(|D|)
∑

d|n
gcd(d,N)=1

µ(d)
(

D
d

)

dλ−1a
(

n
d

)

.

Let 〈· , ·〉 denote the Petersson inner product, and let ν(N) denote the number of distinct
prime divisors of N . Kohnen proved the following.

Theorem 6.1 ([16], Corollary 1). Suppose that F (z) and g(z) are as in (6.1) and (6.2),
respectively. Suppose that D is a fundamental discriminant with (−1)λD > 0 which satisfies
(6.3). Then

(6.5)
|c(|D|)|2
〈g, g〉 = 2ν(N) (λ− 1)!

πλ
|D|λ− 1

2

L(F ⊗ χD, λ)

〈F, F 〉 .

The appearance of the absolute value on the coefficients c(|D|) creates some technical
difficulty when working modulo `. To circumvent this difficulty, we will use the following
lemma1.

1We are grateful to W. Kohnen for suggesting this approach.
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Lemma 6.2. Suppose that f(z) =
∑

a(n)qn ∈ Snew
λ+ 1

2

(Γ0(4N)) is a newform, and that a(n0)

is a non-zero coefficient of f . Then the form 1
a(n0)

f(z) has real Fourier coefficients.

Proof of Lemma 6.2. If f(z) =
∑

a(n)qn, then set f c(z) :=
∑

a(n)qn. We have f c(z) =

f(−z). A direct computation using this fact together with the transformation law in half-
integral weight shows that the map f 7→ f c preserves the space S+

λ+ 1

2

(Γ0(4N)) (the “plus

space” is the space of forms having expansions as in (6.2)).
We claim that this map also preserves the space Snew

λ+ 1

2

(Γ0(4N)). Suppose for the moment

that this has been established. The eigenvalues for f under the operators T (p2, λ + 1
2
) and

U(p2) are real (since they are also eigenvalues for some newform in S2λ(Γ0(N))). Examining
Fourier expansions and using the claim, we see that f c is a newform with the same eigenvalues
as f ; by “multiplicity one” we conclude that f c is a constant multiple of f . If some coefficient
of f equals one then f c = f ; the lemma follows.

It remains to prove the claim. Kohnen ([15], §5, Theorem 2) proved the decomposition

(6.6) S+
λ+ 1

2

(Γ0(4N)) = Snew
λ+ 1

2

(Γ0(4N)) ⊕
⊕

r≥1, d<N, rd|N

Snew
λ+ 1

2

(Γ0(4d))
∣

∣U(r2).

For each p - N let λp be the eigenvalue of f under T (p2, λ + 1
2
). If f c is not new at level

N , then it follows from this decomposition that there exists a proper divisor d of N and a
newform g(z) ∈ Snew

λ+ 1

2

(Γ0(4d)) with eigenvalues λp for p - N . From the theorem of Kohnen

just mentioned, we conclude that there is a modular form G(z) ∈ S2λ(Γ0(d)) with the same
eigenvalues. On the other hand, f c is an eigenform for all operators T (p2, λ+ 1

2
) and U(p2).

Again by Kohnen’s theorem, there exists a modular form G1(z) ∈ S2λ(Γ0(N)) which is an
eigenform for all T (p) (for p - N) and U(p) (for p | N) with the same eigenvalues as f c. By
the theory of integral weight newforms (see Theorem 5 of [1]), G1(z) is a newform at level
N . However, the form G(z) has level d and the same eigenvalues as G1(z) for p - N . This
contradicts the last mentioned theorem; it follows that f c is new at level N . �

Proof of Theorem 1.1. Let g(z) be as in (6.2). After normalizing, we may assume after
Lemma 6.2 that all of the coefficients c(n) are real, and that c(|D0|) = 1 for some fundamental
discriminant D0. Set

Ω∗ :=
〈F, F 〉πλ

〈g, g〉2ν(N)(λ− 1)!
.

