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Abstract. Recent works of Garvan [2] and Y. Yang [7], [8] concern a certain family of
half-integral weight Hecke-invariant subspaces which arise as multiples of fixed odd powers
of the Dedekind eta-function multiplied by SL2(Z)-forms of fixed weight. In this paper,
we study the image of Hecke operators on subspaces which arise as multiples of fixed even
powers of eta multiplied by SL2(Z)-forms of fixed weight.

1. Statement of Results.

We let h denote the complex upper half-plane, and we recall the Dedekind eta-function,

η(z) := q1/24
∞∏
n=1

(1− qn), z ∈ h, q := e2πiz.

In this paper, we study certain subspaces of modular forms constructed using the eta-
function. To explain, we first give notation. Let N and k be integers with N ≥ 1, and
let χ be a Dirichlet character modulo N . We let Mk(Γ0(N), χ) denote the complex vector
space of holomorphic modular forms of weight k on Γ0(N) with nebentypus χ, and we let
Sk(Γ0(N), χ) denote the subspace of cusp forms. When χ = 1N , the trivial character modulo
N , we may omit it; when N = 1, we abbreviate notation with Sk ⊆Mk. We extend notation
to half-integral weights in the usual way: When 4 | N and λ ≥ 0 is an integer, we denote

by Mλ+1/2(Γ̃0(N), χ) the space of holomorphic forms of weight λ + 1/2 which transform on
Γ0(N) with theta-multiplier and nebentypus χ. For details on modular forms with integral
weights, see Section 2 below and the references therein; for details on modular forms with
half-integral weights, see [5] and [6]. Furthermore, when t ∈ Z is square-free, we let Dt be
the discriminant of Q(

√
t), and we define the Dirichlet character χt(·) :=

(
Dt
·

)
.

We now precisely describe our setting. We let r be an integer with 1 ≤ r ≤ 23, and we
define δr := 24

gcd(24,r)
. We note that δr is the least positive integer u for which 24 | ru. Next,

we let ψr be the Dirichlet character modulo δr defined by

(1.1) ψr :=


χ
r/2
−1 r even,

χ3 gcd(r, 6) = 1,

1δr r ∈ {3, 9, 15, 21}.

Standard facts on the eta-function imply that

η(δrz)r ∈

{
Sr/2(Γ0(δ

2
r), ψr), r even,

Sr/2(Γ̃0(δ
2
r), ψr), r odd.
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For all non-negative even integers s, we define the subspaces

(1.2) Sr,s := {η(δrz)rF (δrz) : F (z) ∈Ms} ⊆

{
Ss+r/2(Γ0(δ

2
r), ψr), r even,

Ss+r/2(Γ̃0(δ
2
r), ψr), r odd.

We extend the definition to all even s ∈ Z by defining Sr,s = {0} when s < 0, and we note
that M2 = {0} implies that Sr,2 = {0}.

Recent works of Garvan [2] and Y. Yang [7] prove the Hecke invariance of Sr,s when r
is odd. These subspaces consist of half-integral weight modular forms. We recall that the
Hecke operators with prime index are trivial on half-integral weight spaces. Furthermore,
we mention that Yang [8] recently proved, for gcd(r, 6) = 1, that Sr,s is Hecke-module
isomorphic via the Shimura correspondence to the χ3-twist of the subspace of newforms in
Sr+2s−1(Γ0(6)) with specified eigenvalues for the Atkin-Lehner involutions W2 and W3. Yang
proved a similar result for r ≡ 0 (mod 3).

In contrast, r even implies that the subspaces Sr,s consist of forms of integer weight.
Therefore, for all primes p, the Hecke operators with index p are generally non-trivial. For
all even integers 1 ≤ r ≤ 23 and all non-negative integers m, our main results describe the
image of Hecke operators with index pm on Sr,s. For example, we prove, for all even m ≥ 0,
that the Hecke operators with index pm preserve Sr,s. The m = 2 case is the analogue of the
result of Garvan and Yang for even r.

