Exam 2 will be based on:

Homework and textbook sections covered by lectures 2/3 - 3/5.
(see http://www.math.sc.edu/~boylan/SCCourses/547Sp10/547.html)
At minimum, you need to understand how to do the homework problems.

Topic List (not necessarily comprehensive):

You will need to know: theorems, results, and definitions from class.

1. Primes, irreducibles, associates.

 Definition. Let \(R \) be a commutative ring. Let \(a, b \in R \) with \(a \neq 0 \). Then \(a \) divides \(b \) (we write \(a \mid b \)) if and only if \(\exists c \in R \) with \(b = ac \).

 Facts:

 (i) \(u \in R^\times \iff (u) = R \).

 (ii) \(a \mid b \iff b \in (a) \iff (b) \subseteq (a) \).

 (iii) \(a \mid b \) and \(b \mid a \iff (a) = (b) \).

 Definition. Elements \(a \) and \(b \in R \) are associates \((a \sim b)\) if and only if \(\exists u \in R^\times \) with \(b = ua \).

 Facts:

 (i) The relation \(\sim \) is an equivalence relation on \(R \).

 (ii) \(a \sim b \implies (a) = (b) \).

 (iii) Let \(R \) be an integral domain. Then \(a \sim b \iff (a) = (b) \).

 Definition. Let \(R \) be a commutative ring. Then \(d \neq 0 \) in \(R \) is the greatest common divisor (gcd) of \(\{a_1, \ldots, a_n\} \subseteq R \) if and only if the following are true:

 (a) \(\forall i, d \mid a_i \).

 (b) Suppose that \(\exists c \in R \) such that \(\forall i, c \mid a_i \). Then we have \(c \mid d \).

 Proposition. Let \(R \) be a PID, and let \(a, b \neq 0 \) in \(R \). Then we have:

 (a) gcd\((a, b)\) exists in \(R \); it is unique up to multiplication by units.

 (b) If \(d = \gcd(a, b) \), then \(\exists s, t \in R \) with \(d = as + bt \).
Notes: Let R be a PID. Then the following rules of ideal arithmetic hold:

(i) $(a) + (b) = (\gcd(a, b))$.
(ii) $(a) \cap (b) = (\operatorname{lcm}(a, b))$.
(iii) $(a)(b) = (ab)$.

Definition. Let R be an integral domain. Then $q \in R$ is **irreducible** if and only if

(a) q is a non-zero, non-unit.
(b) If $\exists a, b \in R$ with $q = ab$, then one of a, b is a unit, and the other is associated to q.

Definition. Let R be an integral domain. Then $p \in R$ is **prime** if and only if

(a) p is a non-zero, non-unit.
(b) If $\exists a, b \in R$ with $p \mid ab$, then either $p \mid a$ or $p \mid b$.

Theorem. Let R be an integral domain.

(a) $p \in R$ is prime if and only if $(p) = pR \triangleleft R$ is a prime ideal.
(b) $c \in R$ is irreducible if and only if $(c) = cR \triangleleft R$ is maximal in the set of all principal ideals in R.
(c) Let $p \in R$ be prime. Then p is irreducible. (prime \implies irreducible)

Note: The converse of part (3) is not true in general.

Proposition. Let R be a PID, and let $p \in R$. Then p is irreducible if and only if p is prime.

2. Unique factorization in rings.

Definition. Let R be an integral domain. Then R is a **unique factorization domain** (UFD) if and only if

(a) **Existence:** Every non-zero, non-unit $r \in R$ has a factorization into irreducibles in R:
$\exists q_1, \ldots, q_r$ irreducibles in R with $r = q_1 \cdots q_r$.
(b) **Uniqueness:** The factorization of a non-zero, non-unit $r \in R$ is unique: if
$r = q_1 \cdots q_s = p_1 \cdots p_t$
are two factorizations into irreducibles, then we have $s = t$ (the number of irreducibles in each factorization is the same) and for all $1 \leq j \leq s$, we have $q_j \sim p_j$ (relabeling if necessary, the irreducible factors in each factorization can be put in bijection by association).
Example. \(\mathbb{Z} \) is a UFD.

Example. The ring \(R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\} \) is not a UFD since the two irreducible factorizations of 6 in \(R \) given by

\[
2 \cdot 3 = 6 = (1 + \sqrt{-5}) \cdot (1 + \sqrt{-5})
\]

are distinct. In particular, 2 is associated to neither \(1 + \sqrt{-5} \) nor \(1 - \sqrt{-5} \).

Definition. Let \(R \) be an integral domain. Then \(R \) satisfies the **ascending chain condition (ACC)** if and only if all ideal chains in \(R \):

\[
I_0 \subseteq I_1 \subseteq \cdots I_k \subseteq \cdots
\]

eventually stabilize. I.e., \(\exists N \geq 1 \) such that for all \(n \geq N \), we have \(I_n = I_N \).

