ON THE SUBSYMMETRIC SEQUENCES IN S

G. ANDROULAKIS AND TH. SCHLUMPRECHT

Abstract We establish a sufficient condition for a block sequence in the Schlumprecht
space S to have a subsymmetric subsequence, and prove the existence of an uncountable

family of subsymmetric and mutually non-isomorphic block sequences in S.

1. INTRODUCTION

In [S1] the second named author constructed the first known example of an arbitrarily
distortable Banach space. In the literature this space is denoted by S. In [S2] (see [AS1])
the space S was proved to be complementably minimal. This means that the space S embeds
complementably in every infinite dimensional subspace of itself. We do not know whether S
is a prime space. In [AS1] it is shown that every complemented block sequence in S has a
subsequence which spans a space isomorphic to S. These results suggest that in the space S
there are “no many isomorphically different structures”. In the present paper we show that

this is not correct. In fact our main theorem is the following surprising result:

Theorem 1.1. There exist uncountably many non-isomorphic semi-normalized subsymmet-

ric block sequences in S.

The sequences that substantiate Theorem 1.1 are “stabilizing sequences” (see section 2
for the definition). Stabilizing sequences were used in [AS2] to construct strictly singular
non-compact operators on the space S as well as on the Gowers-Maurey space [GM1]. Recall
that a sequence (x,,) in S is called subsymmetric if there exists a constant C' > 1 such that for

any (A,) € coo (the linear space of finitely supported real sequences) and for any increasing

Date: 11/26/2000.
1991 Mathematics Subject Classification. 46B03, 46B20.

Research supported by NSF, and the Pacific Institute of Mathematical Sciences.
1



2 G. ANDROULAKIS AND TH. SCHLUMPRECHT

sequence of positive integers (k,), we have that

1S Nzall = 1S Az |

where || - || will always denote the norm of S and for two non-negative numbers a, b and for
some C' > 1 we write a ~ $h if £-b<a<C-b). Two sequences (z,,) and (y,) will be called
non-isomorphic if

)\nn )\TLTL
o o= e LTl gy IRl
otz TS Al ™ s T Ml

Note that use “and” rather than “or” in (1) which strengthens the statement of Theorem
1.1. We ask whether the spaces [(z,,)] and [(y,)], which are generated by (z,) and (y,)
respectively, are non-isomorphic. We also ask whether the spaces generated by the stabilizing
sequences that substantiate Theorem 1.1 are complemented. The answers to these questions
may reveal that S is not a prime space. In fact if the answers to the above questions
are positive, then as it was observed by P.G. Casazza, [C], S will be a negative solution
to the Schroeder-Bernstein problem for Banach spaces: if two spaces are isomorphic to a
complemented subspace of each other, must they be isomorphic? The only known negative
solutions to the Schroeder-Bernstein problem for Banach spaces are given by W.T. Gowers
[G] and by W.T. Gowers and B. Maurey [GM2].

We recall the definition of the space S: Let f be the function f(z) = logy(x + 1). For
I,J C Nwe write I < Jor I < Jif maxI < minJ or max/ < min.J respectively. Then

the norm of S satisfies the following implicit equation:

2<LEN
E1<Eo<--<Ey

¢
1
2l = [lzlls vV sup  —— > | Ejz|
o &1
where E;’s are intervals of integers and F;x denotes the projection of x on E;. Also, for
2 < /¢ € N we define the equivalent norms || - ||z and ||| - ||| on S by
1L
x|, = sup — E.x
Iele=, w0, 7 21l

and

Hlfle = sup ||zl
1<r<oco
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We denote by (e;); the unit vector basis of ¢y, and by (ef); its dual basis. In order to prove
Theorem 1.1 we first give a sufficient condition for a block sequence (x;) of (¢;); in S to have
a subsymmetric subsequence. Recall that for x = ) x;e; € coo the support of z is defined
to be supp () = {i € N: z; # 0}. For z,y € ¢oo we write x < y if supp (z) < supp (y). A
sequence (x,) € oo is a block sequence of (e;) if ; < xg < ---. The main result of section

3 is the following:

Theorem 1.2. Let (z;) be a seminormalized block sequence in S such that lim; ||z;||; = 0

uniformly in i. Then (x;) has a subsymmetric subsequence.

2. PRELIMINARIES-DEFINITIONS AND NOTATIONS ABOUT TREES

We introduce some terminology about trees. If 7 is a partially ordered set then its elements
will be called nodes. If < denotes the order on 7 and s,t € 7 with s < t then we say that
5 is a predecessor of t and t is a successor of s. If s < ¢ we say that s is an immediate
predecessor of t, or t is an immediate successor of s, if there is no u with s < u < t. An
element is called maximal if it does not have successors. For t,s € 7 we write t <sift < s
ort=s. An element t € 7 is called a root if t < s for all s € 7. Usually we denote the root
of a tree by (). A tree 7 is defined to be a partially ordered set such that

e 7 has a unique root.
e Every node other than the root has finitely many predecessors.

e Every non-maximal node has finitely many immediate successors.

If t is a node of a tree 7 then we define the length of ¢, which is denoted by [t|, to be the
number of predecessors of ¢ (if () is the root of 7 then |(})] = 0). If ¢ is a non-maximal node
of a tree 7 then k; will denote the number of immediate successors of t. If (7, <) is a tree
and & C 7T then a subset 7 is called a subtree of T generated by T\S and it is denoted
by subtree (T\S), if its order is induced by the order on 7, and it is obtained from 7 by

climinating all the nodes of 7 that either belong in S or they are successors of some node

of S, ie.

subtree (7\S) = T\{s € T : there exists t € S with ¢ < s}.
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Let T be a finite tree, and let () denote its root. Let (z;)ier C S, x € S, (2} )ier C S* and
x* € S*. We say that (x;);er and z (respectively (x})ier and x*) are roughly associated to
T if

(a) If t is a maximal node of 7 then ||z:|| > 1 (respectively ||z}]| < 1).