Then, for D such that (−1)λD > 0 and
(

D
p

)

= εp for all p | N , (6.5) becomes

(6.7) c(|D|)2 =
L(F ⊗ χD, λ)|D|λ− 1

2

Ω∗
.

Let Ω be the period given in the statement of Theorem 1.1, and define

(6.8) b(n) := c(n)
√

Ω∗

Ω
.

Set h(z) :=
∑

b(n)qn. From (6.7), (6.8), (6.4), and (1.2) we see that the coefficients of h
and g are all algebraic (recall that c(|D0|) = 1 for some D0). Moreover, the hypothesis (1.5)
in Theorem 1.1 implies that the minimum

(6.9) M := min
D

{v` (b(|D|))}
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is attained for two distinct fundamental discriminants D. Applying Theorem 2.2 to a suitable
normalization of h(z), we conclude that there are infinitely many distinct square-free ni such
that there exists mi with v` (b(nim

2
i )) = M . It follows from (6.4) that there are infinitely

many distinct fundamental discriminants D such that v` (b(|D|)) = M . Theorem 1.1 follows
from this fact together with (6.7) and (6.8). (With regard to the remark following the
statement of Theorem 1.1, note that the principle of bounded denominators applied to the
form h(z) shows that the minimum in (1.5) indeed exists.) �

Proof of Theorem 1.2. Let E/Q be an elliptic curve of conductor N as in the statement of
the theorem, and let f be the associated weight two modular form. For primes p | N , let εp
be the eigenvalue of f(z) under the involution wN

p . If D is a fundamental discriminant with
(D,N) = 1 then let ED be the D-quadratic twist of E. Recall from (1.10) that, for negative
D such that L(ED, 1) 6= 0, we have

(6.10)
L(f ⊗ χD, 1) ·

√

|D0|
Ω(E−4)

=
L(ED, 1) ·

√

|D0|
Ω(E−4)

=
Sha(ED)

|ED(Q)tor|2
Tam(ED).

Mazur [20] proved that only primes ≤ 7 can divide |ED(Q)tor|. We conclude that for each
prime ` ≥ 11 and for each negative fundamental discriminant D with L(ED, 1) 6= 0, we have

(6.11) v`

(

L(f ⊗ χD, 1)
√

|D0|
Ω(E−4)

)

≥ 0.

We require the following lemma.

Lemma 6.3. With all notation as above, suppose that
(

D
p

)

= εp for all p | N . Then

Tam(ED) is divisible only by the primes 2 and 3.

Proof of Lemma 6.3. Using a result of Kodaira and Néron (see Theorem 6.1 of Chapter VII
of [31]), it suffices to show, under these hypotheses, that ED does not have split multiplicative
reduction for any prime p. Let fE(z) =

∑

a(n)qn and fED
(z) =

∑

b(n)qn be the weight two
newforms associated to E and ED. Then we have

(6.12) b(n) =
(

D
n

)

a(n) for all n.

Using the description of the Euler factor of the L-series of an elliptic curve at a prime of bad
reduction (see §16 of Appendix C of [31]) it will suffice to show that for all p | DN we have
b(p) 6= 1. From (6.12) this is obvious if p | D.

We may therefore suppose that p | N . By Theorem 3 of [1] we have εp = −a(p). However,

we also have εp =
(

D
p

)

. Combining these facts with (6.12) we see that it is impossible to

have b(p) = 1; the lemma follows. �

To finish we notice that, together with Lemma 6.3, the assumption in Theorem 1.2 implies
that equality is achieved in (6.11) for two distinct negative fundamental discriminants D
satisfying (6.3). By Theorem 1.1 it follows that equality is achieved for infinitely many such
D. Theorem 1.2 now follows from (6.10). �

Acknowledgments. We are grateful to W. Kohnen for helpful discussions and to K. Ono
for helpful comments on an earlier draft of this paper.
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