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Abstract. The main result of the paper extends the classical result of E. Odell on Schreier
unconditionality to arrays in Banach spaces. An application is given on the “multiple of the
inclusion plus compact” problem which is further applied to a hereditarily indecomposable
Banach space constructed by N. Dew.

1. Introduction

A finite subset F of N is called a Schreier set if |F | ≤ min(F ) (where |F | denotes the
cardinality of F ). The important notion of Schreier unconditionality was introduced by
E. Odell [16] and has inspired rich literature on the subject (see for example [3], [8]). Earlier
very similar results can be found in [15, page 77] and [19, Theorem 2.1′]. A basic sequence
(xn) in a Banach space is defined to be Schreier unconditional if there is a constant C > 0
such that for all scalars (ai) ∈ c00 and for all Schreier sets F we have

‖
∑
i∈F

aiei‖ ≤ C‖
∑

aiei‖.

In this case (ei) is called C-Schreier unconditional.

Theorem 1.1. [16] Let (xn) be a normalized weakly null sequence in a Banach space. Then
for any ε > 0, (xn) contains a (2 + ε)- Schreier unconditional subsequence.

Our main result is Theorem 1.2 where we extend Theorem 1.1 to arrays of vectors of a Banach
space such that each row is a seminormalized weakly null sequence. Then Theorem 1.2
guarantees the existence of a subarray which preserves all the rows of the original array
and has a Schreier type of unconditionality. We now define the notions of array, subarray
and regular array in a Banach space. An array in a Banach space X is a sequence of
vectors in (xi,j)i∈N;j∈Ji

⊆ X where Ji is an infinite subsequence of N for all i ∈ N, say
Ji = {ji,1 < ji,2 < · · · } and (xi,ji,k

)k∈N is a seminormalized weakly null sequence in X for
all i ∈ N. The reader is warned that the paper [12] also considers arrays of vectors with
different properties. Let <r` denote the reverse lexicographical order on N2. Let (xi,j)i∈N;j∈Ji

be an array in a Banach space X. A subarray of (xi,j)i∈N;j∈Ji
is an array (yi,`)i∈N;`∈Li

in X
which satisfies the following two properties:

(1) {yi,` : ` ∈ Li} ⊆ {xi,j : j ∈ Ji} for all i ∈ N
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and

if Ji = {ji,1 < ji,2 < · · · }, and Li = {`i,1 < `i,2 < · · · } for all i ∈ N then there

exists a <r` -order preserving map H : {(i, ji,k) : i, k ∈ N} → {(i, ji,k) : i, k ∈ N}
such that yi,`i,k

= xH(i,ji,k) for all i, k ∈ N.

(2)

A regular array in a Banach space X is an array (xi,j)i,j∈N;i≤j which is a basic sequence
when it is ordered with the reverse lexicographic order: x1,1, x1,2, x2,2, x1,3, x2,3, x3,3, x1,4, . . ..
For convenience, throughout this paper, we denote the index set of a regular array by I, i.e.
I = {(i, j) ∈ N× N : i ≤ j}.

Theorem 1.2. Let (xi,j)(i,j)∈I be an array in a Banach space X, (Mj)j∈N ⊆ N be an in-
creasing sequence of integers and ε > 0. Then there exists a regular subarray (yi,j)(i,j)∈I of
(xi,j)(i,j)∈I such that for any finitely supported scalars (ai,j)(i,j)∈I , k0 ∈ N and F ⊆ N with
|F | ≤ Mmin(F ) and k0 ≤ min(F ) we have

‖
∑

(i,j)∈I

ai,jyi,j‖ ≥
1

2 + ε
‖
∑
j∈F

ak0,jyk0,j‖.

The “multiple of the inclusion plus compact problem” was asked by W.T. Gowers [9] and
asks whether for every infinite dimensional Banach space X there exists a closed subspace
Y of X and a bounded linear operator from Y to X which is not a compact perturbation
of a multiple of the inclusion map from Y to X. Note that if a Banach space X con-
tains an unconditional basic sequence (xn)n then the operator T ∈ L([(xn)n], X) defined by
T (xn) = (−1)nxn does not belong to CiY→X +K(Y, X) (where L(Y,X) and K(Y,X) denote
respectively the space of all (linear bounded) operators and all compact operators from Y to
X; if Y is a subspace of X then iY→X denotes the inclusion from Y to X). Thus if a Banach
space X contains an unconditional basic sequence then the “multiple of the inclusion plus
compact” problem has an affirmative answer for X. Hence for the “multiple of the inclusion
plus compact” problem we restrict our attention to Banach spaces with no unconditional
basic sequences. Recall that by the Gowers’ dichotomy [9] every Banach space contains an
unconditional basic sequence or a hereditarily indecomposable (HI) subspace. Recall that a
Banach space X is called HI if no infinite dimensional closed subspace Y of X contains a
complemented subspace Z which is of both infinite dimension and infinite codimension in Y
[11]. Therefore for the “multiple of the inclusion plus compact problem” we only examine HI
saturated Banach spaces. In Section 3 we prove Theorems 3.2 and 3.8 which give sufficient
conditions on a Banach space X so that the “multiple of the inclusion plus compact” problem
to have an affirmative answer in X, and extend results of [2] and [21]. In his 2000 dissertation
N. Dew [7] introduced a new HI space which we refer to as space D. In Section 4 we examine
some of the basic properties of D and we apply Theorem 3.8 to prove that the“multiple of
the inclusion plus compact” problem has an affirmative answer in D.

