
ON THE SUBSYMMETRIC SEQUENCES IN S

G. ANDROULAKIS AND TH. SCHLUMPRECHT

Abstract We establish a sufficient condition for a block sequence in the Schlumprecht

space S to have a subsymmetric subsequence, and prove the existence of an uncountable

family of subsymmetric and mutually non-isomorphic block sequences in S.

1. Introduction

In [S1] the second named author constructed the first known example of an arbitrarily

distortable Banach space. In the literature this space is denoted by S. In [S2] (see [AS1])

the space S was proved to be complementably minimal. This means that the space S embeds

complementably in every infinite dimensional subspace of itself. We do not know whether S

is a prime space. In [AS1] it is shown that every complemented block sequence in S has a

subsequence which spans a space isomorphic to S. These results suggest that in the space S

there are “no many isomorphically different structures”. In the present paper we show that

this is not correct. In fact our main theorem is the following surprising result:

Theorem 1.1. There exist uncountably many non-isomorphic semi-normalized subsymmet-

ric block sequences in S.

The sequences that substantiate Theorem 1.1 are “stabilizing sequences” (see section 2

for the definition). Stabilizing sequences were used in [AS2] to construct strictly singular

non-compact operators on the space S as well as on the Gowers-Maurey space [GM1]. Recall

that a sequence (xn) in S is called subsymmetric if there exists a constant C ≥ 1 such that for

any (λn) ∈ c00 (the linear space of finitely supported real sequences) and for any increasing
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sequence of positive integers (kn), we have that

‖
∑

λnxn‖
C
≈ ‖

∑
λnxkn‖

where ‖ · ‖ will always denote the norm of S and for two non-negative numbers a, b and for

some C ≥ 1 we write a
C
≈ b if 1

C
· b ≤ a ≤ C · b). Two sequences (xn) and (yn) will be called

non-isomorphic if

(1) 0 = inf
(λn)∈c00

‖
∑

λnxn‖
‖
∑

λnyn‖
and sup

(λn)∈c00

‖
∑

λnxn‖
‖
∑

λnyn‖
= ∞.

Note that use “and” rather than “or” in (1) which strengthens the statement of Theorem

1.1. We ask whether the spaces [(xn)] and [(yn)], which are generated by (xn) and (yn)

respectively, are non-isomorphic. We also ask whether the spaces generated by the stabilizing

sequences that substantiate Theorem 1.1 are complemented. The answers to these questions

may reveal that S is not a prime space. In fact if the answers to the above questions

are positive, then as it was observed by P.G. Casazza, [C], S will be a negative solution

to the Schroeder-Bernstein problem for Banach spaces: if two spaces are isomorphic to a

complemented subspace of each other, must they be isomorphic? The only known negative

solutions to the Schroeder-Bernstein problem for Banach spaces are given by W.T. Gowers

[G] and by W.T. Gowers and B. Maurey [GM2].

We recall the definition of the space S: Let f be the function f(x) = log2(x + 1). For

I, J ⊆ N we write I < J or I ≤ J if max I < min J or max I ≤ min J respectively. Then

the norm of S satisfies the following implicit equation:

‖x‖ = ‖x‖∞ ∨ sup
2≤`∈N

E1<E2<···<E`

1

f(`)

∑̀
j=1

‖Ejx‖

where Ej’s are intervals of integers and Ejx denotes the projection of x on Ej. Also, for

2 ≤ ` ∈ N we define the equivalent norms ‖ · ‖` and ||| · |||` on S by

‖x‖` = sup
E1<E2<···<E`

1

f(`)

∑̀
j=1

‖Ejx‖

and

|||x|||` = sup
`≤r≤∞

||x||r.
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We denote by (ei)i the unit vector basis of c00, and by (e∗i )i its dual basis. In order to prove

Theorem 1.1 we first give a sufficient condition for a block sequence (xi) of (ei)i in S to have

a subsymmetric subsequence. Recall that for x =
∑

xiei ∈ c00 the support of x is defined

to be supp (x) = {i ∈ N : xi 6= 0}. For x, y ∈ c00 we write x < y if supp (x) < supp (y). A

sequence (xn) ∈ c00 is a block sequence of (ei) if x1 < x2 < · · · . The main result of section

3 is the following:

Theorem 1.2. Let (xi) be a seminormalized block sequence in S such that limj ‖xi‖j = 0

uniformly in i. Then (xi) has a subsymmetric subsequence.

2. Preliminaries-Definitions and Notations about trees

We introduce some terminology about trees. If T is a partially ordered set then its elements

will be called nodes. If ≺ denotes the order on T and s, t ∈ T with s ≺ t then we say that

s is a predecessor of t and t is a successor of s. If s ≺ t we say that s is an immediate

predecessor of t, or t is an immediate successor of s, if there is no u with s ≺ u ≺ t. An

element is called maximal if it does not have successors. For t, s ∈ T we write t � s if t ≺ s

or t = s. An element t ∈ T is called a root if t � s for all s ∈ T . Usually we denote the root

of a tree by ∅. A tree T is defined to be a partially ordered set such that

• T has a unique root.

• Every node other than the root has finitely many predecessors.

• Every non-maximal node has finitely many immediate successors.

If t is a node of a tree T then we define the length of t, which is denoted by |t|, to be the

number of predecessors of t (if ∅ is the root of T then |∅| = 0). If t is a non-maximal node

of a tree T then kt will denote the number of immediate successors of t. If (T ,≺) is a tree

and S̃ ⊆ T then a subset T is called a subtree of T generated by T \S̃ and it is denoted

by subtree (T \S̃), if its order is induced by the order on T , and it is obtained from T by

eliminating all the nodes of T that either belong in S̃ or they are successors of some node

of S̃, i.e.

subtree (T \S̃) = T \{s ∈ T : there exists t ∈ S̃ with t � s}.
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Let T be a finite tree, and let ∅ denote its root. Let (xt)t∈T ⊂ S, x ∈ S, (x∗t )t∈T ⊂ S∗ and

x∗ ∈ S∗. We say that (xt)t∈T and x (respectively (x∗t )t∈T and x∗) are roughly associated to

T if

(a) If t is a maximal node of T then ‖xt‖ ≥ 1 (respectively ‖x∗t‖ ≤ 1).

(b) If t ∈ T is a non-maximal node of T then the vectors in {xs : s is an immediate

successor of t} (respectively {x∗s : s is an immediate successor of t}) form a block

basis of (ei) (respectively (e∗i )). Furthermore if s1, s2 are non-maximal immediate

successors of t with ks1 < ks2 then xs1 < xs2 .

(c) If t ∈ T is a non-maximal node of T then

xt =
f(kt)

kt

∑
{xs : s is an immediate successor of t}

(respectively x∗t =
1

f(kt)

∑
{x∗s : s is an immediate successor of t}.

(d) x = x∅ (respectively x∗ = x∗∅).

We say that (xt)t∈T ⊂ S and x ∈ S (respectively (x∗t )t∈T ⊂ S∗ and x∗ ∈ S∗) are associated

to T if (a′), (b), (c) and (d) are valid, where

(a′) If t is a maximal node of T then xt (respectively x∗t ) is an element of the unit vector

basis.

