Exam 3 will be based on:

- Sections 4.1 - 4.5, 4.7, and 5.2.
- The corresponding assigned homework problems
 (see http://www.math.sc.edu/~boylan/SCCourses/math5442/544.html).
 At minimum, you need to understand how to do the homework problems.

Topic List (not necessarily comprehensive):

You will need to know how to define vocabulary words/ phrases defined in class.

§4.1: The eigenvalue for 2×2 matrices: Definition and computation of eigenvalues and eigenvectors for 2×2 matrices.

§4.2: Determinants and the eigenvalue problem: Definition and computation of determinants of matrices $A \in \text{Mat}_{n \times n}$. Computation of determinants by expansion across rows or down columns using minors and cofactors. What is the minor and cofactor associated to a matrix entry $(a_{i,j})$ of A? Properties of determinants, for example:

- $\det(AB) = \det(A)\det(B)$.
- $A \in \text{Mat}_{n \times n}$ is singular \iff $\det(A) = 0$.
- If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$.

What is the determinant of a triangular matrix?

§4.3: Elementary operations and determinants: Important property: $\det(A) = \det(A^T)$. Effects of elementary row and column operations on the computation of a determinant:

- Interchanging two rows or two columns changes the sign of the determinant.
- If the row operation
 \[R_i \mapsto \frac{1}{k} R_i, \quad k \neq 0 \]
 transforms matrix A into matrix B, then $\det(A) = k\det(B)$. (In effect, you are “factoring” k out of the ith row of A.) Similarly, if the column operation
 \[C_i \mapsto \frac{1}{k} C_i, \quad k \neq 0 \]
 transforms matrix A into matrix B, then $\det(A) = k\det(B)$.

A row operation of the form

\[R_i \leftrightarrow R_i + kR_j, \; k \neq 0, \; i \neq j \]

does nothing to the determinant. Similarly, a column operation of the form

\[C_i \leftrightarrow C_i + kC_j, \; k \neq 0, \; i \neq j \]

does nothing to the determinant.

\section{4.4: Eigenvalues and the characteristic polynomial}

The definition and computation of the \textbf{eigenvalues} of a matrix \(A \in \text{Mat}_{n \times n} \), i.e., computation of the \textbf{characteristic polynomial} \(p(t) = \det(A - tI_n) \); the \textbf{algebraic multiplicity} of an eigenvalue \(\lambda \) is the number of times the factor \((t - \lambda)\) occurs in the characteristic polynomial \(p(t) \).

- If \(\lambda \) is an eigenvalue of \(A \) and \(k \geq 0 \) is an integer, then \(\lambda^k \) is an eigenvalue of \(A^k \).
- If \(A \) is invertible and \(\lambda \) is an eigenvalue of \(A \), then \(\frac{1}{\lambda} \) is an eigenvalue of \(A^{-1} \).
- If \(\lambda \) is an eigenvalue of \(A \), then it is also an eigenvalue of \(A^T \).
- A matrix \(A \) has 0 as one of its eigenvalues if and only if it is singular.

What are the eigenvalues of a triangular matrix?

\section{4.5: Eigenspaces and eigenvectors}

The definition and computation of the eigenvectors of a matrix \(A \in \text{Mat}_{n \times n} \). If \(\lambda \) is an eigenvalue of \(A \in \text{Mat}_{n \times n} \), then the \textbf{eigenspace} associated to \(\lambda \) is \(E_\lambda = \text{Null}(A - \lambda I) \) and the \textbf{geometric multiplicity} of \(\lambda \) is the dimension of \(E_\lambda \) (i.e., the nullity of \(A - \lambda I \)). The relationship between algebraic and geometric multiplicities is

\[1 \leq \text{geometric mult.}(\lambda) \leq \text{algebraic mult.}(\lambda). \]

Definition of a \textbf{defective} matrix: a matrix \(A \) is defective if \(A \) has at least one eigenvalue whose geometric mult. is strictly less than its algebraic mult. i.e., there is an eigenvalue \(\lambda \) with

\[\text{geom. mult.}(\lambda) < \text{alg. mult.}(\lambda). \]

Important fact: Eigenvectors associated to distinct eigenvalues are linearly independent. In particular if \(A \in \text{Mat}_{n \times n} \) has \(n \) distinct eigenvalues, then \(A \) has \(n \) linearly independent eigenvectors; i.e., \(\mathbb{R}^n \) has a basis consisting of eigenvectors for \(A \).