2. Extension of Odell’s Schreier Unconditionality

In this section we will prove our main Theorem, 1.2. We need several remarks and lemmas
until we reach its proof.
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Remark 2.1. If (xi,j)(i,j)∈I is a regular array and (yi,j)(i,j)∈I is a subarray of (xi,j)(i,j)∈I then
(yi,j)(i,j)∈I is also regular.

The proof of the following remark can be found in functional analysis text books such as
[1, Theorem 1.5.2] or [14, Lemma 1.a.5]).

Remark 2.2. Let (xi)
N
i=1 be a finite basic sequence in some infinite dimensional Banach

space X having basis constant C. Let (yi) be a seminormalized weakly null sequence X and
ε > 0. Then there exists an n ∈ N such that (x1, x2, . . . , xN , yn) is a basic sequence with
constant C(1 + ε).

By repeated application of Remark 2.2 we obtain the following.

Remark 2.3. Let X be a Banach space and (xi,j)(i,j)∈I be an array in X. Then there exists a
subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I which is regular. Moreover, the basis constant of (yi,j)(i,j)∈I

can be chosen to be arbitrarily close to 1.

For p ∈ N any element ~a = (ai)
p
i=1 of Rp will be called a p-pattern and for such ~a define

|~a| := p. Let (xi,j)(i,j)∈I be a regular array in a Banach space X. Let f ∈ X∗, k ∈ N,
~a = (ai)

p
i=1 a p-pattern and F = {j1, j2 . . . , jp} ⊆ N. We say that f has pattern ~a on (k, F )

with respect to (xi,j)(i,j)∈I if f(xk,ji
) = ai for all i ∈ {1, 2, . . . , p}.

Lemma 2.4. Let (xi,j)(i,j)∈I be a regular array in a Banach space X, ~a be a p-pattern,
F ⊆ 2Ba(X∗), δ > 0 and i0, j0, k0 ∈ N with j0 ≥ i0. Then there exists a subarray (yi,j)(i,j)∈I

of (xi,j)(i,j)∈I such that for any F ⊆ {k0, k0 +1, k0 +2, . . .}, with (i0, j0) <r` (k0, min(F )) and
|F | = p we have the following:

If there exists f ∈ F having pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I then there exists
g ∈ F having pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I and |g(yi0,j0)| < δ.

Additionally, (yi,j)(i,j)∈I can be chosen to satisfy yi,j = xi,j for all (i, j) <r` (i0, j0).

Proof. First note that there exists m ∈ N such that for all f ∈ 2Ba(X∗) there exists j′ ∈
{j0, j0 + 1, j0 + 2, . . . ,m} with |f(xi0,j′)| < δ.

Otherwise assume that for all m ∈ N there exists x∗m ∈ 2Ba(X∗) with |x∗m(xi0,j)| ≥ δ for
j ∈ {j0, . . . ,m}. By passing to a subsequence and relabeling assume that (x∗m) converges
weak∗ to some x∗ ∈ 2Ba(X∗). Then |x∗(xi0,j)| ≥ δ for all j ≥ j0, which contradicts that
each row, in particular (xi0,j)

∞
j=i0

, is weakly null.
Let N = {m + 1, m + 2, . . .}. Divide the set [N ]p of all p-element subsets of N as follows:

[N ]p = ∪m+1
j=j0

Aj where for j ∈ {j0, j0 + 1, j0 + 2, . . . ,m} we set

Aj =
{
F ∈ [N ]p : there exists f ∈ F having pattern ~a on (k0, F )

with respect to (xi,j)(i,j)∈I and |f(xi0,j)| < δ
}

and

Am+1 =
{
F ∈ [N ]p : there is no f ∈ F having pattern ~a on (k0, F ) with respect to (xi,j)(i,j)∈I

}
.