We say that an element x ∈ S is associated (respectively roughly associated) to a tree T

if there exists a family (xt)t∈T ⊂ S such that (xt)t∈T and x are associated (respectively

roughly associated) to T . Similarly we define when an element x∗ ∈ S∗ is associated or

roughly associated to a tree T .

Let T be an infinite tree with no maximal nodes, and for i ∈ N let Ti = {t ∈ T : |t| ≤ i}.

A block sequence (xi)i is called stabilizing according to T if (xi) is associated to Ti for all i.

Let T be a tree and and let vectors xt of S for any maximal node t of T such that

‖xt‖ ≤ 1 for all such t, and for every subset T of the set of maximal nodes of T such that

the elements of T are siblings we have that the vectors in {xt : t ∈ T} form a block basis of

(ei). Note then that this determines in a unique way a family of vectors (xt)t∈T which are

associated to T . This is true in S∗ as well. Now let T be a tree, ∅ denote its root, and let
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t ∈ T \∅. Let (xs)s∈T ⊂ S and x, y ∈ S. Assume that (xs)s∈T and x are associated to T .

Let {xs : s′ = t′} = {zi : i = 1, . . . , n} for some integer n, with z1 < z2 < · · · zn, and let

i0 ∈ {1, . . . , n} with zi0 = xt. Assume that y < z2 if i0 = 1; zi0−1 < y < zi0+1 if 1 < i0 < n;

zn−1 < y if i0 = n. Let S = T \{s ∈ T : t ≺ s}. Define (x̃s)s∈S as follows: x̃t = y and

x̃s = xs if s is a maximal node of S different than t. Then we say that x̃∅ is obtained from

x if we replace xt by y. If (x∗s)s∈T ⊂ S∗ and x∗, y∗ ∈ S∗ with (x∗s)s∈T and x∗ are associated

to T , then we define when we obtain x̃∗∅ from x∗ by replacing x∗t by y∗ in a similar way.

Note that for a tree T , if (xt)t∈T ⊂ S, x ∈ S as well as (x∗t )t∈T ⊂ S∗, x∗ ∈ S∗ are associated

to T , and supp (xt) = supp (x∗t ) for all t ∈ T then x∗t (xt) = 1 for all t ∈ T . We have that

‖x∗t‖ ≤ 1 and ‖xt‖ ≥ 1 for all t ∈ T .

Let T be a tree and let ∅ denote its root. Then for t ∈ T we define αt, βt ∈ R as follows

αt =
∏
∅�s�t

f(s)

ks

and βt =
∏
∅�s�t

1

f(s)
.

Let T be a tree and S ⊆ T that contains exactly one node from any maximal branch of

T . Observe that if (xt)t∈T ⊂ S and x ∈ S (respectively (x∗t )t∈T ⊂ S∗ and x∗ ∈ S∗) are

associated to T then

x =
∑
t∈S

αt′xt, and x∗ =
∑
t∈S

βt′x
∗
t .

The immediate successors of each non-maximal node of a tree T are called siblings. A fast

increasing tree is a tree with the property that for every non-maximal node t ∈ T we have

kt ≥ nf(n) where n is the number of siblings of t. We define the set

K = { x∗ ∈ S∗ there exists a fast increasing tree T such that

x∗ is associated to T }.

Recall from [S2] (see [AS1]) the following

Lemma 2.1. There exists a constant d > 1 such that for all r ∈ R+ with f(r) > d2 we have

|||x|||r ≤

 1

1− d√
f(r)

 sup
`≥r,E1<E2<···<E`

1

f(`)

∑̀
i=1

|||Eix|||rf(r)

if x ∈ c00 with ‖x‖ 6= ‖x‖∞
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By the properties of the function f , the product

c =
∞∏

k=0

 1

1− d√
f(rk)


is finite, where f(r0) > d2 and rk+1 = r

f(rk)
k . Therefore sup{|x∗(x)| : x∗ ∈ K}

c
≈ ‖x‖ for all

x ∈ S.

3. A Sufficient Condition for a Block Sequence in SSS to have a

Subsymmetric Subsequence

The main result of this section is Theorem 1.2. We first give the following stabilization

result.

Proposition 3.1. Let (xi) be a seminormalized block sequence in S such that

lim
j→∞

‖xi‖j = 0

uniformly in i. Then for every ε > 0 and K ∈ N there exists a finite family T of fast

increasing trees with the following property: For every i ∈ N, fast increasing tree T , and

x∗ ∈ K which is associated to T , there exists ∆ ∈ T and there exists y∗ ∈ K which is

associated to ∆ such that {t ∈ ∆ : |t| ≤ K} ⊆ {t ∈ T : |t| ≤ K} and x∗(xi)− ε ≤ y∗(xi).

Proof. Let ε > 0 and K ∈ N. Choose ε1 > 0 and L1 ∈ N such that

(2) ε1 =
ε

2
and ‖xi‖j < ε1 for all integers i, j with j > L1.

Choose ε2 > 0 and L2 ∈ N such that

(3) L1ε2 <
ε

22
and ‖xi‖j < ε2 for all integers i, j with j > L2.

Choose ε3 > 0 and L3 ∈ N such that

(4) L1L2ε3 <
ε

23
and ‖xi‖j < ε3 for all integers i, j with j > L3.

Continue in the same manner and finally choose εK > 0 and LK ∈ N such that

(5) L1L2 · · ·LK−1εK <
ε

2K
and ‖xi‖j < εK for all integers i, j with j > LK .
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Let T be the finite set of fast increasing trees whose maximal nodes have length at most

K and such that if ∆ ∈ T and t ∈ ∆ with |t| < K then kt ≤ L|t|+1.

Let i ∈ N , T be fast increasing tree T with ∅ denoting its root, and x∗ ∈ K be associated

to T . Let (x∗t )t∈T ⊂ S∗ such that (x∗t )t∈T ⊂ S∗ and x∗ ∈ S∗ are associated to T . If k∅ > L1

then the statement holds for ∆ = {∅}. Thus assume that k∅ ≤ L1. Let T1 be the subtree of

T which is obtained if we eliminate all the nodes s ∈ T of length at least 2 that are successors

to nodes t ∈ T with |t| = 1 and kt > L2 i.e.

T1 = T\{s ∈ T : there exists t ∈ T with |t| = 1, kt > L2 and t ≺ s}.

Let x∗1 be the functional which is obtained from x∗ if we replace x∗t ’s by elements of the unit

vector basis of S∗ for every t ∈ T with |t| = 1 and kt > L2. Then

x∗(xi)−
ε

22
< x∗(xi)− L1ε2 ≤ x∗1(xi)

by (3) since there are at most L1 many nodes t ∈ T with |t| = 1. Let T2 be the subtree of T1

which is obtained if we eliminate all the nodes s ∈ T1 of length at least 3 that are successors

to nodes t ∈ T1 with |t| = 2 and kt > L3 i.e.

T2 = T1\{s ∈ T1 : there exists t ∈ T1 with |t| = 2, kt > L3 and t ≺ s}.