Hecke invariance results of this type can be very useful for explicit computation since Sr,s
has much smaller C-dimension than the ambient space of cusp forms in which it lies. In
particular, we see that dimCSr,s = dimCMs, which is roughly s/12. For odd r, Garvan and
Yang used Hecke invariance of Sr,s in this way to prove explicit congruences for functions from
the theory of partitions such as p(n), the ordinary partition function, and spt(n), Andrews’
function which counts the number of smallest parts in all partitions of n.

We require further notation. Let N , k, and χ be as above. For all primes p, we denote
the Hecke operator with index p on Mk(Γ0(N), χ) by Tp,k,χ. When the context is clear, we
use Tp for Tp,k,χ. For all integers 1 ≤ v ≤ 11, we define

j(v, p) := pv − 12
⌊pv

12

⌋
,

the least positive residue of pv modulo 12, and we define

t(v, p, k) := k + v − j(v, p).

We now state our main theorem.

Theorem 1.1. Let 1 ≤ v ≤ 11 be an integer, let s ≥ 0 be an even integer, and let p be
prime. In the notation above, we have

Tp : S2v,s −→ S2j(v,p),t(v,p,s).

Example. Let v = 7, and let s ≥ 0 be even. The theorem implies that

Tp : S14,s −→


S14,s, p ≡ 1 mod 12,

S22,s−4, p ≡ 5 mod 12,

S2,s+6, p ≡ 7 mod 12,

S10,s+2, p ≡ 11 mod 12.
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Remark. When p | δ2v, the operator Tp agrees with Atkin’s Up-operator, and we have
Tp : S2v,s −→ {0} since forms in S2v,s have support on exponents coprime to δ2v, as in table
(3.3) in Section 3 below.

We also observe that Tp : S2v,s −→ {0} for (v, p, s) as in the table:

v p s

1, 3, 5 3 mod 4 0, 4, 8

1, 4, 7 2 mod 3 0, 6

1 11 mod 12 12

2 2 mod 3 0, 4, 6, 10

All cases but (v, p, s) ∈ {(5, 3 mod 4, 8), (7, 2 mod 3, 6)} have t(v, p, s) < 0 or t(v, p, s) = 2,
which give S2j(v,p),t(v,p,s) = {0}. When (v, p, s) = (5, 7 mod 12, 8), we have t(v, p, s) = 2, so
to verify that Tp : S10,8 −→ {0} for primes p ≡ 3 (mod 4), it suffices to consider (v, p, s) =
(5, 11 mod 12, 8). In this case, the theorem implies that Tp : S10,8 −→ S14,6. One may
verify that η(12z)26 ∈ S2,12 has η(12z)26 | T5 6= 0 in S10,8, a one-dimensional space. It follows
that S2,12 | T5 = S10,8. We apply Tp with p ≡ 11 (mod 12) to obtain

S10,8 | Tp = S2,12 | T5 | Tp = S2,12 | Tp | T5 = 0,

where the second equality results from commutativity of the Hecke operators and the third
results from the third row of the table. A similar argument using η(12z)26 | T7 6= 0 shows,
for primes p ≡ 2 (mod 3), that Tp : S14,6 −→ {0}.

To conclude the remark, we recall that a q-series
∑
a(n)qn is lacunary if and only if

a density one subset of its coefficients vanish. For positive integers r, Serre [4] proved
that ηr is lacunary if and only if for all primes p ≡ 11 (mod 12), we have ηr | Tp = 0.
Serre used this result to conclude that ηr is lacunary with r > 0 and even if and only if
r ∈ {2, 4, 6, 8, 10, 14, 26}. We observe that table entries (v, p, s) above with s = 0 imply the
lacunarity of ηr with r ∈ {2, 4, 6, 8, 10, 14}. The lacunarity of η26 follows from the third row
of the table.

We now deduce some corollaries.

Corollary 1.2. In the statement of the theorem, suppose that p is prime with p ≡ 1 (mod δ2v).
Then we have Tp : S2v,s −→ S2v,s.