(b) If t € T is a non-maximal node of 7 then the vectors in {zs : s is an immediate
successor of t} (respectively {z¥ : s is an immediate successor of t}) form a block
basis of (e;) (respectively (e7)). Furthermore if s;, sy are non-maximal immediate
successors of ¢ with k;, < ks, then z,, < x,.

(c) If t € T'is a non-maximal node of 7 then

k
T = ¥ Z{xs : s is an immediate successor of ¢}
¢

L
f (k)

(d) = x¢ (respectively z* = 7).

(respectively z; = E {2} : s is an immediate successor of t}.

We say that (x)ier C S and z € S (respectively (x})er C S* and z* € S*) are associated
to 7 if (a’), (b), (c) and (d) are valid, where

(a') If ¢ is a maximal node of 7 then x; (respectively ) is an element of the unit vector

basis.

We say that an element z € S is associated (respectively roughly associated) to a tree 7
if there exists a family (z;);er C S such that (x;)ic7 and x are associated (respectively
roughly associated) to 7. Similarly we define when an element x* € S* is associated or
roughly associated to a tree 7.

Let 7 be an infinite tree with no maximal nodes, and for i € Nlet 7; = {t € T : |t| < i}.
A block sequence (x;); is called stabilizing according to T if (x;) is associated to Z; for all 7.

Let 7 be a tree and and let vectors x; of S for any maximal node ¢t of 7 such that
llz¢|| < 1 for all such ¢, and for every subset T' of the set of maximal nodes of 7 such that
the elements of T" are siblings we have that the vectors in {z; : t € T'} form a block basis of
(e;). Note then that this determines in a unique way a family of vectors (x;);c7 which are

associated to 7. This is true in S* as well. Now let 7 be a tree, () denote its root, and let



ON THE SUBSYMMETRIC SEQUENCES IN S 5

t € T\D. Let (z5)ser C S and x,y € S. Assume that (x,)s,e7 and x are associated to 7.
Let {zs : s =t} = {z :i=1,...,n} for some integer n, with z; < 2o < ---z,, and let
ip € {1,...,n} with z;; = z;. Assume that y < z9 if ig = 1; 2z;p_1 <y < 24911 if 1 <ip < n;
Zno1 < yifig =n. Let S = T\{s € T : t < s}. Define (Z;)ses as follows: Z; = y and
Ts = s if s is a maximal node of § different than ¢. Then we say that Zp is obtained from
x if we replace zy by y. If (2%)ser C S* and z*,y* € S* with (2%)se7 and z* are associated
to 7, then we define when we obtain Zj from z* by replacing x; by y* in a similar way.

Note that for a tree T, if (x;)ier C S, v € S as well as (2} )ier C 5%, x* € S* are associated
to 7, and supp (x;) = supp (z;) for all t € 7 then zj(z;) = 1 for all t € 7. We have that
||l <1 and ||ay > 1 forallt e 7.

Let 7 be a tree and let () denote its root. Then for t € 7 we define oy, 5; € R as follows

£(s) |
a; = g[sﬁk—s and [, = @gtm.

Let 7 be a tree and § C 7 that contains exactly one node from any maximal branch of
7. Observe that if (z;)er € S and z € S (respectively (z}),er C S* and z* € S*) are

associated to 7 then

x:E apry, and x*:g By ;.

tes tes
The immediate successors of each non-maximal node of a tree 7 are called siblings. A fast

increasing tree is a tree with the property that for every non-maximal node t € 7 we have

k;, > nf™ where n is the number of siblings of . We define the set

K ={ z* € 5" there exists a fast increasing tree 7 such that

*

x*  is associated to 7 }.

Recall from [S2] (see [AS1]) the following

Lemma 2.1. There exists a constant d > 1 such that for all v € Ry with f(r) > d* we have

¢
1 1
2l < | 57— sup = > || Bl

>r, B <Bo<--<FEy
f(r)

if © € cop with ||z]| # ||z
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By the properties of the function f, the product

1
A |

1
o \' T Vi

is finite, where f(rg) > d* and rp,; = r,{(T’“). Therefore sup{|z*(z)| : * € K} ~ ||z| for all

res.

3. A SUFFICIENT CONDITION FOR A BLOCK SEQUENCE IN S TO HAVE A

SUBSYMMETRIC SUBSEQUENCE

The main result of this section is Theorem 1.2. We first give the following stabilization

result.

Proposition 3.1. Let (x;) be a seminormalized block sequence in S such that
lim |[z;[]; = 0
j—00

uniformly in i. Then for every e > 0 and K € N there exists a finite family T of fast
increasing trees with the following property: For every i € N, fast increasing tree T', and
x* € IKC which is associated to T, there exists A € T and there exists y* € K which is
associated to A such that {t € A: [t| < K} C{t €T :|t| < K} and z*(x;) — e < y*(x;).
Proof. Let € > 0 and K € N. Choose ¢; > 0 and L; € N such that
(2) €1 = g and ||z;||; < &1 for all integers i, j with j > L.
Choose €9 > 0 and Ly € N such that

€
(3) Ligy < 2 and ||z;||; < e, for all integers ¢, j with j > Lo.
Choose 3 > 0 and L3 € N such that
(4) LyLoes < % and ||z;||; < e3 for all integers ¢, j with j > Ls.

