Math 544, Exam 3 Information

Exam 3 will be based on:

- Sections 4.1 - 4.5, 4.7, and 5.2, 5.3.
- The corresponding assigned homework problems (see http://www.math.sc.edu/~boyland/SCCourses/math5443/544.html).
 At minimum, you need to understand how to do the homework problems.
- Quizzes: 7 - 10.

Topic List (not necessarily comprehensive):

You will need to know how to define vocabulary words/phrases defined in class.

§4.1: The eigenvalue problem for 2×2 matrices: Definition and computation of eigenvalues and eigenvectors for 2×2 matrices.

§4.2: Determinants and the eigenvalue problem: Definition and computation of determinants of matrices $A \in \text{Mat}_{n \times n}(\mathbb{R})$. Computation of determinants by expansion across rows or down columns using minors and cofactors. What is the minor and cofactor associated to a matrix entry (a_{ij}) of A? Properties of determinants, for example:

- $\det(AB) = \det(A)\det(B)$.
- $A \in \text{Mat}_{n \times n}(\mathbb{R})$ is singular $\iff \det(A) = 0$.
- If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$.

What is the determinant of a triangular matrix?

§4.3: Elementary operations and determinants: Important properties: $\det(A) = \det(A^T)$, $\det(cA) = c^n\det(A)$ for $c \neq 0$ in \mathbb{R}. Effects of elementary row and column operations on the computation of a determinant:

- Interchanging two rows or two columns changes the sign of the determinant.
- If the row operation
 \[R_i \rightarrow \frac{1}{k}R_i, \quad k \neq 0 \]
 transforms matrix A into matrix B, then $\det(A) = k\det(B)$. (In effect, you are “factoring” k out of the ith row of A.) Similarly, if the column operation
 \[C_i \rightarrow \frac{1}{k}C_i, \quad k \neq 0 \]
 transforms matrix A into matrix B, then $\det(A) = k\det(B)$.
• A row operation of the form
 \[R_i \mapsto R_i + kR_j, \quad k \neq 0, \quad i \neq j \]
does nothing to the determinant. Similarly, a column operation of the form
 \[C_i \mapsto C_i + kC_j, \quad k \neq 0, \quad i \neq j \]
does nothing to the determinant.

\section{4.4: Eigenvalues and the characteristic polynomial:} The definition and computation of the eigenvalues of a matrix \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \). i.e., computation of the characteristic polynomial \(p(t) = \det(A - tI_n) \); the algebraic multiplicity of an eigenvalue \(\lambda \) is the number of times the factor \((t - \lambda)\) occurs in the characteristic polynomial \(p(t) \).

 • If \(\lambda \) is an eigenvalue of \(A \) and \(k \geq 0 \) is an integer, then \(\lambda^k \) is an eigenvalue of \(A^k \).
 • If \(\lambda \) is an eigenvalue of \(A \) and \(\alpha \in \mathbb{R} \), then \(\lambda + \alpha \) is an eigenvalue of \(A + \alpha I_n \).
 • If \(A \) is invertible and \(\lambda \) is an eigenvalue of \(A \), then \(\frac{1}{\lambda} \) is an eigenvalue of \(A^{-1} \).
 • If \(\lambda \) is an eigenvalue of \(A \), then it is also an eigenvalue of \(A^T \).
 • A matrix \(A \) has 0 as one of its eigenvalues if and only if it is singular.

What are the eigenvalues of a triangular matrix?

\section{4.5: Eigenspaces and eigenvectors:} The definition and computation of the eigenvectors of a matrix \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \). If \(\lambda \) is an eigenvalue of \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \), then the eigenspace associated to \(\lambda \) is \(E_\lambda = \text{Null}(A - \lambda I) \) and the geometric multiplicity of \(\lambda \) is the dimension of \(E_\lambda \) (i.e., the nullity of \(A - \lambda I \)). The relationship between algebraic and geometric multiplicities is

\[1 \leq \text{geometric mult.}(\lambda) \leq \text{algebraic mult.}(\lambda). \]

Definition of a defective matrix: a matrix \(A \) is defective if \(A \) has at least one eigenvalue whose geometric mult. is strictly less than its algebraic mult. i.e., there is an eigenvalue \(\lambda \) with

\[\text{geom. mult.}(\lambda) < \text{alg. mult.}(\lambda). \]

Important fact: Eigenvectors associated to distinct eigenvalues are linearly independent. As a consequence, if \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \) is not defective, then \(A \) has \(n \) linearly independent eigenvectors, and these eigenvectors form a basis for \(\mathbb{R}^n \). In particular,, if \(A \) has \(n \) distinct eigenvalues, then \(A \) is not defective.