Proof. The hypothesis on p implies that there exists an integer t with p = 24t
gcd(2v,24)

+ 1 =
12t

gcd(v,12)
+ 1. It follows that

pv = 12t

(
v

gcd(v, 12)

)
+ v ≡ v (mod 12).

Since 1 ≤ v ≤ 11, we see that v = j(p, v) is the least positive residue of pv modulo 12, which
proves the statement. �

For all m ≥ 0 and primes p, we define Tmp : = Tp ◦ · · · ◦ Tp (m times). With N ,
k, and χ as above, and with m ≥ 2, we recall that the Hecke operator with index pm on
Mk(Γ0(N), χ) is

(1.3) Tpm := Tp ◦ Tpm−1 − χ(p)pk−1Tpm−2 .
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The m = 2 case of the following corollary is the integer weight analogue of the result of
Garvan and Yang.

Corollary 1.3. Let 1 ≤ v ≤ 11, let m and s be non-negative integers with s even, and let p
be prime. In the notation above, we have

Tpm : S2v,s −→

{
S2v,s, m is even,

S2j(v,p),t(v,p,s), m is odd.

Proof. We proceed by induction on m. When m = 0, the map Tpm = T0 is the identity;
the case m = 1 is Theorem 1.1. We fix m ≥ 2, and we suppose that the statement of the
corollary holds for 0 ≤ i ≤ m − 1. When m is odd, the induction hypothesis implies that
Tpm−1 fixes S2v,s while Tp and Tpm−2 map S2v,s to S2j(v,p),t(v,p,s). The statement of the corollary
follows from (1.3).

When m is even, the induction hypothesis implies that Tpm−2 fixes S2v,s, and Tpm−1 maps
S2v,s to S2j(v,p),t(v,p,s). Therefore, in view of (1.3), it suffices to show that Tp maps S2j(v,p),t(v,p,s)

to S2v,s. When p | δ2v, the first part of the remark following Theorem 1.1 shows that
Tp : S2v,s −→ {0}. Hence, for primes p - δ2v, we verify that j(j(v, p), p) = v. Since j(v, p) is
the least positive residue of pv modulo 12, then j(j(v, p), p) is the least positive residue of
p(pv) = p2v (mod 12). We suppose first that p ≥ 5. We observe that p2 ≡ 1 (mod 12) and
that 1 ≤ v ≤ 11 to conclude that j(j(v, p), p) = v. When 2 - δ2v, we have v ∈ {4, 8}; when
3 - δ2v, we have v ∈ {3, 6, 9}. In these cases, one also sees that j(j(v, p), p) = v. �

Next, we let n ≥ 1 with prime factorization n =
∏
peii . We recall that the Hecke operator

with index n on Mk(Γ0(N), χ) is Tn :=
∏
Tpeii . The following corollary subsumes Corollary

1.2 and the “even” part of Corollary 1.3.

Corollary 1.4. Let 1 ≤ v ≤ 11, let s ≥ 0 be an even integer, and let n ≡ 1 (mod δ2v). In
the notation above, we have Tn : S2v,s −→ S2v,s.

The corollary follows from the definition of Tn together with Corollary 1.3. When v has
δ2v = 12, we also use the observation that n ≡ 1 (mod 12) if and only if the multiplicity of
all prime factors of n which are congruent to i mod 12 has the same parity for i ∈ {5, 7, 11}.
For brevity, we omit the details.

Remarks on eigenforms and one-dimensional subspaces. When s ≥ 4 is an even
integer, we recall the Eisenstein series of weight s on SL2(Z),

Es(z) := 1− 2s

Bs

∞∑
n=1

∑
d|n

ds−1qn ∈Ms,

where Bs is the sth Bernoulli number. We let E0(z) := 1, and we observe that Ms is one-
dimensional if and only if s ∈ {0, 4, 6, 8, 10, 14}, in which case we have Ms = CEs(z). Hence,
for such s and for all integers 1 ≤ v ≤ 11, we deduce that S2v,s = Cf2v,s(z), with

(1.4) f2v,s(z) := η(δ2vz)2vEs(δ2vz).

