Exam 3 Information
Math 544, Sections 401 and 501

Exam 3 will be based on:

- Sections 4.3, 4.4, 4.5, 4.7, 5.2 - 5.5.
- The corresponding assigned homework problems
 (see http://www.math.sc.edu/~boylan/SCCourses/math544/544.html).
 At minimum, you need to understand how to do the homework problems.

Topic List (not necessarily comprehensive):

§4.3: **Elementary operations and determinants:** Determinant of a triangular matrix; \(\det(A) = \det(A^T) \). Effects of elementary row and column operations on the computation of a determinant (e.g., interchanging two rows changes the sign.)

§4.4: **Eigenvalues and the characteristic polynomial:** The definition and computation of the eigenvalues of a matrix \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \). i.e., computation of the characteristic polynomial \(p(t) = \det(A - t I_n) \); algebraic multiplicity of an eigenvalue; eigenvalues of \(A^k \) and \(A^{-1} \); eigenvalues of \(A^T \); eigenvalues of a triangular matrix.

§4.5: **Eigenspaces and eigenvectors:** The definition and computation of the eigenvectors of a matrix \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \). The definition and computation of the eigenspace and geometric multiplicity associated to a given eigenvalue of \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \). The relationship between algebraic and geometric multiplicities:

\[
1 \leq \text{geometric mult.}(\lambda) \leq \text{algebraic mult.}(\lambda).
\]

Definition of a defective matrix: a matrix for which the above inequality is strict for at least one of its eigenvalues, \(\lambda \). Eigenvectors associated to distinct eigenvalues are linearly independent.

§4.7: **Similarity transformations and diagonalization:** Definition of similarity and diagonalizability. Similar matrices have the same characteristic polynomial, and hence, the same eigenvalues (but the corresponding eigenvectors are typically different!). Criterion for diagonalizability: the diagonalizability of \(A \) is equivalent to (1) \(A \) has \(n \) linearly independent eigenvectors (the maximum possible). (2) \(A \) is not defective (i.e., the geometric and algebraic multiplicities agree for all eigenvalues of \(A \)). If \(A \) is diagonalizable, determination of a matrix \(S \) which diagonalizes \(A \) and the diagonal matrix \(D \) obtained by diagonalizing with \(S \).

§5.2: **Vector spaces:** The definition of vector space (a set \(V \) and a scalar field \(F \) together with an addition operation on \(V \) and a scalar multiplication operation); in particular, the ten vector space axioms: 2 closure axioms, 4 axioms for vector addition, 4 axioms for scalar
multiplication. Examples of vector spaces: \(\text{Mat}_{m \times n}(\mathbb{R}) \), \(P_n \). Check whether a set \(V \) together with an addition and scalar multiplication is or is not a vector space.

§5.3: **Subspaces**: Definition of a subspace. Determine whether a subset \(W \) of a vector space \(V \) is a subspace: (1) is the “zero” vector in \(V \) also in \(W \)? (2) For any \(u, v \in W \), and any scalar \(c \), is \(cu + v \in W \)? If \(W \) is a subspace, definition of what it means for a subset \(Q \subset W \) to span \(W \). Since \(W \) is a subspace, a subset \(Q \) spans \(W \) if and only if \(\text{Sp}(Q) = W \), where \(\text{Sp}(Q) \) is the set of all linear combinations of vectors from \(Q \). Given a subspace \(W \), find a subset \(Q \) which spans it.

§5.4: **Linear independence, bases, and coordinates**: Definition of linear dependence / independence, basis of a vector space \(V \), ordered basis for a vector space \(V \), coordinates of a vector \(v \in V \) relative to an ordered basis \(B \) for \(V \).

Given a subset of vectors \(Q \subset W \), determination of whether \(Q \) is linearly independent. Given a subspace \(W \) of a vector space \(V \), determination of a basis for \(W \). Given a basis \(B \) for a vector space \(V \) and a vector \(v \in V \), determination of \((v)_B \), the coordinates of \(v \) relative to the basis \(B \).

§5.5: **Dimension**: Definition and computation of the dimension of a subspace \(W \) of a vector space \(V \).