By Ramsey’s theorem there exist a subsequence (mi)
∞
i=1 ∈ [N ], and j′ ∈ {j0, j0+1, . . . ,m+

1} such that [(mi)
∞
i=1]

p ⊂ Aj′ (where for an infinite subset M of N, [M ] denotes the set of
3



all infinite subsequences of M). We then can pass to a subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I by
setting

yi,j =

 xi,j if (i, j) <r` (i0, j0)
xi,j′ if (i, j) = (i0, j0)
xi,mj

if (i0, j0) <r` (i, j).

Then (yi,j)(i,j)∈I satisfies the conclusion of the lemma, since if for some F ⊆ {k0, k0+1, . . .}
with (i0, j0) <r` (k0, min(F )) and |F | = p there exists f ∈ F having pattern ~a on (k0, F )
with respect to (yi,j)(i,j)∈I , then the integer j′ that was obtained by Ramsey’s theorem could
not be equal to m + 1, hence j′ ∈ {j0, j0 + 1, . . . ,m} and the definition of Aj′ gives the
conclusion. �

Lemma 2.5. Let (xi,j)(i,j)∈I a be regular array in a Banach space X, ~A be a finite set of
patterns, F ⊆ 2Ba(X∗), δ > 0 and i0, k0 ∈ N. Then there exists some subarray (yi,j)(i,j)∈I of

(xi,j)(i,j)∈I such that for any ~a in ~A, F ⊆ {k0, k0 + 1, k0 + 2, . . .}, with |F | = |~a| and j0 ∈ N
with j0 ≥ i0 and (i0, j0) <r` (k0, min(F )), we have the following:

If there exists f ∈ F having pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I then there exists
g ∈ F having pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I and |g(yi0,j0)| < δ.

Additionally, we can assume that xi,j = yi,j for all (i, j) <r` (i0, i0).

Proof. We begin by fixing one particular element ~a in ~A. Now apply Lemma 2.4 for
(xi,j)(i,j)∈I , ~a, F , δ, i0, k0 and j0 = i0 to obtain some subarray (y~a,i0

i,j )(i,j)∈I of (x~a,i0
i,j )(i,j)∈I

with the property that for any F ⊆ {k0, k0 + 1, k0 + 2, . . .}, with (i0, j0) <r` (k0, min(F ))
and |F | = |~a| we have the following. If there exists f ∈ F having pattern ~a on (k0, F ) with

respect to (y~a,i0
i,j )(i,j)∈I then there exists g ∈ F having pattern ~a on (k0, F ) with respect to

(y~a,i0
i,j )(i,j)∈I and |g(y~a,i0

i0,j0
)| < δ. Moreover, y~a,i0

i,j = xi,j for all (i, j) <r` (i0, j0).
We repeat inductively on j0 counting upward from i0. Thus we next apply Lemma 2.4 to

(y~a,i0
i,j )(i,j)∈I , ~a, F , δ, i0, k0, j0 = i0 + 1, to obtain some subarray (y~a,i0+1

i,j )(i,j)∈I of (y~a,i0
i,j )(i,j)∈I

with the property that for any F ⊆ {k0, k0 + 1, k0 + 2, . . .} with (i0, j0) <r` (k0, min(F ))
and |F | = |~a| we have the following. If there exists f ∈ F having pattern ~a on (k0, F ) with

respect to (y~a,i0+1
i,j )(i,j)∈I then

• there exists g ∈ F having pattern ~a on (k0, F ) with respect to (y~a,i0+1
i,j )(i,j)∈I and

|g(y~a,i0+1
i0,i0

)| < δ (since y~a,i0+1
i0,i0

= y~a,i0
i0,i0

) and

• there exists h ∈ F having pattern ~a on (k0, F ) with respect to (y~a,i0+1
i,j )(i,j)∈I and

|h(y~a,i0+1
i0,i0+1)| < δ.

Moreover, y~a,i0+1
i,j = y~a,i0

i,j for all (i, j) <r` (i0, i0 + 1).
Continue in this manner for each j0 ∈ {i0 +2, i0 +3, . . .}. Note that by fixing the elements

of the subarray for (i, j) <r` (i0, j0) at each step j0, there exists a subarray after infinitely
many steps which possesses the properties of all the previous subarrays. We call this “limit”
subarray (y~a

i,j)(i,j)∈I and notice it has the property that for any F ⊆ {k0, k0 + 1, k0 + 2, . . .}
with |F | = |~a| and for all j0 ∈ N with (i0, j0) <r` (k0, min(F )), we have the following:
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If there exists f ∈ F having pattern ~a on (k0, F ) with respect to (y~a
i,j)(i,j)∈I then there exists

g ∈ F having pattern ~a on (k0, F ) with respect to (y~a
i,j)(i,j)∈I and |g(y~a

i0,j0
)| < δ.