For all n ≥ 0, we define a2v,s(n) ∈ Z by f2v,s(z) =
∑
a2v,s(n)qn. The remark following

Theorem 1.1 together with Corollary 1.2 implies for all primes p, that f2v,s is an eigenform
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for Tp for all (2v, s) in the set

{(2, 0), (4, 0), (4, 4), (4, 6), (4, 10), (6, 0), (6, 4), (6, 8),

(8, 0), (8, 6), (12, 0), (12, 4), (12, 6), (12, 8), (12, 10), (12, 14)}.
This fact is well-known; moreover, these forms are normalized newforms. With bv := v

gcd(12,v)

as in (3.1), Corollary 1.4 together with (2.4) implies, for all s ∈ {0, 4, 6, 8, 10, 14} and for
all n ≡ 1 (mod δ2v), that f2v,s(z) as in (1.4) is an eigenform for Tn with eigenvalue λn,v,s =∑
ψ2v(d)dv+s−1a2v,s

(
bvn
d2

)
, where the sum is over d | gcd(bv, n).

The remaining sections of the paper proceed as follows. In Section 2, we provide further
necessary facts on modular forms, and in Section 3, we prove Theorem 1.1.

Acknowledgment. The authors thank Scott Ahlgren for helpful discussions in the prepa-
ration of this paper.

2. Background on modular forms.

The proof of Theorem 1.1 requires certain facts from the theory of modular forms. For
details, see for example [1] and [3].

We first discuss operators on spaces of modular forms. Let γ =

(
a b
c d

)
∈ GL+

2 (Q), let N

and k be non-negative integers with N ≥ 1, let χ be a Dirichlet character modulo N , and
let f(z) =

∑
a(n)qn ∈Mk(Γ0(N), χ). We define the slash operator on f(z) by

(f |k γ)(z) := (detγ)k/2(cz + d)−kf(γz).

We define WN :=

(
0 −1
N 0

)
; when χ is real, the Fricke involution

(2.1) f 7→ f |k WN = N−k/2z−kf

(
−1

Nz

)
maps Mk(Γ0(N), χ) to itself. Next, for all primes p, we define the Hecke operator Tp,k,χ. For
convenience, we use Tp when the context is clear. These operators map Mk(Γ0(N), χ) to
itself, and they preserve the subspace of cusp forms. On q-expansions, we have

(2.2)
(∑

a(n)qn
)
| Tp,k,χ =

∑(
a(pn) + χ(p)pk−1a

(
n

p

))
qn,

with a
(
n
p

)
= 0 when p - n. When p - N and χ is real, we observe the commutation

(2.3) (f |k WN) | Tp = χ(p)(f | Tp) |k WN .

For all positive integers m, we recall the definition of Tn as in the paragraph before Corollary
1.4. One can show that Tn acts on q-expansions in Mk(Γ0(N), χ) by

(2.4)
(∑

a(m)qm
)
| Tn =

∑ ∑
d|gcd(m,n)

dk−1χ(d)a
(mn
d2

)
qm.

Let 1 ≤ v ≤ 11 and let s ≥ 0 be an even integer. In view of the definition (1.2) of
our distinguished subspaces S2v,s, we record transformation formulas for SL2(Z) on the eta-

function and on modular forms in Ms. For all γ =

(
a b
c d

)
∈ SL2(Z), there exists a 24th
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root of unity, εa,b,c,d, for which

η

(
az + b

cz + d

)
= εa,b,c,d(cz + d)1/2η(z).

We always take the branch of the square root having non-negative real part. As such, one
can view the eta-function as a modular form of weight 1/2 on SL2(Z) with multiplier system
given by {εa,b,c,d}. Special cases of this transformation include

(2.5) η(z + 1) = e
2πi
24 , η

(
−1

z

)
=

√
z

i
· η(z).