\section{4.7: Similarity transformations and diagonalization:} Matrices \(A \) and \(B \in \text{Mat}_{n \times n}(\mathbb{R}) \) are similar if there is an invertible matrix \(S \) for which

\[B = S^{-1}AS. \]
A matrix A is **diagonalizable** if it is similar to a diagonal matrix D. If A and B are similar, they have the same:

- characteristic polynomial: $p_A(t) = p_B(t)$. **However, the converse is not true:** If $p_A(t) = p_B(t)$, then it is not always true that A and B are similar.
- eigenvalues and algebraic multiplicities (but the corresponding eigenvectors are typically different! If $B = S^{-1}AS$ (so A and B are similar) and if \vec{x} is an eigenvector of B associated to λ (so $B\vec{x} = \lambda \vec{x}$), then $S\vec{x}$ is an eigenvector of A associated to λ (so $A(S\vec{x}) = \lambda(S\vec{x})$)).

Criterion for diagonalizability: The diagonalizability of A is equivalent to

- A has n linearly independent eigenvectors (the maximum possible).
- A is not defective (i.e., the geometric and algebraic multiplicities agree for all eigenvalues of A). So a matrix A is either defective or diagonalizable.

If A is diagonalizable, then there is an invertible matrix S and a diagonal matrix D for which

$$D = S^{-1}AS.$$

How do you find the matrices S and D?

- Compute the eigenvalues of A and their algebraic multiplicities. Suppose that the distinct eigenvalues of A are $\lambda_1, \ldots, \lambda_k$.
- Compute bases B_1, \ldots, B_k for the eigenspaces $E_{\lambda_1}, \ldots, E_{\lambda_k}$. The dimension of E_{λ_i} is the geometric multiplicity of λ_i. If for all i,

$$\text{alg. mult.}(\lambda_i) = \text{geom. mult.}(\lambda_i),$$

then A is diagonalizable.
- If A is diagonalizable, form the set $B = \{\vec{w}_1, \ldots, \vec{w}_n\}$ consisting of all the basis vectors for the eigenspaces of A. Then the invertible matrix S which diagonalizes A is

$$S = (\vec{w}_1 \mid \vec{w}_2 \mid \cdots \mid \vec{w}_n).$$

So we have

$$D = S^{-1}AS,$$

where D is a diagonal matrix with diagonal entry $(D)_{ii} = \lambda_i$ and λ_i is the eigenvalue of A associated to the eigenvector \vec{w}_i: $A\vec{w}_i = \lambda_i \vec{w}_i$.

If A is diagonalizable, and $k \geq 0$ is an integer, how can you compute A^k? Here’s how: A diagonalizable implies that for some invertible matrix S, $D = S^{-1}AS$ is diagonal. We then have

$$D^k = (S^{-1}AS)^k = S^{-1}D^kS.$$ Moving the S’s to the left side, we obtain

$$SD^kS^{-1} = A^k.$$ So if you know S and S^{-1} (it is easy to compute D^k if D is diagonal), you can compute A^k.

3
Orthogonal matrices: Their definition and basic properties:

- \(Q \in \text{Mat}_{n \times n}(\mathbb{R}) \) is orthogonal if and only if its rows and columns form orthonormal bases for \(\mathbb{R}^n \).
- If you rearrange the rows or columns of an orthogonal matrix, the resulting matrix is still orthogonal.
- If \(Q \) is orthogonal, then:
 - \(\forall \bar{x} \in \mathbb{R}^n, \|Q\bar{x}\| = \|\bar{x}\|. \) (Multiplication by \(Q \) preserves length)
 - \(\forall \bar{x}, \bar{y} \in \mathbb{R}^n, Q\bar{x} \cdot Q\bar{y} = \bar{x} \cdot \bar{y}. \) (Multiplication by \(Q \) preserves the angle between vectors.)
 - \(\det(Q) = \pm 1. \)
- \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \) is symmetric if and only if it is **orthogonally diagonalizable**. i.e., \(\exists Q, \text{ orthogonal}, \text{ such that } Q^{-1}AQ = D \) is diagonal.

§5.2: **Vector spaces:** The definition of vector space (a set \(V \) and a scalar field \(F \) together with an addition operation on \(V \) and a scalar multiplication operation); in particular, the ten vector space axioms: 2 closure axioms, 4 axioms for vector addition, 4 axioms for scalar multiplication. Examples of vector spaces: \(\text{Mat}_{m \times n}(\mathbb{R}), P_n \). Check whether a set \(V \) together with an addition and scalar multiplication is or is not a vector space.

§5.3: **Subspaces:** Determination of whether or not certain subsets of \(\text{Mat}_{m \times n}(\mathbb{R}) \) or \(P_n \) are subspaces.