Let x∗2 be the functional which is obtained from x∗1 if we replace x∗t ’s by elements of the unit

vector basis of S∗ for every t ∈ T1 with |t| = 2 and kt > L3. Then

x∗1(xi)−
ε

23
< x∗1(xi)− L1L2ε2 ≤ x∗2(xi)

by (4) since there are at most L1L2 many nodes t ∈ T1 with |t| = 2. Continue similarly,

and define TK−1 to be the subtree of TK−2 which is obtained if we eliminate all the nodes

s ∈ TK−2 of length at least k− 1 that are successors to nodes t ∈ Tk−2 with |t| = K − 1 and

kt > LK , i.e.

TK−1 = TK−2\{s ∈ TK−2 : there exists t ∈ TK−2 with |t| = K − 1, kt > LK and t ≺ s}.
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Let x∗K−1 be the functional which is obtained from x∗K−2 if we replace x∗t ’s by elements of

the unit vector basis of S∗ for every t ∈ TK−2 with |t| = K − 1 and kt > LK . Then

x∗K−2(xi)−
ε

2K
< x∗K−2(xi)− L1L2 . . . LK−1εK ≤ x∗K−1(xi)

by (5) since there are at most L1L2 . . . LK−1 many nodes t ∈ TK−2 with |t| = K − 1. Set

∆ = TK−1 and y∗ = xK−1. Then

x∗(xi)− ε < x∗(xi)−
k∑

i=2

ε

2i
< y∗(xi),

and obviously {t ∈ ∆ : |t| ≤ K} ⊆ {t ∈ T : |t| ≤ K}. This finishes the proof of the

proposition. �

For the proof of the main result of this section we will need the following definition: Let

T be a tree and K be an integer. For x ∈ c00 we define

‖x‖T,K = sup{|x∗(x)| : there exists (x∗t )t∈T ⊆ S∗ such that (x∗t )t∈T and x∗ are roughly

associated to T, and x∗t is an element of the unit vector basis of S∗

for all maximal nodes t ∈ T with |t| ≤ K}.

We can now prove the main result of this section:

Theorem 3.2. Let (xi) be a semi-normalized block sequence in S such that

lim
j→∞

‖xi‖j = 0

uniformly in i. Then there is a subsequence of (xi) which is subsymmetric.

Proof. Define an increasing sequence of integers (Kj) such that if P1 = 1 and

PI =
I−1∏
i=1

f(Ki + 1)

f(Ki)
for I > 1

then P := limI→∞ PI < ∞. For every integer j, there exists a finite family Tj fast increasing

special trees which satisfy the Proposition 3.1 for ε = 1
2j and K = Kj. Now, by compactness

there exists a subsequence (x1
i ) of (xi) such that∣∣‖x1

i ‖T,K1 − ‖x1
i′‖T,K1

∣∣ < 1

2
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for all i, i′ and for all T ∈ T1. Then choose (x2
i ) a subsequence of (x1

i ) such that∣∣‖x2
i ‖T,K2 − ‖x2

i′‖T,K2

∣∣ < 1

22

for all i, i′ and for all T ∈ T2. Continue in the same way, and finally set yi = xi
i for all i.

Then for every integer j and for every i, i′ ≥ j, we have that∣∣‖yi‖T,Kj
− ‖yi′‖T,Kj

∣∣ < 1

2j

for all T ∈ Tj.

We claim that (yi) is subsymmetric. Indeed, fix a strictly increasing sequence of integers

(ni). We will show that

‖
∑

I

αiyi‖
P
≈ ‖

∑
i

aiyni
‖ for all (ai) ∈ c00.

Since the unit vector basis of S is 1-unconditional, assume without loss of generality that

each yi can be written as a linear combination of the unit vector basis of S using only

non-negative coefficients. It is enough to prove the following two statements:

(A) For all x∗ ∈ K there exists y∗ ∈ S∗, ‖y∗‖ ≤ P , such that x∗(yni
) − 1

2i−1 ≤ y∗(yi) for

all i.

(B) For all x∗ ∈ K there exists y∗ ∈ S∗, ‖y∗‖ ≤ P , such that x∗(yi) − 1
2i−1 ≤ y∗(yni

) for

all i.

The proof of these statements is similar, so we only show statement (A). Let x∗ ∈ K and

assume that x∗ is associated to T for some fast increasing special tree T . Let I ∈ N such

that x∗ ≤ max supp (ynI
). Fix a sequence of intervals (Ai)i∈N such that A1 < A2 < . . . , their

union is N and the non-zero coordinates of the vector yi belong to Ai for all i. We prove by

induction on I ∈ N, the following

Claim There exists y∗ ∈ S∗ such that

(a) supp y∗ ⊆ ∪I
`=1A`.

(b) ‖y∗‖ ≤ PI .

(c) There exists a fast increasing tree S so that 1
PI

y∗ is roughly associated to S. For

each i let x∗i = Ani
x∗ and y∗i = Ai

1
PI

y∗, and let Ti and Si be fast increasing trees, so

that x∗i is associated to Ti and y∗i is roughly associated to Si. Let (y∗i,t)t∈Si
⊂ S∗ such
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that (y∗i,t)t∈Si
⊂ S∗ and y∗i are associated to Si. Then for all i, Si ⊆ Tni

and y∗i,t is

an element of the unit vector basis of S∗ for all nodes t that are maximal in Si with

|t| ≤ Ki.

(d) x∗(yni
)− 1

2i−1 ≤ y∗(yi) for all i.

Then obviously, y∗ satisfies statement (A).

If I = 1, then by Proposition 3.1 that there exists ∆ ∈ T1, ∆ ⊆ T1 and there exists y∗ ∈ S∗

which is roughly associated to ∆ via (y∗t )t∈∆ such that x∗(yn1) − 1
2
≤ y∗(yn1) and y∗t is an

element of the unit vector basis of S∗ for every maximal node t ∈ ∆ with |t| ≤ K1. Since

1 ≤ n1 we have that

|‖y1‖∆,K1 − ‖yn1‖∆,K1| <
1

2
.

Thus

y∗(yn1) ≤ ‖yn1‖∆,K1 < ‖y1‖∆,K1 +
1

2
.

Hence

x∗(yn1)−
1

20
< ‖y1‖∆,K1 .

Let (z∗t )t∈∆ ⊂ S∗ and z∗ ∈ S∗ such that (z∗t )t∈∆ and z∗ are roughly associated to ∆, such

that z∗t is an element of the unit vector basis of S∗ for all maximal nodes t ∈ ∆ with |t| ≤ K1,

and z∗(y1) = ‖y1‖∆,K1 . Thus z∗ satisfies the Claim.

Assume that the Claim has been proved for all integers less than or equal to I, and

consider x∗ ∈ K such that x∗ ≤ max supp (ynI+1
). Write x∗ = x̃∗1 + x̃∗2 where x̃∗1 = ∪I

i=1Ani
x∗

and x̃∗2 = AnI+1
x∗. Use the induction hypothesis for x̃∗1 to obtain ỹ∗1 which satisfies the

Claim for y∗ = ỹ∗1. Then as in the case I = 1 obtain ỹ∗2 ∈ S∗ and (ỹ∗2,t)t∈S̃ ⊂ S∗ such that

supp ỹ∗2 ⊆ AI+1, ỹ∗2 and (ỹ∗2,t)t∈S̃ are roughly associated to S̃ ⊆ TI+1, ỹ∗2,t is an element of the

unit vector basis of S∗ for all maximal nodes t of S̃ with |t| ≤ KI+1, and

x∗(ynI+1
)− 1

2I
≤ ỹ∗2(yI+1).