We also recall, for all F (z) ∈Ms, that

(2.6) F (z) |s γ = F (z).

3. Proof of Theorem 1.1.

We let 1 ≤ v ≤ 11 be an integer. We keep notation from Section 1, and we define

(3.1) bv :=
2vδ2v

24
=

v

gcd(12, v)
.

We note that

(3.2) η(δ2vz)2v = q
2vδ2v
24

∞∏
n=1

(1− qδ2vn)2v = qbv + · · · ∈ Sv(Γ0(δ
2
2v), ψ2v)

has order of vanish at infinity equal to bv, and it has support on exponents congruent to bv
(mod δ2v). The following table gives values of v, bv, and δ2v.

(3.3)

v bv δ2v

1, 5, 7, 11 v 12
2, 10 v/2 6
3, 9 v/3 4
4, 8 v/4 3
6 1 2

Let s ≥ 0 be a positive integer, and let F (z) ∈ Ms. Then for all 1 ≤ v ≤ 11, we see that
F (δ2vz) has support on exponents divisible by δ2v. Hence, we observe that forms in the
subspace S2v,s have support on exponents congruent to bv (mod δ2v).

Lemma 3.1. Let v and s be non-negative integers with 1 ≤ v ≤ 11 and s even, and let δ2v,
bv, and S2v,s be as above. Suppose that f(z) ∈ S2v,s, that p - δ2v is prime, and that f(z) |
Tp 6= 0. Then f(z) | Tp has support on exponents congruent to pbv (mod δ2v). Furthermore,
f(z) | Tp has order of vanish at infinity greater than or equal to the least positive residue of
pbv (mod δ2v).

Proof. For all integers m, we define af (m) by f(z) =
∑
af (m)qm ∈ S2v,s. The discussion

preceding the lemma shows that af (m) 6= 0 implies that m ≡ bv (mod δ2v). Since p - δ2v
and δ2v | 12, we have p ≥ 5, p = 2 and v ∈ {4, 8}, or p = 3 and v ∈ {3, 6, 9}. In all cases
we find that p2 ≡ 1 (mod δ2v). Since f(z) | Tp 6= 0, formula (2.2) shows that there exists

m ≥ 0 with af (pm) 6= 0 or p | m and af

(
m
p

)
6= 0 If we suppose that af (pm) 6= 0, then

we have pm ≡ bv (mod δ2v). Multiplying by p and using p2 ≡ 1 (mod δ2v) gives m ≡ pbv
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(mod δ2v). Similarly, if we suppose that p | m and af

(
m
p

)
6= 0, then we have m

p
≡ bv

(mod δ2v). Multiplying by p gives m ≡ pbv (mod δ2v). The second statement follows from
the first since f | Tp 6= 0. �

Proposition 3.2. Let 1 ≤ v ≤ 11 be an integer, and let δ2v and bv be as above. Suppose
that p - δ2v is prime and that j ≥ 1 is an integer. We have gcd(12, v) | j and 2jδ2v

24
≡ pbv

(mod δ2v) with 1 ≤ 2jδ2v
24
≤ δ2v if and only if j ≡ pv (mod 12) and 1 ≤ j ≤ 12. In other

words, 2jδ2v
24

is the least positive residue of pbv modulo δ2v if and only if j is the least positive
residue of pv modulo 12.

Proof. First, we suppose that gcd(12, v) | j and 2jδ2v
24
≡ pbv (mod δ2v). From the defini-

tions, the congruence is equivalent to j
gcd(12,v)

≡ p · v
gcd(12,v)

(mod 12
gcd(12,v)

). We multiply by

gcd(12, v) to obtain j ≡ pv (mod 12).
Conversely, we suppose that j ≡ pv (mod 12). Then there exists t ∈ Z with 12t + pv =

j. It follows that gcd(12, v) | j. We divide by gcd(12, v) in the congruence to obtain
j

gcd(12,v)
≡ p · v

gcd(12,v)
≡ pbv (mod 12

gcd(12,v)
). Since j

gcd(12,v)
= 2j

24
· 12
gcd(12,v)

= 2jδ2v
24

, we find that
2jδ2v
24
≡ pbv (mod δ2v). To conclude, we observe that 1 ≤ j ≤ 12 holds if and only if

1 ≤ 2jδ2v
24

=
j

gcd(12, v)
≤ 12

gcd(12, v)
= δ2v.