Notice also that any further subarray of (y~a
i,j)(i,j)∈I has this same property. Then repeat

the above process for each ~a ∈ ~A to obtain the desired array. �

Notice that if (yi,j)(i,j)∈I is the result of applying Lemma 2.4 to some regular array and
(zi,j)(i,j)∈I is a subarray of (yi,j)(i,j)∈I then (zi,j)(i,j)∈I may not satisfy the conclusion of
Lemma 2.4. However, if (yi,j)(i,j)∈I is the result of applying Lemma 2.5 to some regular
array and (zi,j)(i,j)∈I is a regular subarray of (yi,j)(i,j)∈I then (zi,j)(i,j)∈I does satisfy the
conclusion of Lemma 2.5. This idea is summarized in the following remark.

Remark 2.6. Let (xi,j)(i,j)∈I be a regular array in a Banach space X, ~A be a finite set of
patterns, F ⊆ 2Ba(X∗) , i0, k0 ∈ N and δ > 0. Then there exists a subarray (yi,j)(i,j)∈I

of (xi,j)(i,j)∈I such that if (zi,j)(i,j)∈I is any subarray of (yi,j)(i,j)∈I , then for any ~a in ~A,
F ⊆ {k0, k0 +1, k0 +2, . . .}, with |F | = |~a| and j0 ∈ N with (i0, j0) <r` (k0, min(F )), we have
the following:

If there exists f ∈ F having pattern ~a on (k0, F ) with respect to (zi,j)(i,j)∈I then there exists
g ∈ F having pattern ~a on (k0, F ) with respect to (zi,j)(i,j)∈I and |g(zi0,j0)| < δ.

Additionally, we can assume that xi,j = yi,j for all (i, j) <r` (i0, i0).

Lemma 2.7. Let (xi,j)(i,j)∈I be a regular array in a Banach space X, ~A be a finite set of
patterns, F ⊆ 2Ba(X∗) and δ > 0. Then there exists some subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I

such that for all ~a in ~A, k0 ∈ N, F ⊆ {k0, k0 + 1, k0 + 2, . . .} with |F | = |~a| and (i0, j0) ∈ I
with (1, k0) ≤r` (i0, j0) <r` (k0, min(F )) we have the following:

If there exists f ∈ F having pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I then there exists
g ∈ F having pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I and |g(yi0,j0)| < δ.

Proof. We will apply Remark 2.6 inductively with the subarray changing at each step, but
~A, F and δ remaining as in the hypothesis and (i0, k0) cycling through N2. We create
the final subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I inductively one column at a time. At the j0

step of the induction we create a subarray (yj0
i,j)(i,j)∈I of (yj0−1

i,j+j0−1)(i,j)∈I (where for j0 = 1,

(y0
i,j)(i,j)∈I = (xi,j)(i,j)∈I ) and we set yi,j0 = yj0

i,j0
for i ∈ {1, 2, . . . , j0}.

COLUMN 1: Apply Remark 2.6 to (xi,j)(i,j)∈I , ~A, F , δ, i0 = 1, and k0 = 1 to obtain a

subarray (y1
i,j)(i,j)∈I with the property that for all ~a in ~A, F ⊆ {1, 2, . . .} with |F | = |~a| such

that (1, 1) <r` (k0, min(F )) we have the following:

If there exists f ∈ F having pattern ~a on (k0, F ) with respect to (y1
i,j)(i,j)∈I then there exists

g ∈ F having pattern ~a on (k0, F ) with respect to (y1
i,j)(i,j)∈I and |g(y1

1,1)| < δ.

We then fix column 1 of (yi,j)(i,j)∈I by setting y1,1 := y1
1,1.

COLUMN 2: Apply Remark 2.6 to (y1
i,j+1)(i,j)∈I , ~A, F , δ, successively for each (i0, k0) ∈

{(1, 2), (2, 1), (2, 2)} to obtain a subarray (y2
i,j)(i,j)∈I with the property that for all ~a in ~A,
5



F ⊆ {2, 3, . . .} with |F | = |~a|, i0 ∈ {1, 2} and k0 ∈ {1, 2} such that (i0, 2) <r` (k0, min(F ))
we have the following:

If there exists f ∈ F having pattern ~a on (k0, F ) with respect to (y2
i,j)(i,j)∈I then there exists

g ∈ F having pattern ~a on (k0, F ) with respect to (y2
i,j)(i,j)∈I and |g(y2

i0,2)| < δ.

We then fix column 2 of (yi,j)(i,j)∈I by setting yi,2 := y2
i,2 for i ∈ {1, 2}.