Let y∗ = ỹ∗1 + ỹ∗2. In order to prove the Claim, we only need to establish that

(6) ‖y∗‖ ≤ PI+1.



ON THE SUBSYMMETRIC SEQUENCES IN S 11

By the induction hypothesis there exists a fast increasing tree S ⊆ TI and (ỹ∗1,t)t∈S ⊂ S∗

so that ỹ∗1,t is an element of the unit vector basis of S∗ for every t ∈ S with |t| ≤ KI and

satisfying that AI
1

PI
ỹ∗1 and (ỹ∗1,t)t∈S are roughly associated to S. Thus there is at most one

common node t for the trees S and S̃, and t has length at least KI . Since both trees S and

S̃ are subsets of the fast increasing tree T we have that∥∥∥∥ f(KI)

f(KI + 1)

(
1

PI

ỹ∗1 + ỹ∗2

)∥∥∥∥ ≤ 1

which gives (6) and finishes the proof of the Claim. �

4. The construction of uncountably many non-isomorphic subsymmetric

sequences in S

This section is devoted to the proof of Theorem 1.1. First we shall construct an infinite

tree (∆,≺) with no maximal nodes. ∅ will denote its root, and for t ∈ ∆, kt will denote

the number of immediate successors of t. The construction will reveal that for s, t ∈ ∆ with

s 6= t we have ks 6= kt. The tree ∆ will be completely determined by the family of numbers

(kt)t∈∆ since we assume that if t1, t2, t3, t4 ∈ ∆ with |t1| = |t2|, kt1 < kt2 , t1 = t′3 and t2 = t′4

then kt3 < kt4 . We shall equip ∆ with the lexicographic order <` defined by

s <` t if and only if ks < kt, for s, t ∈ ∆.

For t ∈ ∆ let t + 1 denote the immediate <`-successor of t. Also, for n ∈ N, if t + n ∈ ∆ has

been defined then set t + (n + 1) to be (t + n) + 1 where the parentheses denote the order of

the operations. For t ∈ ∆\{∅} let t− 1 denote the immediate <`-predecessor of t. Similarly,

for n ∈ N, if t − n ∈ ∆\{∅} has been defined then we define t − (n + 1) to be (t − n) − 1.

Define

M = {t ∈ ∆\{∅} : t is <`-maximum among its siblings in ∆}

Then we prove

Theorem 4.1. For j = 1, 2 let M j ⊆ M, T j = subtree (∆\M j), and a block sequence xj
i )i

of (ei)i which is stabilizing according to TjIf M1\M2 is infinite then

lim sup
N→∞

‖
∑N

i=1 x1
i ‖

‖
∑N

i=1 x2
i ‖

= ∞.
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and

Theorem 4.2. Let M ⊆ M, T = subtree (∆\M), and a block sequence (xi)i of (ei)i which

is stabilizing according to T . Then for i ∈ N and j ≥ 2,

‖xi‖j ≤ 27
f(k∅)

f(j)

Note that Theorem 1.1 follows immediately from Theorems 4.1, 4.2 and 1.2.

We break this section into two parts. In the first part we will define the family (kt)t∈∆.

In the second part we will prove Theorems 4.1 and 4.2.

Part I: The construction of (kt)t∈∆

We enumerate M ∪ {∅} as (sn)n∈N∪{0} where for integers n < m we have that sn <` sm

(we set s0 = ∅). Along with the numbers (kt)t∈∆ we will also define a summable decreasing

sequence (ηm)∞m=0 of positive numbers. The numbers (kt)t∈∆ are defined inductively on m:

We first define k∅ and η∅. Then for every m ∈ N ∪ {0}, we define the numbers kt and ηm+1

and for all siblings t of sm+1. For the definition of the numbers (kt)t∈∆ we use the following

Remark 4.3. For every E > 0 and M ∈ N there exists K > 0 and η > 0 such that for every

α1 > α2 > · · · > αM > 0 and K ≤ k1 < k2 < · · · < kM we have that

(7) F ′
i (x)

√
1+η
≈ αi

f(ki)

f(kix)
for all x ∈ [1,∞), and for all i = 1, . . . ,M,

and for all ε ≥ E

(8) (1 + η)(1 + ε)G′
−(y) ≤ (1 + ε)G(y)−G(x)

y − x
for all 0 < x < y,

where Fi(x) = αi
f(ki)x
f(kix)

(i = 1, . . . ,M) and G = max1≤i≤M Fi are defined on [1,∞).

Also, note that with the assumptions of the previous Remark, if n < m ≤ M and N is

the unique solution of the equation Fn(x) = Fm(x) then

F ′
n(N)

√
1+η
≈ αn

f(kn)

f(knN)
=

Fn(N)

N
=

Fm(N)

N
= αm

f(km)

f(kmN)

√
1+η
≈ F ′

m(N)

Thus

(9) F ′
n(N)

(1+η)
≈ F ′

m(N).
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For t ∈ ∆ we define the concave functions Ft and F and the function G on [1,∞) by

Ft(x) = αt′
f(kt)x

f(ktx)
,

G(x) = sup
t∈∆

Ft(x) and

F = the concave envelope of the function G.

Now the definition of (kt)t∈∆ proceeds as follows: Fix a decreasing summable sequence

of positive numbers (εm)m=0, m = 0, 1, 2 . . ., with ε0 < 1/6. We define η0 and k∅ = ks0 as

follows: Let K ∈ N and η > 0 that satisfy the statement of Remark 4.3 for E = ε0 and

M = 1. Set k∅ = K∨(29−1) and η0 = η. Assume that for some m ∈ N∪{0} we have defined

kt for all t ≤` sm. Let t ∈ ∆ such that kt has been defined. Also, for some m ∈ N ∪ {0}

assume that ksm has been defined. Assume that kt+1 and ksm+1 are siblings. Then we define

kt+1 > kt so that the following conditions (10), (11), (12) , (13) and (14) are satisfied. If

t + 1 = sm+1 then we require that the conditions (15), (16) and (19) are satisfied as well.

First we recall from [S1] (Lemma 4 and Lemma 6) how to construct finite block sequences

in S which are almost isometric to the unit vector basis:

Remark 4.4. For every N ∈ N and ε > 0 there exist integers k1 < k2 < · · · < kN such that if

I1 < I2 < · · · < IN are intervals of integers with |Ii| = ki for all i and yi = (f(ki)/ki)
∑

j∈Ii
ej

then (yi)
N
i=1 is (1 + ε)-equivalent to the first N unit basis vectors of S.

Using Remark 4.4 we ensure that if for n < N in N we set ∆N = {t ∈ ∆ : |t| ≤ N} and

we assume that (xt)t∈∆N
⊂ S and x ∈ S are associated to ∆N then

(10) (xu){u∈∆N :|u|=n}
1+εn≈ to the first #{u ∈ ∆N : |u| = n} unit basis vectors of S.