�

We now prove Theorem 1.1. Let v and s be non-negative integers with 1 ≤ v ≤ 11 and s
even, and let δ2v and bv be as above. In view of the remark following the statement of the
theorem, we suppose that p - δ2v is prime. We further recall that j(v, p) is the least positive
residue of pv modulo 12 and that t(v, p, s) = s+ v− j(v, p). For all F (z) ∈Ms, we will show
that there exists Gv,p,F (z) ∈Mt(v,p,s) such that

(η(δ2vz)2vF (δ2vz)) | Tp
η(δ2vz)2j(v,p)

= Gv,p,F (δ2vz).

For convenience, we define

Hv,p,F (z) :=
(η(δ2vz)2vF (δ2vz)) | Tp

η(δ2vz)2j(v,p)
.

From Lemma 3.1, we see that the function in the numerator has support on exponents
congruent to pbv (mod δ2v). The definition of j(v, p) together with Proposition 3.2 imply
that the denominator also has support on exponents in this progression. It follows, for all
integers m, that there exists av,p,F (m) with Hv,p,F (z) =

∑
av,p,F (m)qδ2vm. We claim that

Gv,p,F (z) := Hv,p,F ( z
δ2v

) =
∑
av,p,F (m)qm ∈Mt(v,p,s).

To see this, we first show that Gv,p,F (z) transforms with weight s+ v− j(v, p) on SL2(Z).
From its q-series, we see that Gv,p,F (z) = Gv,p,F (z + 1). It remains to prove that

Gv,p,F

(
−1

z

)
= Hv,p,F

(
− 1

δ2vz

)
= zs+v−j(v,p)Hv,p,F

(
z

δ2v

)
= zs+v−j(v,p)Gv,p,F (z).

In particular, it suffices to prove that

(3.4) Hv,p,F

(
− 1

δ22vz

)
= (δ2vz)s+v−j(v,p)Hv,p,F (z).
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The proof of (3.4) requires some basic facts. First, since F (z) ∈Ms, we replace z by δ2vz
in (2.6) to obtain

(3.5) F

(
− 1

δ2vz

)
= (δ2vz)sF (δ2sz).

Next, for all integers a ≥ 1, we replace z by δ2vz in (2.5) to get

(3.6) η

(
− 1

δ2vz

)2a

= (−iδ2vz)aη(δ2vz)2a.

We now use (2.1), (3.5), and (3.6) to compute(
η(δ2vz)2vF (δ2vz)

)
|v+s Wδ22v

= (δ22v)
− v+s

2 z−(v+s)η

(
− 1

δ2vz

)2v

F

(
− 1

δ2vz

)
= (δ2vz)−(v+s) (−iδ2vz)v η(δ2vz)2v(δ2vz)sF (δ2vz)

= (−i)vη(δ2vz)2vF (δ2vz) = i−vη(δ2vz)2vF (δ2vz).

For convenience, we let gv,F (z) := η(δ2vz)2vF (δ2vz). In this notation, the previous calculation
reads as

(3.7) gv,F (z) |v+s Wδ22v
= i−vgv,F (z)

We study the function (gv,F | Tp)(z) that occurs in the numerator of Hv,p,F (z). Using (2.1),
we observe that

(gv,F | Tp) |v+s Wδ22v
= (δ22v)

− v+s
2 z−(v+s)(gv,F | Tp)

(
− 1

δ22vz

)
= (δ2vz)−(v+s)(gv,F | Tp)

(
− 1

δ22vz

)
.

