Exam 2 Information
Math 544, Sections 401 and 501

Exam 2 will be based on:

- Sections 3.3 - 3.7, 4.1, 4.2.
- The corresponding assigned homework problems
 (see http://www.math.sc.edu/~boylan/SCCourses/math544/544.html).

 At minimum, you need to understand how to do the homework problems.
- Lecture notes: 2/6 - 3/3.

Topic List (not necessarily comprehensive):

§3.3: **Examples of subspaces:** Let \(A \in \text{Mat}_{m \times n}(\mathbb{R}) \). Important subspaces associated to \(A \) are: **Null space** of \(A \) (subspace of \(\mathbb{R}^m \)), **range** of \(A \) (subspace of \(\mathbb{R}^n \)) (also called the **column space** of \(A \)), **row space** of \(A \) (subspace of \(\mathbb{R}^n \)). For a matrix \(A \), give an algebraic description of the vectors in each of these subspaces. If \(A \) and \(B \) are row equivalent, they have the same row space.

§3.4: **Bases for subspaces:** Definition of a basis for a subspace \(W \subseteq \mathbb{R}^n \): A **linearly independent set** which spans \(W \). Example: the standard basis, \(\{e_1, \ldots, e_n\} \). Computation of bases for: Null(\(A \)), Range(\(A \)), Row(\(A \)):

- **Row(\(A \))**:
 Put \(A \) in row echelon form, \(B \). The nonzero rows form a basis for Row(\(A \)).

- **Range(\(A \))**:
 If you want a basis consisting of columns of \(A \), you put \(A \) in reduced row echelon form, \(B \). The columns of \(B \) with the leading 1’s correspond to the columns of \(A \) which go into the basis.

 If you don’t care about where you pick your basis vectors from, you can put \(A^T \) in row echelon form. The nonzero rows for a basis form Row(\(A^T \))=Range(\(A \)).

- **Null(\(A \))**:
 Solve \(Ax = \theta \) to determine a spanning set for Null(\(A \)). Then check whether the spanning set is linearly independent.

§3.5: **Dimension:** Bases for subspaces are not unique, but the number of vectors in any (all) bases for a subspace \(W \) is the same; this number is the dimension of \(W \). Theorem 9, page 207. **Rank** and **nullity** of a matrix \(A \in \text{Mat}_{m \times n}(\mathbb{R}) \), **rank**(\(A \)) + **nullity**(\(A \)) = \(n \). **Rank**(\(A \)) = \(\text{dim Range}(A) = \text{dim Row}(A) \). \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \) is non-singular if and only if **rank**(\(A \)) = \(n \) (and hence **nullity**(\(A \)) = 0).
\section*{3.6: Orthogonal bases for subspaces:} Orthogonal and orthonormal sets of vectors. “Orthonormalizing” an orthogonal set. Finding coordinates for a vector in terms of an orthogonal basis. Existence of an orthogonal basis.

\section*{3.7: Linear transformations from \mathbb{R}^n to \mathbb{R}^m:} Definition of a linear transformation, how to check whether a given map is a linear transformation or not. $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a linear transformation if and only if for every $x \in \mathbb{R}^n$, $T(x) = Ax$, where

$$A = [T(e_1) \cdots T(e_n)]$$

(i.e., it suffices to know what T does to the standard basis for \mathbb{R}^n). \textbf{Null space} and \textbf{Range} of T.

\section*{4.1: The eigenvalue problem for 2×2 matrices:} Definition and computation of eigenvalues and eigenvectors of a matrix $A \in \text{Mat}_{2 \times 2}(\mathbb{R})$.

\section*{4.2: Determinants and the eigenvalue problem:} Determinants of matrices $A \in \text{Mat}_{n \times n}(\mathbb{R})$. Computation of determinants using \textbf{minors} and \textbf{cofactors}. Properties of determinants, for example:

- $\det(AB) = \det(A)\det(B)$.
- $A \in \text{Mat}_{n \times n}(\mathbb{R})$ is singular $\iff \det(A) = 0$.
