SOLUTIONS for Exam # 2

1. { 10 points } Find $f'(x)$ and $f''(x)$.

$$f(x) = x^7 - 4\sqrt{x} + \frac{1}{2} x^{-2}$$

$$f'(x) = 7x^6 - 2x^{-\frac{1}{2}} - x^{-3}$$

$$f''(x) = 42x^5 + x^{-\frac{3}{2}} + 3x^{-4}$$

2. { 10 points } Find $f'(x)$.

$$f(x) = \frac{e^{-2x}}{x^2 + \cos^5 x}$$

$$f'(x) = \frac{-2e^{-2x}(x^2 + \cos^5 x) - e^{-2x}(2x + 5\cos^4 x(-\sin x))}{(x^2 + \cos^5 x)^2}$$

$$= \frac{e^{-2x}(-2x^2 - 2\cos^5 x - 2x + 5\cos^4 x\sin x)}{(x^2 + \cos^5 x)^2}$$

3. { 10 points } Find $\frac{dy}{dx}$.

$$y = xe^{\sqrt{x}} + \ln x$$

$$\frac{dy}{dx} = e^{\sqrt{x}} + xe^{\sqrt{x}} \left(\frac{1}{2} x^{-\frac{1}{2}} \right) + \frac{1}{x} = e^{\sqrt{x}} + \frac{\sqrt{x}}{2} e^{\sqrt{x}} + \frac{1}{x}$$

4. { 10 points } Find $\frac{dy}{dx}$.

$$y = \sqrt{\cos^{-1}(x^3)}$$

$$\frac{dy}{dx} = \frac{1}{2} \left(\cos^{-1}(x^3) \right)^{-\frac{1}{2}} \left(-\frac{1}{\sqrt{1-(x^3)^2}} \right) (3x^2) = \frac{-3x^2}{2\sqrt{\cos^{-1}(x^3)} \sqrt{1-x^6}}$$
5. { 10 points } Find the values of \(x \) at which the curve \(y = f(x) \) has a horizontal tangent line, if \(f(x) = (2x + 5)^2(x - 1)^6 \).

Horizontal line means slope \(m = 0 \). Hence, we have to find all points \(x \) for which \(f'(x) = 0 \).

\[
\begin{align*}
f'(x) &= 2(2x + 5)(2) (x - 1)^6 + (2x + 5)^2 6(x - 1)^5 \\
&= (2x + 5)(x - 1)^5(4(x - 1) + 6(2x + 5)) = (2x + 5)(x - 1)^5(16x + 26).
\end{align*}
\]

Thus, \(x = -\frac{2}{5}, \ x = 1, \) and \(x = -\frac{26}{16} = -\frac{13}{8} \) are the points for which the tangent is horizontal.

6. { 15 points } Complete each part for the function \(f(x) = x^2 - 4x \).

(a) Find the slope of the tangent line to the graph of \(f \) at a general \(x \)-value.

\[
m = f'(x) = 2x - 4
\]

(b) Find the tangent line to the graph of \(f \) at \(x = 1 \).

The equation of the tangent line is \(y - y_0 = m(x - x_0) \) where \(x_0 = 1, \ y_0 = f(x_0) = 1 - 4 = -3, \) and \(m = f'(x_0) = 2 - 4 = -2 \).

Substituting these values we receive \(y - (-3) = -2(x - 1) \) and therefore \(y = -2x - 1 \) is the equation of the tangent line.

7. { 15 points } Find \(\frac{dy}{dx} \) by implicit differentiation.

\[
x^3 - y^3 = 3xy
\]

Differentiating the equation with respect to \(x \) we receive

\[
\begin{align*}
3x^2 - 3y^2 \frac{dy}{dx} &= 3y + 3x \frac{dy}{dx} \\
3x^2 - 3y &= 3y^2 \frac{dy}{dx} + 3x \frac{dy}{dx} \\
\frac{dy}{dx} &= \frac{x^2 - y}{y^2 + x}
\end{align*}
\]

8. { 15 points } Use implicit differentiation to find the tangent line to the curve

\[
y = x \tan \left(\frac{\pi y}{2} \right), \quad x > 0, \ y > 0
\]

at the point \(\left(\frac{1}{2}, \frac{1}{2} \right) \).
Differentiating the equation with respect to x we receive

\[
\frac{dy}{dx} = \tan\left(\frac{\pi y}{2}\right) + x \sec^2\left(\frac{\pi y}{2}\right) \left(\frac{\pi}{2} \frac{dy}{dx}\right)
\]

\[
\frac{dy}{dx} - \frac{x\pi}{2} \sec^2\left(\frac{\pi y}{2}\right) \frac{dy}{dx} = \tan\left(\frac{\pi y}{2}\right)
\]