Definition. Let \(R \) be an integral domain. Then \(R \) satisfies the **maximal condition (MAX)** if and only if every non-empty set of ideals in \(R \) contains a maximal element.

Lemma. Suppose that \(R \) is a PID. Then \(R \) satisfies ACC and MAX.

Theorem. Let \(R \) be a PID. Then \(R \) is a UFD.

Note: The converse is not generally true.

Definition. Let \(R \) be commutative, let \(I \triangleleft R \), and let \(a, b \in R \). Then we have

\[
a \equiv b \pmod{I} \iff a - b \in I \iff a + I = b + I.
\]

Theorem (Chinese Remainder Theorem). Let \(I, J \triangleleft R \) be proper, and suppose that \(I + J = R \). Then the following are true:

(a) Let \(a, b \in R \). Then \(\exists x \in R \) such that

\[
x + I = a + I \quad (x \equiv a \pmod{I}),
x + J = b + J \quad (x \equiv b \pmod{I}).
\]

(b) \(IJ = I \cap J \).

(c) \(\frac{R}{IJ} \cong \frac{R}{I} \oplus \frac{R}{J} \).
3. Ring summary:

(a) Fields \subseteq Euclidean rings \subseteq PIDs \subseteq UFDs \subseteq Integral domains \subseteq Commutative rings.

(b) Examples:

• $\mathbb{Z}[i]$ is Euclidean, but not a field.
• $\mathbb{Z} \left[\frac{1+\sqrt{-19}}{2} \right]$ is a PID, but not Euclidean.
• $\mathbb{Z}[x]$ is a UFD, but not a PID.
• $\mathbb{Z}[\sqrt{-5}]$ is an integral domain, but not a UFD.
• \mathbb{Z}_6 is a commutative ring, but not an integral domain.

(c) A finite integral domain is a field.

(d) If $r \in R$ is prime, then it is irreducible. On the other hand, 2 is irreducible in $\mathbb{Z}[\sqrt{-5}]$, but is not prime.

(e) If $I \triangleleft R$ is maximal, then it is prime. On the other hand, the principal ideal $((0, 1)) \triangleleft \mathbb{Z} \oplus \mathbb{Z}$ is prime, but not maximal.

(f) Further facts: Let R be a commutative ring.

- Cancellation holds in an integral domain, but not in all commutative rings.
- gcds exist in a UFD, but not necessarily in an integral domain.
- Irreducible and prime elements agree in a UFD; in an integral domain they may not.
- Prime and maximal ideals agree in a PID; in a UFD they may not.
- The division algorithm exists in a Euclidean ring, but not in all PIDs.
- The Chinese Remainder Theorem holds in all commutative rings.

4. Polynomial rings.

Definition. Let R be a commutative ring, let $n \geq 0$, and let $a_0, \ldots, a_n \in R$ with $a_n \neq 0$. Then

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

is a polynomial in the indeterminate x with coefficients in R.

(a) The degree of $p(x)$ is $n = \max\{k : a_k \neq 0\}$. The degree zero polynomials are precisely the non-zero elements in R; the zero polynomial has degree $-\infty$.

(b) The leading coefficient is a_n; $p(x)$ is monic if and only if the leading coefficient is one.

(c) The constant term is a_0.

(d) $R[x] = \{\text{polynomials in } x \text{ with coefficients in } R\}$; R is the coefficient ring of $R[x]$.

General facts:

- Let R be a commutative ring. Then $R[x]$ is a commutative ring with zero element: $0 \in R$; identity element: $1 \in R$.
- Let R be an integral domain. Then $R[x]$ is an integral domain.
Facts on degrees: Let R be an integral domain.

(a) $\deg(fg) = \deg(f) + \deg(g)$.
(b) $\deg(f + g) \leq \max(\deg(f), \deg(g))$.

Proposition. Let R be an integral domain. Then we have $(R[x])^\times = R^\times$.

Notes: Let R be an integral domain.

(a) $f \sim g$ in $R[x]$ if and only if $\exists r \in R^\times$ with $f(x) = rg(x)$.
(b) $f(x) \in R[x]$ is irreducible if and only if whenever $a(x), b(x) \in R[x]$ have $f(x) = a(x)b(x)$, then one of these factors is in R^\times.

5. Unique factorization in polynomial rings.

Theorem. Let F be a field. Then $F[x]$ is a Euclidean ring with norm function given by the degree. Hence, it is also a PID and a UFD; it is not a field.

Definition. Let $f(x) = a_nx^n + \cdots + a_0 \in \mathbb{Z}[x]$. Then we have

(a) The content of $f(x)$ is $c(f) = \gcd(a_0, \ldots, a_n)$.
(b) $f(x)$ is primitive if and only if $c(f) = 1$.

Notes:

- Let $f(x) \in \mathbb{Z}[x]$. Then there is a primitive $f^*(x) \in \mathbb{Z}[x]$ for which $f(x) = c(f)f^*(x)$.
- Let $g(x) \in \mathbb{Q}[x]$. Then there is a primitive $g^*(x) \in \mathbb{Z}[x]$ and $a/b \in \mathbb{Q}$ for which $g(x) = (a/b)g^*(x)$.