COLUMN j0: Apply Remark 2.6 to (yj0−1
i,j+j0−1)(i,j)∈I , ~A, F , δ, successively for each (i0, k0) ∈

{(i, j0) : 1 ≤ i < j0}∪{(j0, j) : 1 ≤ j ≤ j0} to obtain a subarray (yj0
i,j)(i,j)∈I with the property

that for all ~a in ~A, F ⊆ {j0, j0+1, . . .} with |F | = |~a|, i0 ∈ {1, 2, . . . , j0} and k0 ∈ {1, 2, . . . , j0}
such that (i0, j0) <r` (k0, min(F )) we have the following:

If there exists f ∈ F having pattern ~a on (k0, F ) with respect to (yj0
i,j)(i,j)∈I then there exists

g ∈ F having pattern ~a on (k0, F ) with respect to (yj0
i,j)(i,j)∈I and |g(yj0

i0,j0
)| < δ.

We then fix column j0 of (yi,j)(i,j)∈I by setting yi,j0 := yj0
i,j0

for i ∈ {1, 2, . . . , j0}.
Let ~a in ~A, k0 ∈ N, F ⊆ {k0, k0 + 1, k0 + 2, . . .} with |F | = |~a| and (i0, j0) ∈ I with

(1, k0) ≤r` (i0, j0) <r` (k0, min(F )) all be given. Since (1, k0) ≤r` (i0, j0) we have that
k0 ≤ j0. Since (i0, j0) <r` (k0, min(F )) we have that there exists a set G ⊆ N with |G| = |F |,
min(G) ≥ k0 and (yk0,j)j∈F = (yj0

k0,j)j∈G. Thus if there exists f ∈ F which has pattern ~a on

(k0, F ) with respect to (yi,j)(i,j)∈I then f has pattern ~a on (k0, G) with respect to (yj0
i,j)(i,j)∈I ,

therefore by the property of (yj0
i,j)(i,j)∈I we obtain that there exists g ∈ F which has pattern

~a on (k0, G) with respect to (yj0
i,j)(i,j)∈I and |g(yj0

i0,j0
)| < δ. Hence g has pattern ~a on (k0, F )

with respect to (yi,j)(i,j)∈I and |g(yi0,j0)| < δ. �

Lemma 2.8. Let (xi,j)(i,j)∈I be a regular array in a Banach space X, ε > 0, and k ∈ N. Then
there exists some subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I such that for any pattern ~a in [−1, 1]p for
some p ≤ k, for any k0 ∈ N and any F ⊆ {k0, k0 + 1, k0 + 2, . . .} with |F | = |~a| we have the
following:

If there exists f ∈ BaX∗ having pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I then there
exists g ∈ (1 + ε)BaX∗ having pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I and∑

{(i,j)∈I:j≥k0}\{(k0,`):`∈F}

|g(yi,j)| < ε

.

Proof. Let (δj)
∞
j=0 ⊆ (0, 1) such that

(3)
1

inf
i,j
‖xi,j‖

(
4Ckδ0 +

∞∑
j=1

4Cjδj

)
< ε

where C is the basis constant for the regular array (xi,j)(i,j)∈I . Let A0 be a δ0 net for [−1, 1]
containing zero and for each j ∈ N choose a δj net Bj for [−1, 1] with {0} ⊆ A0 ⊆ B1 ⊆
B2 ⊆ · · · . Let

(4) ~A = {~a = (ai)
p
i=1 ∈ Ap

0 : where 1 ≤ p ≤ k}
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and

(5) F = {f ∈ (1 +
ε

2
)Ba(X∗) : f(xi,j) ∈ Bj for all (i, j) ∈ I},

where with out loss of generality we assume ε < 2 so F ⊆ 2Ba(X∗). Since 0 ∈ A0 the zero
functional is in F therefore F is nonempty .

We construct the subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I inductively. First we will construct
a subarray (y1

i,j)(i,j)∈I of (xi,j)(i,j)∈I , then for j ∈ N for j ≥ 2 we will construct a subarray

(yj
i,k)(i,k)∈I of (yj−1

i,k+j−1)(i,k)∈I . Once the subarray (yj
i,k)(i,k)∈I has been constructed we set

yi,j := yj
i,j for 1 ≤ i ≤ j. Since (yj

i,k)(i,k)∈I is a subarray of (yj−1
i,k+j−1)(i,k)∈I and yi,j = yj

i,j for
1 ≤ i ≤ j, we have that (yi,j)(i,j)∈I is a subarray of (xi,j)(i,j)∈I .