Continue in the same manner and finally choose ex > 0 and Lx € N such that

(5) LiLy---Lig_ 165 < 2% and ||z;||; < ek for all integers ¢, j with j > L.
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Let 7 be the finite set of fast increasing trees whose maximal nodes have length at most
K and such that if A € 7 and t € A with |t| < K then k; < Lyyj41.

Let i € N, T be fast increasing tree 7 with () denoting its root, and x* € K be associated
to T. Let (z})ier C S* such that (z})ier C S* and z* € S* are associated to T'. If ky > L;
then the statement holds for A = {@}. Thus assume that ky < Li. Let T be the subtree of
T which is obtained if we eliminate all the nodes s € T of length at least 2 that are successors

to nodes t € T' with |t| = 1 and k; > Ly i.e.
Ty =T\{s € T: there exists t € T" with |t| = 1,k; > Ly and t < s}.

Let x7 be the functional which is obtained from z* if we replace x;’s by elements of the unit
vector basis of S* for every ¢t € T with |t| = 1 and k; > Lo. Then

* 8 * *
¥ (z;) — 7 < x*(x;) — Ligg < xy(x;)

by (3) since there are at most L; many nodes ¢ € T with |t| = 1. Let T, be the subtree of T}
which is obtained if we eliminate all the nodes s € T7 of length at least 3 that are successors

to nodes t € Ty with |t| =2 and k; > L3 i.e.
Ty =Ti\{s € Ty: there exists t € T} with |t| = 2,k; > L3 and ¢ < s}.

Let z3 be the functional which is obtained from z7 if we replace z}’s by elements of the unit

vector basis of S* for every t € T} with |¢| = 2 and k; > L. Then

* 8 * *
xy(z;) — % < xy(x;) — Ly Laes < xh(x;)

by (4) since there are at most L; L, many nodes t € Ty with [t| = 2. Continue similarly,
and define Tx_; to be the subtree of Tx_» which is obtained if we eliminate all the nodes
s € Tk _o of length at least k — 1 that are successors to nodes t € Ty, with |t/ = K — 1 and

ky > LK, i.e.

Tk 1 =Tk 2\{s € Tk_o: there exists t € T _o with |[t| = K — 1,k; > Lx and t < s}.
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Let xj_; be the functional which is obtained from xj,_, if we replace z;’s by elements of
the unit vector basis of S* for every t € Tx_o with || = K — 1 and k; > Lg. Then

* E * *
I'K_Q(l'i) — 2_K < $K—2(xi) —L1Ly... Lg_ 16 < I’K_l(l‘i)

by (5) since there are at most LiLy ... Lgx 1 many nodes t € Ty o with |t| = K — 1. Set
A =Tk 1 and y* = xg_1. Then

| ™

\)

:

r*(z;) —e < x¥(x;) — Z

=2

and obviously {t € A : |t| < K} C {t € T : |t| < K}. This finishes the proof of the
proposition. [

For the proof of the main result of this section we will need the following definition: Let

T be a tree and K be an integer. For x € ¢y we define
llz||7.x = sup{|z*(x)| : there exists (z})ier C S* such that (z})ier and z* are roughly
associated to T, and x; is an element of the unit vector basis of S*

for all maximal nodes ¢ € T with |¢t| < K}.

We can now prove the main result of this section:

Theorem 3.2. Let (z;) be a semi-normalized block sequence in S such that
lim |[z;]|; = 0
j—00

uniformly in i. Then there is a subsequence of (xz;) which is subsymmetric.

Proof. Define an increasing sequence of integers (K;) such that if P, =1 and

f(K))

then P := lim;_,o P; < oo. For every integer j, there exists a finite family 7; fast increasing

I-1
K, +1
PI:H%fOI‘[>1
=1

special trees which satisfy the Proposition 3.1 for e = 2% and K = K;. Now, by compactness

there exists a subsequence (z}) of (z;) such that

1

i ll7, — l2hllr g, | < 3
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for all 4,7 and for all T € 7;. Then choose (x?) a subsequence of (x}) such that
2 2 1

237,50, = 1257 | < BY]

for all 4,7 and for all T € 7;. Continue in the same way, and finally set y; = x! for all 1.

Then for every integer j and for every 4,4 > j, we have that

loillz, — el | < ~
23

for all T' € 7;.
We claim that (y;) is subsymmetric. Indeed, fix a strictly increasing sequence of integers

(n;). We will show that
P
1Y~ cayill = 1D aiya,|| for all (a;) € coo.
I ;

Since the unit vector basis of S is 1-unconditional, assume without loss of generality that
each y; can be written as a linear combination of the unit vector basis of S using only

non-negative coefficients. It is enough to prove the following two statements:

(A) For all z* € K there exists y* € S*, [|y*|| < P, such that z*(y,,) — 5+ < y*(y;) for

all 7.

(B) For all z* € K there exists y* € S*, ||y*|| < P, such that z*(y;) — 57 < y*(yn,) for

all 7.

The proof of these statements is similar, so we only show statement (A). Let z* € K and
assume that x* is associated to T for some fast increasing special tree 7. Let I € N such
that z* < maxsupp (y,,). Fix a sequence of intervals (A;);en such that A; < Ay < ..., their
union is N and the non-zero coordinates of the vector y; belong to A; for all 7. We prove by
induction on I € N, the following
Claim There exists y* € S* such that

(a) suppy* C Uj_, Ay

(b) lly*ll < Pr.