Assume that kt+1 is sufficiently large so that

(11)
f(kt+1)

f(kt+1/kv)
≤ 9/8 for all v <` t + 1.

Also assume that kt+1 is sufficiently large to ensure that

(12) 108f(ca) ≤ f((
kt+1

2
∏
{ks : ∅ � s � t + 1′

a) ∨ b)f(
ca

b
) for all a > 0 and b, c ≥ 1.
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We make sure that kt+1 sufficiently large to satisfy

(13) 1− 1

2|t+1|+1
<

(kt+1 − 1)f(kt+1)

kt+1f(kt+1 − 1)
.

We finally ensure that kt+1 is chosen large enough so that

(14)
αt+1

αt

→ 0 as t becomes arbitrarily large in the <` order.

Assume that t + 1 = sm+1. Let K ∈ N and η > 0 that satisfy the statement of Remark 4.3

for E = εm+1 and M = m + 1. Then set

(15) ksm+1 ≥ K

and ηm+1 = η. We make sure that

(16)
f(ksM−1

)

f(ksM−1
ksM

)
→ 0 as M →∞.

Let’s explain the role of conditions (14) and (16):

Remark 4.5. We obtain the following limits:

(17)
Fsm+1(ksm+1)

Fsm+1−1(ksm+1)
→∞ as m →∞,

and

(18)
Fsm+1(ksm+1)

Fsm+2(ksm+1)
→∞ as m →∞.

Indeed,
Fsm+1(ksm+1)

Fsm+1−1(ksm+1)
≥ 1

2

f(ksm+1−1ksm+1)

f(ksm+1−1)
→∞ as m →∞,

(by (16)), and
Fsm+1(ksm+1)

Fsm+2(ksm+1)
≥ 1

2

αs′m+1

αs′m+2

→∞ as m →∞,

(by (14)), which finishes the proof of Remark 4.5.

Finally we ensure that kt+1 is chosen so that Fsm+1(ksm) < Fsm(ksm) and Fsm(ksm+1) <

Fsm+1(kss+1). Thus

(19) F (ksm+1) = Fsm+1(ksm+1).

This completes the definition of kt+1 and the inductive definition of (ku)u∈∆.



ON THE SUBSYMMETRIC SEQUENCES IN S 15

Part II: The main estimates

In this part we give the proof of Theorems 4.1 and 4.2. For the proof of Theorem 4.1

we will need Theorems 4.6 and 4.7, while Theorem 4.2 will be a byproduct of the proof of

Theorem 4.7 (indeed, note that Theorem 4.2 follows immediately from Lemma 4.10).

Theorem 4.6. There exists a constant C such that G(x) ≤ F (x) ≤ CG(x) for all x ∈ [1,∞).

Before we state Theorem 4.7 we need to introduce some terminology. Let M ⊆ M,

T = subtree (∆\M) and let (xi)i be a block sequence of (ei)i which is stabilizing according

to T . For i ∈ N let Ti = {t ∈ T : |t| ≤ i} and let (xi,t)t∈Ti
⊂ S such that (xi,t)t∈Ti

and xi

are associated to Ti. Let E be a finite interval of positive integers. We define |E| to be an

“approximation” of #{i ∈ N : E ∩ supp (xi) 6= ∅} in such a way that if E1 < E2 are two

finite intervals whose union is an interval then |E1| + |E2| = |E1 ∪ E2|. For that we define

some auxiliary vectors yi and yi,t for i ∈ N and t ∈ Ti. The definition of the vectors yi and

yi,t proceeds as follows: For i ∈ N and t a maximal node of Ti we define yi,t = xi,t (which is

an element of the unit vector basis of S). For every i ∈ N and t ∈ T with |t| < i we define

yi,t by induction on |t| = i− 1, i− 2, . . . , 0 by

yi,t =
1

kt

∑
{s∈T :t=s′}

yi,s.

Then yi = yi,∅. Now if E is a finite interval of positive integers we define

|E| = ‖E(
∞∑
i=1

yi)‖1

where ‖ ·‖1 denotes the norm of the space `1. The second ingredient of the proof of Theorem

4.1 is the following result:

Theorem 4.7. For every finite interval E with 1 ≤ |E| we have that

(20)

∥∥∥∥∥E
∞∑
i=1

xi

∥∥∥∥∥ ≤ 28F (|E|).

We postpone the proof of Theorems 4.6 and 4.7 in order to present the
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Proof of Theorem 4.1. Assume that some m ∈ N ∪ {0} we have that sm+1 ∈ M1\M2. Note

that by (13),

‖
ksm+1∑

i=1

x1
i ‖ ≥ ‖

ksm+1∑
i=1

αs′m+1
x1

i,sm+1
‖ ≥

∞∏
k=|sm+1|

(1− 1

2k+1
)Fsm+1(ksm+1),

Also, by (19) and Theorems 4.6 and 4.7,

‖
ksm+1∑

i=1

x2
i ‖ ≤ 28F (ksm+1) ≤ 28G(ksm+1) ≤ 28C

(
Fsm+1−1(ksm+1) ∨ Fsm+2(ksm+1)

)
.

Thus

‖
∑ksm+1

i=1 x1
i ‖

‖
∑ksm+1

i=1 x2
i ‖
≥
∏∞

k=0(1−
1

2k+1 )

28C

(
Fsm+1(ksm+1)

Fsm+1−1(ksm+1)
∧

Fsm+1(ksm+1)

Fsm+2(ksm+1)

)
which gives the result by Remark 4.5. �

First we concentrate on the proof of Theorem 4.6.

Proposition 4.8. Let (εm)∞m=0 and (ηm)∞m=0 be sequences of positive numbers and (Fm)∞m=0

be a sequence of positive differentiable concave functions defined on [1,∞). Assume that for

all m ∈ N ∪ {0}, for all ε ≥ εm and for all 1 ≤ x ≤ y.

(21) (1 + ηm)(1 + ε)F ′
m+1−(y) ≤ (1 + ε)Fm+1(y)−max0≤i≤m+1 Fi(x)

y − x

For all n < m assume that there exists a unique N ∈ (1,∞) such that Fn(x) > Fm(x) for

all 1 < x < N and Fn(x) < Fm(x) for N < x. Also assume that

(22) F ′
n(N)

1+ηn≈ F ′
m(N).

Then for every m ≥ 0, for every integers i0 < i1 < · · · < im+1, for every (tj)
m+1
j=0 ⊂ (0, 1]

with
∑m+1

j=0 tj = 1 and for all (xj)
m+1
j=0 with Nj ≤ xj < Nj+1 we have that

m∑
j=0

j−1∏
k=0

(1 + εk)tjG(xj) + (1 + ε)
m∏

k=0

(1 + εk)tm+1G(xm+1) ≤ (1 + ε)
m∏

k=0

(1 + εk)G(
m+1∑
j=0

tjxj)

where G = max0≤j≤m+1 Fij , N0 = 1, Nj is the unique solution of the equation Fij−1
(x) =

Fij(x) for j = 1, . . . ,m+1 on (1,∞), Nm+2 = ∞ and we adopt the convention that a product

is equal to 1 whenever the lower index is larger than the upper index.