\section{4.7: Similarity transformations and diagonalization}

Matrices \(A \) and \(B \in \text{Mat}_{n \times n} \) are similar if there is an invertible matrix \(S \) for which

\[B = S^{-1}AS. \]

A matrix \(A \) is diagonalizable if it is similar to a diagonal matrix \(B \). If \(A \) and \(B \) are similar, they have the same:

- characteristic polynomial
- eigenvalues (but the corresponding eigenvectors are typically different! If \(B = S^{-1}AS \) (so \(A \) and \(B \) are similar) and if \(x \) is an eigenvector of \(B \) associated to \(\lambda \) (so \(Bx = \lambda x \)), then \(Sx \) is an eigenvector of \(A \) associated to \(\lambda \) (so \(A(Sx) = \lambda(Sx)) \)).
Criterion for diagonalizability: the diagonalizability of \(A \) is equivalent to

- \(A \) has \(n \) linearly independent eigenvectors (the maximum possible).
- \(A \) is not defective (i.e., the geometric and algebraic multiplicities agree for all eigenvalues of \(A \)).

If \(A \) is diagonalizable, then there is an invertible matrix \(S \) and a diagonal matrix \(B \) for which

\[
B = S^{-1}AS.
\]

How do you find the matrices \(S \) and \(B \)?

- Compute the eigenvalues of \(A \) and their algebraic multiplicities. Suppose that the distinct eigenvalues of \(A \) are \(\lambda_1, \ldots, \lambda_k \).
- Compute bases for the eigenspaces \(E_{\lambda_1}, \ldots, E_{\lambda_k} \). The dimension of \(E_{\lambda_i} \) is the geometric multiplicity of \(\lambda_i \). If for all \(i \),

\[
\text{alg. mult.}(\lambda_i) = \text{geom. mult.}(\lambda_i),
\]

then \(A \) is diagonalizable.
- Form a set \(W = \{ \vec{w}_1, \ldots, \vec{w}_n \} \) consisting of all the basis vectors for the eigenspaces of \(A \). Then the invertible matrix \(S \) which diagonalizes \(A \) is

\[
S = (\vec{w}_1 \mid \vec{w}_2 \mid \cdots \mid \vec{w}_n).
\]

So we have

\[
B = S^{-1}AS,
\]

where \(B \) is a diagonal matrix with diagonal entry \((B)_{ii} = \lambda \) and \(\lambda \) is the eigenvalue of \(A \) associated to the eigenvector \(\vec{w}_i \): \(A\vec{w}_i = \lambda \vec{w}_i \).

If \(A \) is diagonalizable, and \(k \geq 0 \) is an integer, how can you compute \(A^k \)? Here’s how: \(A \) diagonalizable implies that for some invertible matrix \(S \), \(B = S^{-1}AS \) is diagonal. We then have \(B^k = (S^{-1}AS)^k = S^{-1}A^kS \). Moving the \(S \)'s to the left side, we obtain \(SB^kS^{-1} = A^k \). So if you know \(S \) and \(S^{-1} \) (it is easy to compute \(B^k \) if \(B \) is diagonal), you can compute \(A^k \).

5.2: **Vector spaces:** The definition of vector space (a set \(V \) and a scalar field \(F \) together with an addition operation on \(V \) and a scalar multiplication operation); in particular, the ten vector space axioms: 2 closure axioms, 4 axioms for vector addition, 4 axioms for scalar multiplication. Examples of vector spaces: \(\text{Mat}_{m \times n}(\mathbb{R}) \), \(P_n \). Check whether a set \(V \) together with an addition and scalar multiplication is or is not a vector space.