(c) There exists a fast increasing tree S so that P%y* is roughly associated to S. For

each i let 7 = A,,x* and y; = Ai}.%y*, and let T; and S; be fast increasing trees, so

that o} is associated to T; and y; is roughly associated to S;. Let (y;,)ies, C S* such
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that (y;,)ies, C S* and y; are associated to ;. Then for all i, S; C T,,, and y;, is
an element of the unit vector basis of S* for all nodes ¢ that are maximal in S; with
lt] < K.
(d) 2*(yn,) — 5= < y*(wi) for all 4.
Then obviously, y* satisfies statement (A).
If I = 1, then by Proposition 3.1 that there exists A € 7;, A C T; and there exists y* € S*
which is roughly associated to A via (y)iea such that z*(y,,) — 3 < y*(yn,) and y; is an
element of the unit vector basis of S* for every maximal node ¢t € A with |t| < K;. Since

1 < ny; we have that

1
lyllam = Ny llaml < 5.

Thus

. 1
Yy (ym) < HymHAJﬁ < Hy1HA7K1 + 5

Hence

. 1
x (ym) - @ < HylHAJﬁ'

Let (z])iea C S* and z* € S* such that (z])ea and z* are roughly associated to A, such
that z; is an element of the unit vector basis of S* for all maximal nodes t € A with [t| < K7,
and 2*(y1) = ||y1]|a,x,. Thus z* satisfies the Claim.

Assume that the Claim has been proved for all integers less than or equal to I, and
consider z* € K such that 2* < maxsupp (yy,,,). Write z* = &} + &3 where &} = UL_| A, 2"
and 75 = A, r*. Use the induction hypothesis for z] to obtain g7 which satisfies the
Claim for y* = g{. Then as in the case I = 1 obtain §; € S* and (7;,),cg C S* such that

supp U5 € Ari1, ¥ and (75,),e5 are roughly associated to S C Tyy, U5, 1s an element of the

unit vector basis of S* for all maximal nodes ¢ of S with It| < Kji1, and

1

ﬁ*(ynlﬂ) - ? < ?J;(ZUIH)'

Let y* = g7 + y5. In order to prove the Claim, we only need to establish that

(6) IIy*II < PI+1.
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By the induction hypothesis there exists a fast increasing tree S C Tr and (9} ;)es C S*
so that g7, is an element of the unit vector basis of S* for every ¢t € S with |¢| < K; and
satisfying that AIP%IZH‘ and (7} )res are roughly associated to S. Thus there is at most one
common node t for the trees S and S, and ¢ has length at least K. Since both trees S and

S are subsets of the fast increasing tree T' we have that

1
<1
I (75| <
which gives (6) and finishes the proof of the Claim. O

4. THE CONSTRUCTION OF UNCOUNTABLY MANY NON-ISOMORPHIC SUBSYMMETRIC

SEQUENCES IN S

This section is devoted to the proof of Theorem 1.1. First we shall construct an infinite
tree (A, <) with no maximal nodes. ) will denote its root, and for t € A, k; will denote
the number of immediate successors of ¢t. The construction will reveal that for s,¢ € A with
s # t we have ks # k;. The tree A will be completely determined by the family of numbers
(kt)ten since we assume that if ¢, t9,t3,t4 € A with |t1| = |ta|, ki, < ki, t1 =t} and to =t}

then k;, < k;,. We shall equip A with the lexicographic order <, defined by
s <g t if and only if k, < ky, for s,t € A.

For t € A let t+ 1 denote the immediate <,-successor of t. Also, for n € N, if t +n € A has
been defined then set ¢ + (n+ 1) to be (t+n) + 1 where the parentheses denote the order of
the operations. For t € A\{0} let t — 1 denote the immediate <,-predecessor of ¢t. Similarly,
for n € N, if t —n € A\{(} has been defined then we define ¢t — (n + 1) to be (¢t —n) — 1.
Define

M = {t € A\{0} : t is <;-maximum among its siblings in A}

Then we prove

Theorem 4.1. For j = 1,2 let M7 C M, TV = subtree (A\M?), and a block sequence z7);
of (e;); which is stabilizing according to T;If MY\ M? is infinite then

N 1
hmsup ||Zz 1[E ||

Newo | L @R
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and

Theorem 4.2. Let M C M, T = subtree (A\M), and a block sequence (x;); of (e;); which
is stabilizing according to T. Then for i € N and j > 2,

sl < 27 F0)

)

Note that Theorem 1.1 follows immediately from Theorems 4.1, 4.2 and 1.2.

We break this section into two parts. In the first part we will define the family (k;)ien.
In the second part we will prove Theorems 4.1 and 4.2.
Part I: The construction of (k;)ica
We enumerate M U {0} as (s,)nenujoy where for integers n < m we have that s, <; s,
(we set s = 0). Along with the numbers (k;);ca we will also define a summable decreasing
sequence (1,)>_, of positive numbers. The numbers (k;):ca are defined inductively on m:
We first define ky and ng. Then for every m € NU {0}, we define the numbers k; and 7,1

and for all siblings t of s,,,1. For the definition of the numbers (k¢)ica we use the following

Remark 4.3. For every EE > 0 and M € N there exists K > 0 and n > 0 such that for every

ar>ag > >apy >0 and K <k <ky <--- < ky we have that

(7) F!(x) ~ aiM for all x € [1,00), and for alli=1,..., M,
S (kix)
and for alle > E

(1+¢e)G(y) — G(x)

(8) 1+n)(14+e)G (y) < - forall0 < x <y,
where Fy(x) = aZ}CEZ% (i=1,...,M) and G = max,<;<p F; are defined on [1,00).