ON THE SUBSYMMETRIC SEQUENCES IN S 17

Proof. We use induction on m. For the inductive step, let ε ≥ 0, (tj)
m+1
j=0 ⊂ (0, 1] with∑m+1

j=0 tj = 1 and (xj)
m+1
j=0 with Nj ≤ xj < Nj+1 for j = 0, 1, . . . ,m+1 and Fij−1

(xj) 6= Fij(xj)

for j = 1, . . . ,m + 1 We claim that

m∑
j=0

(
j−1∏
k=0

(1 + εk)

)
tjG(xj) + (1 + ε)

(
m∏

k=0

(1 + εk)

)
tm+1G(xm+1)(23)

≤
m−1∑
j=0

(
j−1∏
k=0

(1 + εk)

)
tjG(xj) + (1 + ε)

(
m∏

k=0

(1 + εk)

)
(tm + tm+1)G(

tmxm + tm+1xm+1

tm + tm+1

)

(if m = 1 then
∑m−1

j=1 is zero). To simplify the notation, let t̃m = tm/(tm + tm+1), t̃m+1 =

tm+1/(tm + tm+1) and ε̃ = (1 + ε)(1 + εm)− 1. If (23) were false then

(1 + ε̃)G(t̃mxm + t̃m+1xm+1) < t̃mG(xm) + t̃m+1(1 + ε̃)G(xm+1).

which can be written equivalently as

(24)
(1 + ε̃)G(t̃mxm + t̃m+1xm+1)−G(xm)

(t̃mxm + t̃m+1xm+1)− xm

< (1 + ε̃)
G(xm+1)− FI(t̃mxm + t̃m+1xm+1)

xm+1 − (t̃mxm + t̃m+1xm+1)
.

Note that by the concavity of Fim+1 ,

(25)
G(xm+1)−G(t̃mxm + t̃m+1xm+1)

xm+1 − (t̃mxm + t̃m+1xm+1)
≤ (FI)

′
+(t̃mxm + t̃m+1xm+1).

If t̃mxm + t̃m+1xm+1 6= Nm+1 then

(26) G′
+(t̃mxm + t̃m+1xm+1) = G′

−(t̃mxm + t̃m+1xm+1).

If t̃mxm + t̃m+1xm+1 = Nm+1 then by (9) we have

(27) G′
+(t̃mxm + t̃m+1xm+1) ≤ (1 + ηm)G′

−(t̃mxm + t̃m+1xm+1).

Combining (24), (25), (26), and (27), we obtain

(1 + ε̃)G(t̃mxm + t̃m+1xm+1)−G(xm)

(t̃mxm + t̃m+1xm+1)− xm

< (1 + ε̃)(1 + ηm)G′
−(t̃mxm + t̃m+1xm+1)

which contradicts (8). This finishes the proof of (23). Now the use of the induction hypothesis

completes the proof of Proposition 4.8. �
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Now Theorem 4.6 follows immediately from Proposition 4.8 since the sequence (εi) which

is used in the construction of ∆ in Part I is summable. Note that the assumptions (21) and

(22) of Theorem 4.6 are satisfied by (8) and (9) respectively (using (15).

Now we concentrate on the proof of Theorem 4.7. We will need Lemmas 4.9-4.11, and

the following notation: Let E be a finite interval of positive integers and t ∈ T . We define

|E|t = ‖E
∑∞

i=1 yi,t‖1.

Lemma 4.9. Assume that there exists a unique i ∈ N such that E ∩ supp(xi) 6= ∅. Then for

` ∈ N,

‖Exi,t‖` ≤ 8
f(kt)|E|t

f(`)f(kt|E|t/`)

Proof. Let E1 < E2 < · · · < E` be subintervals of E such that

‖Exi,t‖` =
1

f(`)

∑̀
j=1

‖Ejxi,t‖.

Split each Ej into at most three non-empty intervals Ej = E1
j ∪E2

j ∪E3
j where E1

j < E2
j < E3

j

and E2
j is the largest subinterval of Ej which satisfies the following properties:

• If E2
j 6= ∅ then E2

j ∩ supp(xi) 6= ∅.

• If for some u ∈ T with t = u′ we have that E2
j ∩ supp(xi,u) 6= ∅ then supp(xi,u) ⊆ E2

j .

Let

U = {u ∈ T : t = u′ and supp(xi,u) ⊆ E}

and for j = 1, . . . , `, let

Uj = {u ∈ T : t = u′ and supp(xi,u) ⊆ E2
j }.

Then

‖Exi,t‖` ≤
1

f(`)

∑
m∈{1,3}

∑̀
j=1

‖Em
j xi,t‖+

1

f(`)

f(kt)

kt

∑
{j : E2

j 6=∅}

#Uj

f(#Uj)

∥∥∥∥f(#Uj)

#Uj

E2
j xi,t

∥∥∥∥
≤ 1

f(`)
2`

2f(kt)

kt

+
1

f(`)

f(kt)

kt

∑
{j : E2

j 6=∅}

#Uj

f(#Uj)
2.
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Since the function (0,∞) 3 x 7→ x/f(x) is concave, we have

‖Exi,t‖` ≤ 4
f(kt)

kt

`

f(`)
+

2

f(`)

f(kt)

kt

∑
{j : E2

j 6=∅}
#Uj

f

( ∑
{j : E2

j 6=∅}
#Uj/#{j : E2

j 6= ∅}

)

≤ 4
f(kt)

kt

`

f(`)
+

2

f(`)

f(kt)

kt

#U

f(#U
`

)

since
∑
{#Uj : E2

j 6= ∅} ≤ #U and #{j : E2
j 6= ∅} ≤ `. Now note that #U/kt ≤ |E|t i.e.

#U ≤ kt|E|t and thus

‖Exi,t‖` ≤ 4
f(kt)

kt

`

f(`)
+

2

f(`)

f(kt)

kt

kt|E|t
f(kt|E|t

`
)
.

Note that if kt|E|t/` ≥ 1 then kt|E|t/` ≥ f(kt|E|t/`). Also if 0 < kt|E|t/` < 1 then

kt|E|t/` ≥ (ln 22)f(kt|E|t/`). Thus we always have kt|E|t/` ≥ (ln 2)f(kt|E|t/`). Hence

‖Exi,t‖` ≤
4

ln2

f(kt)|E|t
f(`)f(kt|E|t/`)

+ 2
f(kt)|E|t

f(`)f(kt|E|t/`)

≤ 8
f(kt)|E|t

f(`)f(kt|E|t/`)
.

�

Lemma 4.10. Assume that there exists a unique i ∈ N such that E ∩ supp(xi) 6= ∅. Then

for t ∈ T and ` ≤ kt+1|E| we have

‖Exi,t‖` ≤ 27
f(kt)|E|t

f(`)
.

Proof. We write xi,t = (f(kt)/kt)
∑

t=u′ xi,u. There exists u1, u2 ∈ T , with t = u′1 = u′2,

|E|u1 ≤ 1, |E|u2 ≤ 1, u1 <` u2 and |E|u = 1 for all u ∈ T with t = u′ and u1 <` u <`< u2.