Apply Lemma 2.7 to (xi,j)(i,j)∈I , ~A, δ1, F to obtain a subarray (y1
i,j)(i,j)∈I of (xi,j)(i,j)∈I

such that for all ~a ∈ ~A, k0 ∈ N, F ⊆ {k0, k0 + 1, k0 + 2, . . .} with |F | = |~a| and (i0, j0) ∈ I

with (1, k0) ≤r` (i0, j0) <r` (k0, min(F )) we have: if there exists f ∈ F having pattern ~a ∈ ~A
on (k0, F ) with respect to (y1

i,j)(i,j)∈I then there exists g ∈ F having pattern ~a on (k0, F )

with respect to (y1
i,j)(i,j)∈I and |g(y1

i0,j0
)| < δ1. Define the elements of the first column of

(yi,j)(i,j)∈I by setting y1,1 := y1
1,1. Define for each b ∈ B1 the set

(6) Fb = {f ∈ F : f(y1,1) = b}.

Apply Lemma 2.7 to (y1
i,j+1)(i,j)∈I , ~A, δ2, Fb successively for each b ∈ B1 to obtain a subarray

(y2
i,j)(i,j)∈I of (y1

i,j+1)(i,j)∈I such that for all ~a ∈ ~A, k0 ∈ N, F ⊆ {k0, k0 + 1, k0 + 2, . . .} with
|F | = |~a| and (i0, j0) ∈ I with (1, k0) ≤r` (i0, j0) <r` (k0, min(F )) we have for all b ∈ B1: if

there exists f ∈ Fb having pattern ~a ∈ ~A on (k0, F ) with respect to (y2
i,j)(i,j)∈I then there

exists g ∈ Fb having pattern ~a on (k0, F ) with respect to (y2
i,j)(i,j)∈I and |g(y2

i0,j0
)| < δ2.

Define the elements of the second column of (yi,j)(i,j)∈I by setting y1,2 := y2
1,2, and y2,2 :=

y2
2,2. For each ~b = (b1, b2, b3) ∈ B1 ×B2 ×B2 set

(7) F~b = {f ∈ F : f(y1,1) = b1, f(y1,2) = b2 and f(y2,2) = b3}.

Apply Lemma 2.7 to (y2
i,j+2)(i,j)∈I , ~A, δ3, F~b successively for each ~b ∈ B1 × B2 × B2

to obtain a subarray (y3
i,j)(i,j)∈I of (y2

i,j+2)(i,j)∈I such that for all ~a ∈ ~A, k0 ∈ N, F ⊆
{k0, k0 +1, k0 +2, . . .} with |F | = |~a| and (i0, j0) ∈ I with (1, k0) ≤r` (i0, j0) <r` (k0, min(F ))

we have for all ~b ∈ Bp1,1 × Bp1,2 × Bp2,2 : if there exists f ∈ F~b having pattern ~a ∈ ~A on
(k0, F ) with respect to (y3

i,j)(i,j)∈I then there exists g ∈ F~b having pattern ~a on (k0, F ) with

respect to (y3
i,j)(i,j)∈I and |g(y3

i0,j0
)| < δ3. Define the elements in the third column (yi,j)(i,j)∈I

by setting y1,3 := y3
1,3, y2,3 := y3

2,3and y3,3 := y3
2,3. Continue in this manner to create the

subarray (yi,j)(i,j)∈I of (xi,j)(i,j)∈I .

Let f̃ ∈ Ba(X∗), ~c be a p-pattern for p ≤ k, k0 ∈ N and F ⊆ {k0, k0 + 1, k0 + 2, . . . } with

|F | = p such that f̃ has pattern ~c on (k0, F ) with respect to (yi,j)(i,j)∈I .

First it is easy to see using (3) that since f̃ ∈ Ba(X∗) there is f ∈ F (as defined in (5))
such that

• for all j ∈ F we have f(yk0,j) ∈ A0 and |f̃(yk0,j)− f(yk0,j)| ≤ δ0, and
• if we define the finite set G ⊂ N by (yk0,j)j∈F = (xk0,j)j∈G, then for all (i, j) ∈

I \ {(k0, j) : j ∈ G} we have that |f̃(xi,j)− f(xi,j)| ≤ δj and f(xi,j) ∈ Bj.
7



Let ~a := (f(yk0,j))j∈F and note that f has pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I .
We will find a functional g ∈ (1 + ε

2
)Ba(X∗) such that g has pattern ~a on F with respect to

(yi,j)(i,j)∈I and
∑

I′\{(k0,j):j∈F} |g(yi,j)| < ε.

We proceed to find such functional g. But first a bit of notation, for a p-pattern ~α = (αi)
p
i=1

we define its derivative ~α′ = (αi−1)
p
i=2.