Also, note that with the assumptions of the previous Remark, if n < m < M and N is

the unique solution of the equation F,(z) = F,,(x) then

/ @ f(kﬂ) _Fn(N)_Fm(N)_ f(kM) ,ljn /
U 75 7 R R SR 13 M
Thus
(9) Fi(N) "R FL().
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For t € A we define the concave functions F; and F' and the function G on [1, 00) by

. f (k)
Fi(r) = at’Wa
G(z) = igg Fy(x) and

F = the concave envelope of the function G.

Now the definition of (k;);ca proceeds as follows: Fix a decreasing summable sequence
of positive numbers (£,,)m=0, m = 0,1,2..., with g9 < 1/6. We define 1y and ky = ks, as
follows: Let K € N and n > 0 that satisfy the statement of Remark 4.3 for Ef = ¢; and
M =1. Set kg = KV (2°—1) and 19 = 1. Assume that for some m € NU{0} we have defined
ki for all t <y s,,. Let t € A such that k; has been defined. Also, for some m € N U {0}

assume that ks, has been defined. Assume that &, and k are siblings. Then we define

Sm+1

kiy1 > ki so that the following conditions (10), (11), (12) , (13) and (14) are satisfied. If

t + 1 = s,,11 then we require that the conditions (15), (16) and (19) are satisfied as well.
First we recall from [S1] (Lemma 4 and Lemma 6) how to construct finite block sequences

in S which are almost isometric to the unit vector basis:

Remark 4.4. For every N € N and e > 0 there exist integers ky < ky < --- < kn such that if
Iy < Iy < - < Iy areintervals of integers with |I;| = k; for alli and y; = (f(ki)/ki) 2,1, €5
then (y;)X, is (1 + €)-equivalent to the first N unit basis vectors of S.

Using Remark 4.4 we ensure that if for n < N in N we set Ay ={t € A: |t| < N} and

we assume that (z;)en,, C S and x € S are associated to Ay then

1+4+en

(10) () {uean:u=n} ~ to the first #{u € Ay : |u| = n} unit basis vectors of S.

Assume that k;, is sufficiently large so that

f(keg1)
11 ————— < 9/8forallv<,t+1.
) Flhen/h) = :
Also assume that k;, is sufficiently large to ensure that
(12) 108f(ca) < f(( Kt a)V b)f(%) for all @ > 0 and b,c > 1
T2 ks 0= s =t + 1 b T
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We make sure that k;,; sufficiently large to satisfy

1 (k1 — 1) f(Kkit1)
9lt+1|+1 kt+1f(kt+l _ 1) ’

We finally ensure that k;; is chosen large enough so that

(13) 1—

a
(14) 1, 0 as t becomes arbitrarily large in the <, order.
Qy

Assume that t + 1 = s,,411. Let K € N and n > 0 that satisfy the statement of Remark 4.3
for £ =¢e,,11 and M =m + 1. Then set

(15) k

and 7,41 = 1. We make sure that

f(ksn 1)
f(kskf—lksM)

Let’s explain the role of conditions (14) and (16):

(16)

— 0as M — oo.

Remark 4.5. We obtain the following limaits:

F ks
(17) it Ronsr) — 00 as m — 00,
F3m+1_1(k5m+1)

and
F ks

(18) i (Kopr) — 00 as m — 0.
F5m+2(ksm+1

Indeed,

F, (k5m+l) 1 f(ksm+1_1k3m+l>

S
mtl > - — 00 as M — 00,

F5m+1_1(k;5m+1) — 2 f(k5m+1_1)

(by (16)), and

F3m+1(k87n+1) > laS:”*l — 00 a8 m — 090,
F3m+2 (ksm+1) 2ay

m+2

(by (14)), which finishes the proof of Remark 4.5.
Finally we ensure that k.. is chosen so that Fy  (ks,) < F

s, (ks, ) and Fy (k
(ks,,,). Thus

5m+1) <

F.

Sm+1

= F,

Sm-+41 (k5m+1 ) .

(19) F(k

5m+1)

This completes the definition of k;y; and the inductive definition of (k,)uca.
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Part II: The main estimates

In this part we give the proof of Theorems 4.1 and 4.2. For the proof of Theorem 4.1
we will need Theorems 4.6 and 4.7, while Theorem 4.2 will be a byproduct of the proof of
Theorem 4.7 (indeed, note that Theorem 4.2 follows immediately from Lemma 4.10).

Theorem 4.6. There exists a constant C such that G(z) < F(x) < CG(z) for allx € [1,00).

Before we state Theorem 4.7 we need to introduce some terminology. Let M C M,
T = subtree (A\M) and let (z;); be a block sequence of (e;); which is stabilizing according
toT. Fori e Nlet T, = {t € T : |[t| < i} and let (z;)ier; C S such that (z;,)ier;, and z;
are associated to T;. Let E be a finite interval of positive integers. We define |E| to be an
“approximation” of #{i € N : ENsupp (x;) # 0} in such a way that if F; < E, are two
finite intervals whose union is an interval then |E;| 4 |E2| = |E; U Ey|. For that we define
some auxiliary vectors y; and y;, for ¢« € N and ¢ € T;. The definition of the vectors y; and
i+ proceeds as follows: For i € N and ¢ a maximal node of T; we define y;; = x;, (which is
an element of the unit vector basis of S). For every ¢ € N and ¢ € T with |t| < ¢ we define

y;¢ by induction on |t| =i —1,i—2,...,0 by

yi,t:kl Z Yi,s-

t {s€T:t=s"}

Then y; = y;9. Now if F is a finite interval of positive integers we define

Bl = 1wl

where || - ||; denotes the norm of the space ¢;. The second ingredient of the proof of Theorem

4.1 is the following result:

Theorem 4.7. For every finite interval E with 1 < |E| we have that

i=1

(20) < 28F(|E|).