Theorem (Gauss’ Lemma). Let $f(x), g(x) \in \mathbb{Z}[x]$. Then we have

(a) If f and g are primitive, then fg is primitive.
(b) $c(fg) = c(f)c(g)$; $(fg)^* = f^*g^*$.

Theorem. Let $f(x) \in \mathbb{Z}[x]$ be primitive. Suppose that $\exists g(x), h(x) \in \mathbb{Q}[x]$ with $f(x) = g(x)h(x)$. Then there exists $g_1(x), h_1(x) \in \mathbb{Z}[x]$ with

(a) $f(x) = g_1(x)h_1(x)$.
(b) $\deg(g) = \deg(g_1)$; $\deg(f) = \deg(f_1)$.

I.e., if a primitive polynomial in $\mathbb{Z}[x]$ can be factored in $\mathbb{Q}[x]$, then it can be factored in $\mathbb{Z}[x]$.

Corollary. Let $f(x) \in \mathbb{Z}[x]$ be primitive. Then $f(x)$ is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$.

5
Consequence: To show that a primitive polynomial in \(\mathbb{Z}[x] \) is irreducible in \(\mathbb{Z}[x] \), it suffices to show that it is irreducible in \(\mathbb{Q}[x] \).

Lemma. Let \(f(x), g(x) \in \mathbb{Z}[x] \) be primitive. Then we have \(f(x) \sim g(x) \) in \(\mathbb{Z}[x] \).

Theorem. \(\mathbb{Z}[x] \) is a UFD.

Notes:
(i) More generally, one can prove that if the ring \(R \) is a UFD, then \(R[x] \) is a UFD.
(ii) \(\mathbb{Z}[x] \) is not a PID: \((2, x) \not\triangleleft \mathbb{Z}[x] \) is not principal.

6. Irreducibility, factors, and remainders in polynomial rings.

Definition. Let \(f(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x] \), and let \(p \) be prime. Then \(f(x) \) is \(p \)-Eisenstein if and only if

(a) For all \(0 \leq i \leq n-1 \), we have \(p | a_i \).
(b) \(p \nmid a_n \).
(c) \(p^2 \nmid a_0 \).

Theorem (Eisenstein’s Criterion). Let \(f(x) \in \mathbb{Z}[x] \), and suppose that there is a prime \(p \) for which \(f(x) \) is \(p \)-Eisenstein. Then \(f(x) \) is irreducible in \(\mathbb{Q}[x] \).

Notes:
(i) If \(f(x) \) is primitive and \(p \)-Eisenstein, then \(f(x) \) is irreducible in \(\mathbb{Z}[x] \).
(ii) Let \(f(x) \in \mathbb{Q}[x] \), and let \(c \in \mathbb{Z} \). Then \(f(x+c) \) is irreducible in \(\mathbb{Q}[x] \) if and only if \(f(x) \) is irreducible in \(\mathbb{Q}[x] \).

Example. Let \(p \in \mathbb{Z} \) be prime, and let \(\Phi_p(x) = x^{p-1} + \cdots + x + 1 \). Apply the Eisenstein Criterion to \(\Phi_p(x+1) \) to show that \(\Phi_p(x) \) is irreducible.

Definition. Let \(R \subseteq S \) be commutative rings, and fix \(s \in S \). Then the evaluation homomorphism at \(s \) is \(\phi_s : R[x] \to S \) defined by \(\phi_s : f(x) \mapsto f(s) \). It is a ring homomorphism.

Definition. Let \(f(x) \in R[x] \), and let \(s \in S \). Then \(s \) is a root of \(f(x) \) if and only if \(\phi_s(f(x)) = f(s) = 0 \).

Note: The kernel of \(\phi_s \) is an ideal in \(R[x] \) which consists of all polynomials in \(R[x] \) which have \(s \) as a root.

Theorem (Remainder Theorem). Suppose that
• F is a field
• $c \in F$
• $f(x) \neq 0$ in $F[x]$.

Then there is a unique $q(x) \in F[x]$ such that $f(x) = q(x)(x - c) + f(c)$. I.e., $f(c)$ is the remainder when you divide $f(x)$ by $x - c$.

Theorem (Factor Theorem). Suppose that

• F is a field.
• $c \in F$.
• $f(x) \neq 0$ in $F[x]$.

Then c is a root of $f(x)$ if and only if $x - c \mid f(x)$.

Corollary. Suppose that

• F is a field.
• $f(x) \neq 0$ in $F[x]$.
• $\deg(f(x)) = 2$ or 3.

Then $f(x)$ is reducible in $F[x]$ if and only if $f(x)$ has a root in F.

Theorem (Rational root theorem). Let $f(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$. Suppose that $r/s \in \mathbb{Q}$ (with $\gcd(r, s) = 1$) is a root of $f(x)$. Then $r \mid a_0$ and $s \mid a_n$.