We will walk through the index set I ′ = {(i, j) ∈ I : j ≥ k0} proceeding through this
set in <r`-order and at each step find a functional gi,j with the property that if (i, j) 6∈
{(k0, j) : j ∈ F} then |gi,j(yi,j)| will be small and “agree” with the previous functional on
{(i′, j′) ∈ I ′ : (i′, j′) <r` (i, j)}. If (i, j) ∈ {(k0, j) : j ∈ F} then we will not change the
previously defined functional. We will assume k0 ≥ 3 for purposes of demonstrating the
construction, but if k0 = 1 or 2 then we proceed similarly.
STEP (1, k0): Note (1, k0) 6∈ {(k0, j) : j ∈ F} (since k0 ≥ 3). Let

~b = (f(y1,1), f(y2,1), f(y2,2), f(y3,1), . . . , , f(yk0−1,k0−1)).

Then f ∈ F~b, f has pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I , (yi,j)(i,j)∈I′ is a subarray

of (yk0

(i,j))(i,j)∈I′ and (1, k0) ≤r` (1, k0) <r` (k0, min(F )), (the last inequality is valid since

k0 ≥ 3). Thus there exists g1,k0 ∈ F~b such that g1,k0 has pattern ~a on (k0, F ) with respect to
(yi,j)(i,j)∈I and |g1,k0(y1,k0)| < δk0 . Set F1,k0 = F and ~a1,k0 = ~a.
STEP (2, k0): Note that (2, k0) 6∈ {(k0, j) : j ∈ F1,k0} (since k0 ≥ 3). Let

~b = (f(y1,1), f(y2,1), f(y2,2), . . . , f(yk0−1,k0−1), g1,k0(y1,k0)).

Then g1,k0 ∈ Fvecb, g1,k0 has pattern ~a1,k0 on (k0, F1,k0)) with respect to (yi,j)(i,j)∈I and
(1, k0) <r` (2, k0) <r` (k0, min(F )), (the last inequality is valid because k0 ≥ 3). Thus there
exists g2,k0 ∈ F~b such that g2,k0 has pattern ~a1,k0 on (k0, F1,k0) with respect to (yi,j)(i,j)∈I and
|g2,k0(y2,k0)| < δk0 . Set F2,k0 = F1,k0 and ~a2,k0 = ~a1,k0 .

We continue similarly until the (k0− 1, k0) step. The step (k0, k0) is slightly different. We
separate this step into two different cases depending on whether or not (k0, k0) ∈ {(k0, j) :
j ∈ Fk0−1,k0}.
STEP (k0, k0): If (k0, k0) ∈ {(k0, j) : j ∈ Fk0−1,k0} then set gk0,k0 = gk0−1,k0 , Fk0,k0 =
Fk0−1,k0 \ {k0} and ~ak0,k0 = ~a′k0−1,k0

.
If (k0, k0) 6∈ {(k0, j) : j ∈ Fk0−1,k0} then (k0, k0) <r` (k0, min(F )). Let

~b = (f(y1,1), f(y2,1), f(y2,2), . . . , f(yk0−1,k0−1), g1,k0(y1,k0), g2,k0(y2,k0), . . . , gk0−1,k0(yk0−1,k0)).

Then gk0−1,k0 ∈ F~b, gk0−1,k0 has pattern ~ak0−1,k0 on (k0, Fk0−1,k0) with respect to (yi,j)(i,j)∈I ,

(yi,j)(i,j)∈I′ is a subarray of (yk0
i,j)(i,j)∈I and (1, k0) ≤r` (k0, k0) <r` (k0, min(F )). Thus there ex-

ists gk0,k0 ∈ F~b such that gk0,k0 has pattern ~ak0−1,k0 on (k0, Fk0−1,k0) with respect to (yi,j)(I,j)∈I

and gk0,k0(yk0,k0) < δk0 . In this case set Fk0,k0 = Fk0−1,k0 and ~ak0,k0 = ~ak0−1,k0 .
Then start again with the first entry (1, k0 + 1) of the next column as in steps (1, k0) and

(2, k0).
STEP (1, k0 + 1): Note that (1, k0 + 1) 6∈ {(k0, j) : j ∈ Fk0,k0}, (since k0 ≥ 3). Let

~b = (f(y1,1), f(y2,1), f(y2,2), . . . , g1,k0(y1,k0), g2,k0(y2,k0), gk0,k0(yk0,k0)).