We postpone the proof of Theorems 4.6 and 4.7 in order to present the
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Proof of Theorem 4.1. Assume that some m € NU {0} we have that s,,.1 € M;\M,. Note
that by (13),

k5m+1 ksm+1 o0 1
[ e e = | B i) Foms (B ),
=1 =1 k:|3m+l|

Also, by (19) and Theorems 4.6 and 4.7,

ksm+1

1) afl < 28F (k) < 28G(k,,0y) < 28C (Fypy—1(Koi) V Fipa(Foi) -

i=1

Thus
|2 2l Tl — ) ( Foos (k) F(k))
I Zk5m+1 ZQH 28C Foioi(bs,)  Foolks, i)
which gives the result by Remark 4.5. U

First we concentrate on the proof of Theorem 4.6.

Proposition 4.8. Let (¢,,)%°_, and (0,,)X_, be sequences of positive numbers and (F,,)>_,
be a sequence of positive differentiable concave functions defined on [1,00). Assume that for
allm € NU {0}, for alle > e, and for all 1 <z <.
(1 + &) Fnia(y) — maxXocicmr Fi)

y—z
For all n < m assume that there exists a unique N € (1,00) such that F,(x) > F,,(z) for
alll1 <z < N and F,(z) < Fp,(x) for N < z. Also assume that

(21) At )L +e)F () <

1+77n

(22) FL(N) =" F,(N).

Then for every m > 0, for every integers iy < iy < -+ < iyy1, for every (t )m+1 C (0,1]

wit t; =1 ana for all (x wit T < 1 we have that
h YTt =1 and for all (x;)72" with Nj < x; < Ny we have th

m j—1 m m m+1
S T +entiGlay) + (1 +2) [T+ e)tm1G(amin) < (1 +2) [[(1 +20)G Z tj;)
=0 k=0 k=0 k=0

where G = maxXo<j<mi1 Iy, No = 1, Nj is the unique solution of the equation Ej_l(x) =
Fi,(x) forj=1,...,m+1 on (1,00), Nyt = 00 and we adopt the convention that a product

15 equal to 1 whenever the lower index is larger than the upper index.
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Proof. We use induction on m. For the inductive step, let ¢ > 0, (t;)74' C (0,1] with
Z;n;gl t; =1and (xj)?zgl with N; <a; < Njpifor j=0,1,...,m+1and F;,_ (x;) # F,(z;)

for j=1,...,m+ 1 We claim that

(23) ) (1:[(1 + ek)) t;G(x;) + (1 +¢) <H(1 + sk)) b1 G (T i)

k=0

m—1 /j—1 m
t t
= <H<1+5k>> t;G(z;) + (1 +¢) (H 1+ e ) b+ g ) G T 1T

k=0 tm + tm—i— 1

(if m = 1 then Z;n:_ll is zero). To simplify the notation, let ,, = tm/(tm + tms1), tmy1 =
tma1/(tm +tme1) and € = (1 4+€)(1 + &,) — 1. If (23) were false then

which can be written equivalently as

(24) (1 + é:>q(t~m$m j‘ gm—i—lxm—i-l) B G(‘xm) < (1 4 é) G('Tm—&-l) - fjl(gmxmj_ gm—i—lxm—i-l) )
(tmxm + tm—l—lxm-i-l) — T Tm+1 — (tmxm + tm—i—lxm—i-l)

Note that by the concavity of F;

m—+17

G($m+1) - G(mem + z?m—l—lxm—f—l)

LTm+1 — (Emmm + £m+1xm+1)

(25)

< (1) (B + B @)
If i@ + tns1Tmi1 7# N1 then

(26) G (b + e 1Tms1) = G (B + 1T ).

If T + tms1Tmi1 = Npg1 then by (9) we have

(27) G (tmm + tmi1Tmi1) < (14 00) G- (En@m + L1 Tmir)-

Combining (24), (25), (26), and (27), we obtain

(1+8)G(tmam + tmp1Zmi1) — G(wm)

(tmxm + tm+1$m+1) — Tm

< (1+ &)1+ 170)G" (tnTm + tms1Tmi1)

which contradicts (8). This finishes the proof of (23). Now the use of the induction hypothesis
completes the proof of Proposition 4.8. U
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Now Theorem 4.6 follows immediately from Proposition 4.8 since the sequence (g;) which
is used in the construction of A in Part I is summable. Note that the assumptions (21) and
(22) of Theorem 4.6 are satisfied by (8) and (9) respectively (using (15).

Now we concentrate on the proof of Theorem 4.7. We will need Lemmas 4.9-4.11, and

the following notation: Let E be a finite interval of positive integers and t € T'. We define
[Ele = 1E 322, yialh-

Lemma 4.9. Assume that there exists a unique i € N such that E N supp(x;) # 0. Then for

¢ eN,
f(ke)| B
FOf (ke B/ 0)

Proof. Let By < Ey < --- < Ey be subintervals of F such that

[Exiglle <8

¢
1
|Eitlle = 70 - Z [Eji ]

Split each E; into at most three non-empty intervals E; = E} UE?UE? where E} < E? < E}

and EJ2 is the largest subinterval of E; which satisfies the following properties:

o If £2 # ) then E7 Nsupp(z;) # 0.
o If for some u € T with t = u we have that E7 Nsupp(z;,) 7 0 then supp(z;,,) C E7.