Substituting $x = \frac{1}{2}$ and $y = \frac{1}{2}$ we receive

\[
\left(1 - \frac{\pi}{4} \sec^2\left(\frac{\pi}{4}\right)\right) \frac{dy}{dx} = \tan\left(\frac{\pi}{4}\right)
\]

and therefore

\[
m = \frac{dy}{dx} = \frac{1}{1 - \frac{\pi}{4} (\sqrt{2})^2} = \frac{1}{1 - \frac{\pi}{2}}
\]

Thus, the tangent line is

\[
y - \frac{1}{2} = \frac{1}{1 - \frac{\pi}{2}} \left(x - \frac{1}{2}\right).
\]

9. { 15 points} Find $\frac{dy}{dx}$ using logarithmic differentiation.

\[
y = \frac{\cos^4 x}{\sqrt{x^2 + 1}}
\]

We have that \[\ln y = \ln\left(\frac{\cos^4 x}{\sqrt{x^2 + 1}}\right) = 4 \ln(\cos x) - \frac{1}{2} \ln(x^2 + 1)\] and therefore

\[
\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \ln y = 4 \frac{1}{\cos x} (-\sin x) - \frac{1}{2} \frac{1}{x^2 + 1} (2x) = -4 \tan x - \frac{x}{x^2 + 1}
\]

Thus,

\[
\frac{dy}{dx} = y \left(-4 \tan x - \frac{x}{x^2 + 1}\right) = - \frac{\cos^4 x}{\sqrt{x^2 + 1}} \left(4 \tan x + \frac{x}{x^2 + 1}\right).
\]

10. { 15 points} Find the limit.

\[
\lim_{x \to 1} \frac{\ln x}{x^3 - 1}
\]

Since the limit is an indefinite form of the type $\frac{0}{0}$ we can apply the L’Hôpital’s Rule to obtain

\[
\lim_{x \to 1} \frac{\ln x}{x^3 - 1} = \lim_{x \to 1} \frac{\frac{1}{x}}{3x^2} = \frac{1}{3}
\]
First Bonus Problem. \{ 20 points \}
The hypotenuse of a right triangle is growing at a constant rate of \(3 \) centimeters per second and one leg is decreasing at a constant rate of \(2 \) centimeters per second. How fast is the acute angle between the hypotenuse and the other leg changing at the instant when both legs are \(5 \) centimeters?

We denote the hypotenuse by \(h = h(t) \), the first leg by \(\ell = \ell(t) \), and the angle between the hypotenuse and the other leg by \(\alpha = \alpha(t) \). Then we have that at the considered instant \(\frac{dh}{dt} = 3 \), \(\frac{d\ell}{dt} = -2 \), \(\ell = 5 \), and \(h = \sqrt{5^2 + 5^2} = 5\sqrt{2} \). Using that \(\sin \alpha = \frac{\ell}{h} \) we receive \(\alpha = \sin^{-1} \left(\frac{\ell}{h} \right) \) and therefore

\[
\frac{d\alpha}{dt} = \frac{1}{\sqrt{1 - \left(\frac{\ell}{h} \right)^2}} \frac{\frac{d\ell}{dt} h - \ell \frac{dh}{dt}}{h^2} = \frac{1}{\sqrt{1 - \left(\frac{5}{5\sqrt{2}} \right)^2}} \frac{(-2)5\sqrt{2} - 5(3)}{(5\sqrt{2})^2} \\
= \frac{1}{\sqrt{1 - \frac{1}{2}}} \frac{-10\sqrt{2} - 15}{50} = \sqrt{2} \left(-\frac{\sqrt{2}}{5} - \frac{3}{10} \right) = -\frac{2}{5} - \frac{3\sqrt{2}}{10}
\]

Second Bonus Problem. \{ 20 points \} Find the limit.

\[
\lim_{x \to 0} \sqrt{\frac{x^2e^x}{\sin(3x^2)}}
\]

Using the properties of the limit and then the L’Hopital’s Rule for indefinite forms of the type \(\frac{0}{0} \) we obtain

\[
\lim_{x \to 0} \sqrt{\frac{x^2e^x}{\sin(3x^2)}} = \sqrt{\lim_{x \to 0} \frac{x^2e^x}{\sin(3x^2)}} = \sqrt{\lim_{x \to 0} \frac{2xe^x + x^2e^x}{\cos(3x^2) (6x)}} \\
= \sqrt{\lim_{x \to 0} \frac{2e^x + xe^x}{\cos(3x^2) (6)}} = \sqrt{\frac{2 + 0}{(1)(6)}} = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}
\]