Then

‖Exi,t‖` ≤
f(kt)

kt

‖Exi,u1‖` +
f(kt)

kt

∑
u1<`u<`u2

‖Exi,u‖` +
f(kt)

kt

‖Exi,u2‖`.
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For u ∈ {u1, u2}, by Lemma 4.9 we have

f(kt)

kt

‖Exi,u‖` ≤ 8
f(kt)

kt

f(ku)|E|u
f(`)f(ku|E|u/`)

≤ 8
f(kt)

kt

f(ku)kt|E|t
f(`)f(kukt|E|t/kt+1)

(since
1

kt

|E|u ≤ |E|t and ` ≤ kt+1)

≤ 9
f(kt)|E|t

f(`)
.

For u1 <` u <` u2, by Lemma 4.9 we have

f(kt)

kt

∑
u1<`u<`u2

‖Exi,u‖` ≤
f(kt)

kt

∑
u1<`u<`u2

8
f(ku)|E|u

f(`)f(ku|E|u/`)

=
f(kt)

kt

∑
u1<`u<`u2

8
f(ku)

f(`)f(ku/`)

≤ f(kt)

kt

∑
u1<`u<`u2

8
f(ku)

f(`)f(ku/kt+1)

(since ` ≤ kt+1|E| ≤ kt+1)

≤ 9

f(`)

f(kt)

kt

#{u : u1 <` u <` u2} (by (11))

≤ 9
f(kt)|E|t

f(`)
.

By putting together the previous estimates, the result follows immediately. �

Lemma 4.11. Assume that there exist a unique i such that E ∩ supp(xi) 6= ∅. Then for

t ∈ T and ` ∈ N with ` ≤ kt+1|E| we have

‖Exi‖` ≤ 28
At|E|
f(`)

+ 24
At+1|E|

f(`)f(Bt+1|E|/`)
.

where At =
∏
{f(ks) : ∅ � s � t} and Bt =

∏
{ks : ∅ � s � t}.

Proof. If t1 ∈ T is the <`-maximum element of T with t′1 = t− 1, let

At = {u ∈ T : t + 1 <` u <` t1 and E ∩ supp(xi,u) 6= ∅}.
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There exist u1, u2 ∈ At ∪ {t, t + 1} such that |E|u1 ≤ 1, |E|u2 ≤ 1 and |E|u = 1 for all

u ∈ (A1 ∪ {t, t + 1})\{u1, u2}. Let Ãt = At\{u1, u2}. By the triangle inequality we have

(28) ‖Exi‖` ≤ αt′‖Exi,t‖` +αt+1′‖Exi,t+1‖` +αu′1
‖Ei,u1‖` +αu′2

‖Exi,u2‖` +
∑
u∈Ãt

au′‖Exi,u‖`.

By Lemma 4.10 we have

(29) αt′‖Exi,t‖` ≤ 27αt′
f(kt)|E|t

f(`)
≤ 27

At|E|
f(`)

since (1/Bt′)|E|t ≤ |E|. By Lemma 4.9 we have

(30) αt+1′‖Exi,t+1‖` ≤ 8αt+1′
f(kt+1)|E|t+1

f(`)f(kt+1|E|t+1/`)
≤ 8

At+1|E|
f(`)f(Bt+1|E|/`)

(since |E|t+1 ≤ Bt+1′|E|). For u ∈ {u1, u2}, by Lemma 4.9 we have as in (30),

(31) αu′‖Exi,u‖` ≤ 8
Au+1|E|

f(`)f(Bu+1|E|/`)
≤ 8

At+1|E|
f(`)f(Bt+1|E|/`)

since t + 1 < and ` ≤ kt+1|E| ≤ Bt+1|E|. Finally since |E|u = 1 for u ∈ Ãt we have by

Lemma 4.9, ∑
u∈Ãt

αu′‖Exi,u‖` ≤ 8
∑
u∈Ãt

αu′
f(ku)

f(`)f(ku/`)
(32)

≤ 8

f(`)

∑
u∈Ãt

αu′
f(ku)

f(ku/kt+1)
(since ` ≤ kt+1)

≤ 9

f(`)

∑
u∈Ãt

αu′ (by (11))

≤ 9

f(`)

∑
u∈Ãt∪{t,t+1,u1,u2}

αu′|E|u

≤ 9

f(`)
At′

∑
u∈Ãt∪{t,t+1,u1,u2}

αu′

Au′
|E|u

=
9

f(`)
At′|E|

≤ At|E|
f(`)

since we assume that 9 ≤ f(kt) for all t ∈ T . Combining the estimates (28)–(32) we obtain

the result. �
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Corollary 4.12. Assume that there exists a unique i ∈ N such that E ∩ supp(xi) 6= ∅. Let

t ∈ T with 1
kt+1

≤ |E| < 1
kt

.

If E ⊆ supp(xi,t) then ‖Exi‖ ≤ 27
At|E|

f(Bt|E|)
.(33)

If E ⊆ supp(xi,t+1) then ‖Exi‖ ≤ 8
At+1|E|

f(Bt+1|E|)
.(34)

If E ∩ supp(xi,t + xi,t+1) = ∅ then ‖Exi‖ ≤ 9αt′′
f(kt′)|E|
f(kt′|E|)

.(35)

Proof. All follow immediately from the proof of Lemma 4.11. Especially for (35), note that

for ` > kt|E| we have f(`) > f(kt|E|) > Bt′′f(kt′|E|) by assumption. �

Corollary 4.13. Assume that there exists a unique i ∈ N such that E ∩ supp(xi) 6= ∅. Let

t ∈ T with 1
kt+1

≤ |E| < 1
kt

. Then

‖Exi‖ ≤ max

{
27

At|E ∩ supp xi,t|
f(Bt|E ∩ supp xi,t|)

, 8
At+1|E ∩ supp xi,t+1|

f(Bt+1|E ∩ supp xi,t+1|)
,(36)

18at′′
f(kt′)|E\supp(xi,t + xi,t+1)|
f(kt′|E\(supp xi,t + xi,t+1)|

}
.

Finally we are ready to give the

Proof of Theorem 4.7. We prove the statement by induction on #E. If |E| = 1 then the

statement is obviously true. Let a finite interval E with 1 ≤ |E| and let ` ∈ N with∥∥∥∥∥E
∞∑
i=1

xi

∥∥∥∥∥ =

∥∥∥∥∥E
∞∑
i=1

xi

∥∥∥∥∥
`

.

Thus there exist intervals E1 < E2 < · · · < E` with E =
⋃̀
j=1

Ej and∥∥∥∥∥E
∞∑
i=1

xi

∥∥∥∥∥ =
1

f(`)

∑̀
j=1

∥∥∥∥∥Ej

∞∑
i=1

xi

∥∥∥∥∥ .