Let
U={ueT: t=u and supp(z;,) C E}

and for j =1,...,¢, let
U, = {u eT: t=1u and supp(%',u) < EJ2}

Then
1
||Exzt||e<m > ZHEm nual + 3 56) f Hf Ui
m6{13}] 1 t {j: EQ#Q}

2f(k:t) 1 f(k;t) #U,
f(f) A Ry D DI

2.

{i: Ej#0}
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Since the function (0,00) 3 x +— z/f(z) is concave, we have

Flke) ¢ 2 (k) { > w}#Uj
t t i Ej#
1Bl <457 70 * 7@k .
FS s A0
{j: B0}

flke) € n 2 flk) #U
ke (O f(O) ke f(ED)

since Y {#U;: E7 # 0} < #U and #{j: E} # 0} < {. Now note that #U/k, < |E|; i.e.
#U < k| E|; and thus

k) £ 2 k) k|E
|’Exz'7t||2 §4f(k t) + f( t) t| |t
t

FO)  FO) ke p(lE

L

Note that if ki|E|;/¢ > 1 then k|E|/¢ > f(kE|;/¢). Also if 0 < k| FE|;/¢ < 1 then
k| E| /0 > (In22) f(ky|E|¢/¢). Thus we always have k| E|;/¢ > (In2) f (k| E|;/¢). Hence

, 4 f(k)|E J(ke)|E|
VExle < 3 50 F B D) T 2T F kBl O
o JRIE
< S D B0

O

Lemma 4.10. Assume that there exists a unique i € N such that E N supp(x;) # 0. Then
fort €T and { < ki1 |E| we have

f (k)| Bl
GRS

Proof. We write x;; = (f(k:)/ki) Y _,_y Tinw. There exists uy, up € T, with ¢ = v} = u,

|Exit|le <27

|Elu, <1, |E|ly, <1, u; <gug and |E|, =1 for all w € T with ¢t = «’ and u; <, u <,< us.
Then

(k)
Kt

f (k) f (k)
|Bzialle+ =0 30 IBwlle + = Bl

u1<pu<pu2

[Ezille <
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For u € {uy,us}, by Lemma 4.9 we have

S (k) Sk f(ku)|El

K ke SO f(kulElu/0)
fke) — f(R)ke| B,

ke J(O)f(kuke| Ele/ i)

1
(since k—\E\u < |E|; and € < kyyq)
t

£(k)|Bl,
ST

For u; <y u <y us, by Lemma 4.9 we have

[Eziulle < 8

<3

f(ke) (k) f(ko)|Elu
ke <Z< 1Bl < =56~ <Z< S50k B0

f(k) £k
= 2 S0

u1 <pu<pu2

7(k) f(k)
b 2 STtk )

u1 <pu<pu2

(since ¢ < k1| B < kyy1)
9 f(kt)

< 0k #H#{u: uy <pu <gug} (by (11))

f (k)| Bl
GRS

By putting together the previous estimates, the result follows immediately. O

<9

Lemma 4.11. Assume that there exist a unique i such that E N supp(x;) # 0. Then for
teT and ¢ € N with { < k1| E| we have

AlE Al
OIGREMEID)

where Ay = [[{f(ks): 0 < s 2t} and By = [[{ks: 0 < s < t}.

|Ex;|le <28

Proof. If t; € T is the <,-maximum element of 7" with t| =¢ — 1, let

Ar={ueT: t+1<,u<et;y and FENsupp(x;,) # 0}.
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There exist uy,us € Ay U {t,t + 1} such that |E|,, < 1, |E|,, < 1 and |E|, = 1 for all
we (A U{t,t + 1)\ {uy, us}. Let A, = A\ {uy, us}. By the triangle inequality we have

(98) 1Bzl < ol Bl + 0l B e+ g B e+ o 1Bl + 3 a1 Bl
u€ Ay

By Lemma 4.10 we have
F)IEL _ , AdE)

fe) f()
since (1/By)|E|: < |E|. By Lemma 4.9 we have

fh)lEles o Al
O f (ks |Elesn /)~ f(Of(Bea|E]/E)
(since |E|i41 < Birr/|E|). For u € {uy,us}, by Lemma 4.9 we have as in (30),

AclBl o AwlB

FOF(Buna|El/C) = f(O) f(Biyal EI/0)
since t + 1 < and ¢ < kyyq|E| < Byyq|E|. Finally since |E|, = 1 for u € A, we have by

(29) at’”Exi,tHK S 270ét/

(30) Qg1 HEiﬂi,tH e < 8y

(31) || BT lle < 8

Lemma 4.9,

(32) > awl|Briulle < 8 Z N hTD) k 0
ue Ay
8
< — since ¢ < k
— f(0) ZA k /k?t+1) ( < i)
9
< — by (11
< 2o Ov )
< % S aulEl
uEAtU{t,t-&-l,ul,uz}
: <96>A“ 2
/ we A U{t,t4+1,u1,us
9
Ay |E
_ AdE]
— f)

since we assume that 9 < f(k;) for all ¢ € T. Combining the estimates (28)—(32) we obtain
the result. U
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Corollary 4.12. Assume that there exists a unique i € N such that E N supp(x;) # 0. Let
t €T with — <\E\<—

AlB|
33 If E C supp(w;, then ||Fx;|| < 27T———-.