It follows that

(gv,F | Tp)
(
− 1

δ22vz

)
= (δ2vz)v+s(gv,F | Tp) |v+s Wδ22v

= (δ2vz)v+sψ2v(p)(gv,F |v+s Wδ22v
) | Tp

=

{
(δ2vz)v+si−vgv,F (z) | Tp v even,

(δ2vz)v+sip−1−vgv,F (z) | Tp v odd.
(3.8)

Since p - δ2v, the commutation (2.3) gives the second equality; we used (1.1) and (3.7) for

the third equality, observing that (−1)
p−1
2 = χ−1(p).

We turn to the proof of (3.4). We suppose that 1 ≤ v ≤ 11 is odd, and we use (3.6) and
(3.8) to compute

Hv,p,F

(
− 1

δ22vz

)
=

(gv,F | Tp)
(
− 1
δ22vz

)
η
(
− 1
δ2vz

)2j(v,p) =
ip−1−v(δ2vz)v+sgv,F | Tp

(−iδ2vz)j(v,p)η(δ2vz)2j(v,p)

=
ip−1−v(δ2vz)v+s−j(v,p)gv,F | Tp

i−j(v,p)η(δ2vz)2j(v,p)
= ip−1−v+j(v,p)(δ2vz)v+s−j(v,p)Hv,p,F (z).

Since v is odd and p - δ2v, we see that p is odd. We recall that j(v, p) ≡ pv (mod 12) to find
that

p− 1− v + j(v, p) ≡ p− 1− v + pv ≡ (v + 1)(p− 1) ≡ 0 (mod 4).
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Similarly, when 1 ≤ v ≤ 11 is even, we compute

Hv,p,F

(
− 1

δ22vz

)
= i−v+j(v,p)(δ2vz)v+s−j(v,p)Hv,p,F (z).

In this case, we have

−v + j(v, p) ≡ −v + pv ≡ v(p− 1) (mod 4).

When p is odd, we have p − 1 is even; then v and p − 1 even imply that −v + j(v, p) ≡ 0
(mod 4). When p = 2, we have v ∈ {4, 8} implies that v + j(v, p) ≡ 0 (mod 4). Hence,
we conclude (3.4) in all cases. We replace z by z

δ2v
in (3.4) to see that Gv,p,F (−1/z) =

zv+s−j(v,p)Gv,p,F (z). Since z 7→ z + 1 and z 7→ −1
z

generate SL2(Z), it follows that Gv,p,F (z)
transforms with weight t(v, p, s) = v + s− j(v, p) on SL2(Z).

To finish the proof of the lemma, we show thatGv,p,F (z) is holomorphic on h and at the cusp

infinity. Since Gv,p,F (z) = Hv,p,F

(
z
δ2v

)
, it suffices to prove the same statement with Gv,p,F (z)

replaced by Hv,p,F (z). Since (η(δ2vz)2vF (δ2vz)) | Tp is holomorphic on h and η(z) 6= 0 on h,
we conclude that Hv,p,F (z) is holomorphic on h. When (η(δ2vz)2vF (δ2vz)) | Tp 6= 0, Lemma
3.1 implies that it has order of vanish at infinity greater than or equal to the least positive
residue of pbv (mod δ2v). By Proposition 3.2 and the definition of j(v, p), this least residue

has value 2j(v,p)δ2v
24

. Since η(δ2vz)2j(v,p) has order of vanish at infinity equal to 2j(v,p)δ2v
24

, we
deduce that Hv,p,F (z) is holomorphic at infinity.

References

[1] F. Diamond and J. Shurman, A first course in modular forms, Graduate Texts in Mathematics, 228,
Springer, New York, 2005. MR2112196 (2006f:11045)

[2] F. G. Garvan, Congruences for Andrews’ smallest parts partition function and new congruences for
Dyson’s rank, Int. J. Number Theory 6 (2010), no. 2, 281–309. MR2646759 (2011j:05032)

[3] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, 17, Amer. Math.
Soc., Providence, RI, 1997. MR1474964 (98e:11051)
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