For t ∈ T let It = {j : 1/kt+1 ≤ |Ej| < 1/kt} and let I = {j : 1 ≤ |Ej|}. Obviously,

{1, . . . , `} ⊂
⋃

t∈T It ∪ I, and the sets It’s (for t ∈ T ) and I are disjoint. Since F is concave

we have by the induction hypothesis

(37)
1

f(`)

∑
j∈I

∥∥∥∥∥Ej

∞∑
i=1

xi

∥∥∥∥∥ ≤ 1

f(`)

∑
j∈I

28F (|Ej|) ≤
#I

f(`)
28F

(∑
j∈I

|Ej|/#I

)
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Also for t ∈ T with It 6= ∅ we have by Corollary 4.13 that

1

f(`)

∑
j∈It

∥∥∥∥∥Ej

∞∑
i=1

xi

∥∥∥∥∥ ≤
1

f(`)

∑
j∈It

max

27

At|Ej ∩ supp
∑
i

xi,t|

f(Bt|Ej ∩ supp
∑
i

xi,t|)
, 8

At+1|Ej ∩ supp
∑
i

xi,t+1|

f(Bt+1|Ej ∩ supp
∑
i

xi,t+1|)
,

18αt′′

f(kt′)|Ej\supp
∑
i

(xi,t + xi,t+1)|

f(kt′|E\supp
∑
i

(xi,t + xi,t+1)|)


Let

I1
t =

j ∈ It :

∥∥∥∥∥Ej

∞∑
i=1

xi

∥∥∥∥∥ ≤ 27

At|Ej ∩ supp
∑
i

xi,t|

f(Bt|Ej ∩ supp
∑
i

xi,t|)

 ,

I2
t =

j ∈ It :

∥∥∥∥∥Ej

∞∑
i=1

xi

∥∥∥∥∥ ≤ 8

At+1|Ej ∩ supp
∑
i

xi,t+1|

f(Bt+1|Ej ∩ supp
∑
i

xi,t+1|)


and I3

t = It\(I1
t ∪ I2

t ).

Since for fixed t ∈ T , the functions on (0,1)

x 7→ 18
Atx

f(Btx)
, x 7→ 8

At+1x

f(Bt+1x)
, x 7→ 27αt′′

f(kt′)x

f(kt′x)

are concave, we have if I1
t 6= ∅,

1

f(`)

∑
j∈I1

t

27

At|Ej ∩ supp
∑
i

xi,t|

f(Bt|Ej ∩ supp
∑
i

xi,t|)

≤ #I1
t

f(`)
27

At

∑
j∈I1

t

|Ej ∩ supp
∑
i

xi,t|/#I1
t

f(Bt

∑
j∈I1

t

|Ej ∩ supp
∑
i

xi,t|/#I1
t )

=
27

f(`)

At

∑
j∈I1

t

|Ej ∩ supp
∑
i

xi,t|

f(Bt

∑
j∈I1

t

|Ej ∩ supp
∑
i

xi,t|/#I1
t )

.
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Let E1
t be an interval with∣∣∣∣∣E1

t ∩
∑

i

xi,t

∣∣∣∣∣ =
∑
j∈I1

t

∣∣∣∣∣Ej ∩ supp
∑

i

xi,t

∣∣∣∣∣ .
Then |E1

t ∩ supp
∑

i xi,t| = |E1
t |/Bt′ . Thus

27

f(`)

At

∑
j∈I1

t

|Ej ∩ supp
∑
i

xi,t|

f(Bt

∑
j∈I1

t

|Ej ∩ supp
∑
i

xi,t|/#I1
t )

=
27

f(`)

At|E1
t |/B′

t

f(Bt|E1
t |/(Bt′#I1

t ))
(38)

=
27

f(`)
αt′

f(kt)|E1
t |

f(kt|E1
t |/#I1

t )
=:

27

f(`)
e1

t

Similarly, if I2
t 6= ∅ there exists an interval E2

t such that

(39)
1

f(`)

∑
j∈I2

t

∥∥∥∥∥Ej

∞∑
i=1

xi

∥∥∥∥∥ ≤ 8

f(`)
αt+1′

f(kt+1)|E2
t |

f(kt+1|E2
t |/#I2

t )
=:

8

f(`)
e2

t

and if I3
t 6= ∅ there exists an interval E3

t such that

(40)
1

f(`)

∑
j∈I3

t

∥∥∥∥∥Ej

∞∑
i=1

xi

∥∥∥∥∥ ≤ 18

f(`)
αt′′

f(kt′)|E3
t |

f(kt′|E3
t |/#I3

t )
=:

18

f(`)
e3

t .

Finally note that for all t1, t2 ∈ T , t1 6= t2 and m1, m2 ∈ {1, 2, 3} with Im1
t1 6= ∅ and Im2

t2 6= ∅,

(41) If |Em1
t1 | ≥

1

2
|Em2

t2 | then
27

f(`)
em2

t2 ≤ 1

4
F (|Em1

t1 |).

(41) is valid since for j ∈ Im1
t1 we have |Ej| < 1

kt1
while for i ∈ N, |xi,t1| = 1/Bt′1

, thus

#Im1
t1 ≥ (kt1/Bt′1

)|Em1
t1 |, hence

f(`) ≥ f(#Im1
t1 ∨#Im2

t2 ) ≥ f

(
kt1

Bt′1

|Em1
t1 | ∨#Im2

t2

)
≥ f

(
kt1

2Bt′1

|Em2
t2 | ∨#Im2

m2

)
.

Therefore, assuming that m2 = 1 (similarly if m2 = 2 or m2 = 3)

27

f(`)
em2

t2 ≤ 27

f(
kt1

2Bt′1
|Em2

t2 | ∨#Im2
t2 )

αt′2

f(kt2)|E1
t2
|

f(kt2 |E1
t2|/#Im2

t2 )

≤ 1

4
αt′2

f(kt2)|E1
t2
|

f(kt2|E1
t2|)

(by (12) for a = |Em2
t2 |, b = #Im2

t2 , c = kt2)

≤ 1

4
F (|E1

t2
|).

This finishes the proof of (41).
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(41) and (37) imply that there exists t0 ∈ T and m0 ∈ {1, 2, 3} such that

1

f(`)

∑̀
j=1

∥∥∥∥∥Ej

∞∑
i=1

xi

∥∥∥∥∥ ≤ 1

f(`)

∑
j∈I

∥∥∥∥∥Ej

∞∑
i=1

xi

∥∥∥∥∥+
27

f(`)

∑
m∈{1,2,3}

∑
t∈T

em
t(42)

≤ #I

f(`)
28F

(∑
j∈I

|Ej|/#I

)
+

27

f(`)
em0

t0 +
1

2
F (|Em0

t0 |)

≤ #I

f(`)
28F

(∑
j∈I

|Ej|/#I

)
+

#Im0
t0

f(`)
27F

(
|Em0

t0 |
#Im0

t0

)
+

1

2
F (|Em0

t0 |).

Since
∑`

j=1 |Ej| = |E|, we have
∑

j∈I |Ej|+ |Em0
t0 | ≤ |E|. Therefore, since F is concave and

(`/f(`))F (x/`) ≤ F (x) for 1 ≤ x, x/`, `, we have that the maximum of the right hand side

of (42) is obtained when Em0
t0 = ∅ and

∑
j∈I |Ej| = |E|. Hence the right hand side of (42) is

at most 28F (|E|) which finishes the proof of Theorem 4.7. �
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