A | B
34 If E C supp(x; then ||Fx;l| <8—ri———.
( ) f = pp( 7t+1) || ” f(Bt+1|E|)

f (k)| E)

(35) [ ENsupp(xis+ xig1) =0 then ||Ex;|| < 9oy Fhe B
Proof. All follow immediately from the proof of Lemma 4.11. Especially for (35), note that
for ¢ > k| E| we have f(¢) > f(ki E|) > By f(ky|E|) by assumption. O

Corollary 4.13. Assume that there exists a unique i € N such that E N supp(x;) # 0. Let
t e T with — <|E|<—. Then

A E N supp @iy 3 A1 | E N supp i
F(BAE O supp @i4])” f(Beya|[E N supp wipal])’

S (k) [ EN\supp(; s + @ 441)| }
T (k| E\(supp zip + ig1)] )

Finally we are ready to give the

(36) | Ex;|| < max{27

1861,5//

Proof of Theorem 4.7. We prove the statement by induction on #E. If |E| = 1 then the
statement is obviously true. Let a finite interval E with 1 < |E| and let ¢ € N with

=1 i=1 /¢

¢
Thus there exist intervals £y < Ey < --- < Ey with E = |J E; and
j=1

00 1 l 00

Fort € T'let I = {j: 1/kiy1 < |E;| < 1/ki} and let I = {j: 1 < |Ej|}. Obviously,
{1,...,0} CUer It U I, and the sets I;’s (for t € T') and I are disjoint. Since F' is concave

we have by the induction hypothesis

(37) G Z Zx < Zst |E,]) < 1o 28F<Z|E|/#I>

J€el ]GI jel
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Also for t € T with I; # () we have by Corollary 4.13 that

f(Z

NIe

E; Z%

A|E; N supp Z Tyl At+1|Ej M supp 3 @i 11|

max ¢ 27 )
f( Z f(B:| E; N supp sztb f(Bia|Ej Nsupp 3 i)

Jjel

f (k)| Ej\supp > (i + 56’i,t+1)|
f(ky | E\supp 3 (@i + Tie41)])

].8()ét//

Let
Ay|E; N supp Z T4
f(Bi|EjNsupp ) i)

o At+1|Ej ﬂsuppzl'i,tﬂf
I’={jel: |E;) z] <8 Z
t J & h J Z f(Bea|Ej N supp 3 i)

I'=Qjel: B x| <27

i=1

and I? = L\(I} U I?).
Since for fixed ¢t € T, the functions on (0,1)

f(ke)x

Atl' 8 At+1l'
f(k;t/l')

FBw) " T (Braw)

T — 18 T — 2Toyn

are concave, we have if I} # (),

AE; 0 SUPprZA
7
Z (Bt|E ﬂSUppr”D

A 2, |E;N SuppZﬂfnl/#l1

#1327 ]EI
f( ) f(Be >0 |E; ﬂsuppzxztl/#f)
jeI}
A 3 1B ﬂsupprml
27 jEI

O (B X |E; ﬂsupprzA/#l)

jeI}

23
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Let E! be an interval with

Etl N Z Xi g
i

Then |E} Nsupp >, i4| = |E}|/By. Thus
A > |E; ﬂsupp2x1t|

23

jelt

E; Nsupp Z Tigl -
i

(39) 27 jelt o7 A|EY| /B,
FO) f(Be X |E; ﬂsuppZatzA/#Il) [0 F(BIE}/(Be#}))
]EI
27 fRES 27

€

= Q4 ==
JO " Fl B/ T(0)
Similarly, if I? # () there exists an interval E? such that

f (ki) | | § >
39 T; a / = e
(39) @ 2| Z Nl BRI RO
and if I? # () there exists an interval E} such that

flo)lEF] 18 4

ey.

(40) f( 2

JeI

B Zl” = FOM F R BRI D)

Finally note that for all t1,t, € T', t1 # t5 and mq,ms € {1,2,3} with I" # (0 and I;}? # 0,
(4]‘) If |Et11| Z §|Et22 then f(€)€t22 — 4 (|Et11|)'
(41) is valid since for j € I we have |E;| <

#ItTl > (k?t1/Bt’1)|Eff1|, hence

i while for i € N, |z;,,| = 1/By, thus

ktl m m m
1O 2 G #1) 2 f (e 1) = (G E v #1 )

Therefore, assuming that ms = 1 (similarly if my = 2 or my = 3)

s 21 o fk)IE
PR th ma
f) ("“1 Ep2| v ) f (ko B #15)

L fIE
< —oay ———— (by (12) f = |E?|, b=#I]", c=k
= 30 ) Y (P for e TIELL D= RIS e = k)
1
< JFELD.

This finishes the proof of (41).
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(41) and (37) imply that there exists t, € 7" and mg € {1, 2,3} such that

1 1 9]
(42) 72 E; Y x|l < —= Z le Z Zet
f( ) j=1 i=1 f( jeI m€{123} teT
#] 27
f(>28F Z|E|/#I +me +2F(!E )
#I

# to ’Emo ) 1 mo
f( >28F ;w JH |+ 0 27F (#1 + S F(ER)).

Since 25:1 |Ej| = |E|, we have >, |Ej| + |Ey°| < |E|. Therefore, since F is concave and
(C/f(0))F(x/t) < F(x) for 1 < x,2/¢, ¢, we have that the maximum of the right hand side

of (42) is obtained when E;* = 0 and >, |E;| = |E|. Hence the right hand side of (42) is
at most 28 F (| E'|) which finishes the proof of Theorem 4.7. O
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