Then gk0,k0 ∈ F~b, gk0,k0 has pattern ~ak0,k0 on (k0, Fk0,k0) with respect to (yi,j)(i,j)∈I , (yi,j)(i,j)∈I′

is a subarray of (yk0
i,j)(i,j)∈I and (1, k0) ≤r` (1, k0 + 1) <r` (k0, min(F )), (the last inequality

is valid since k0 ≥ 3). Thus there exists g1,k0+1 ∈ F~b such that g1,k0+1 has pattern ~ak0,k0 on
8



(k0, Fk0,k0) with respect to (yi,j)(i,j)∈I and |g1,k0+1(y1,k0+1)| < δk0+1. Set F1,k0+1 = Fk0,k0 and
~a1,k0+1 = ~ak0,k0 .

Continue in this manner to generate a sequence of functionals (gi,j)(i,j)∈I′ . We only need
to distinguish two cases every time we reach the k0 row as in step (k0, k0). Let g ∈ (1 +
ε
2
)Ba(X∗) be a weak∗-accumulation point of sequence (gi,j)(i,j)∈I′ . Note g has the following

two properties:

• g has pattern ~a on (k0, F ) with respect to (yi,j)(i,j)∈I , and
•
∑

(i,j)∈I′\{(k0,`):`∈F} |g(yi,j)| < ε.

Since g(yk0,`) = f(yk0,`) ∈ A0 for all ` ∈ F and |f(yk0,`) − f̃(yk0,`)| < δ0 for all ` ∈ F , (3)

implies that there exists g̃ ∈ X∗ such that ‖g̃‖ ≤ ‖g‖+ ε
2
≤ 1+ε and g̃(yk0,`) = f̃(yk0,`) ∈ A0

for all ` ∈ F (thus g̃ has pattern ~c on (k0, F ) with respect to (yi,j)(i,j)∈I) and∑
(i,j)∈I′\{(k0,`):`∈F}

|g̃(yi,j)| < ε

completing the proof. �

Finally we arrive to the

Proof of Theorem 1.2. First, by Remark 2.3 assume without loss of generality that (xi,j)(i,j)∈I

is regular. Let η > 0 such that

(8) 2(2η + 1) ≤ 2 +
ε

2

where C is the basis constant of the regular array (xi,j)(i,j)∈I . Apply Lemma 2.8 to (xi,j)(i,j)∈I ,
η and M1 to get (y1

i,j)(i,j)∈I . Define y1,1 := y1
1,1.

Apply Lemma 2.8 to (y1
i,j+1)(i,j)∈I , η and M2 to get (y2

i,j)(i,j)∈I . Define yi,2 := y2
i,2 for

i = 1, 2.
Assuming that (y`−1

i,j )(i,j)∈I has been defined (and thus (yi,j)(i,j)∈I;j<`) has also been defined)

apply Lemma 2.8 to (y`−1
i,j+`−1)(i,j)∈I , η and M` to get (y`

i,j)(i,j)∈I . Define yi,` := y`
i,` for

i = 1, 2, . . . , `.
Inductively construct the entire array (yi,j)(i,j)∈I and notice (yi,j)(i,j)∈I is regular by Re-

mark 2.1.
Let k0 ∈ N, F ⊆ {k0, k0 + 1, k0 + 2, . . .} with |F | ≤ Mmin(F ) and finitely supported scalars

(ai,j)(i,j)∈I be given. We can assume without loss of generality that

‖
∑

(i,j)∈I

ai,jyi,j‖ = 1.

Then |ai,j| ≤ 2C for (i, j) ∈ I. Let f ∈ Ba(X∗) such that

f

(∑
j∈F

ak0,jyk0,j

)
= ‖

∑
j∈F

ak0,jyk0,j‖.

Let ~a = (f(yk0,j))j∈F be a p-pattern where p = |F |. Obviously f has pattern ~a on (k0, F ) with

respect to (yi,j)(i,j)∈I . Then by considering the subarray (yi,j)(i,j)∈I,j≥min(F ) of (y
min(F )
i,j )(i,j)∈I:j≥min(F )

we obtain by the above that there exists g ∈ (1+η)Ba(X∗) having pattern ~a on (k0, F ) with
respect to (yi,j)(i,j)∈I and

∑
{(i,j)∈I:j≥min(F )}\{(k0,`):`∈F} |g(yi,j)| < η. Thus
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1 = ‖
∑

ai,jyi,j‖ ≥
1

2C
‖
∑

j≥min(F )

ai,jyi,j‖ ≥
1

2C(1 + η)

∣∣∣∣ ∑
j≥min(F )

ai,jg(yi,j)

∣∣∣∣
≥ 1

2C(1 + η)

∣∣∣∣∑
j∈F

ak0,jg(yk0,j)

∣∣∣∣− 1

2C(1 + η)

∣∣∣∣ ∑
{(i,j)∈I:j≥min(F )}\{(k0,j):j∈F}

ai,jg(yi,j)

∣∣∣∣
≥ 1

2C(1 + η)
‖
∑
j∈F

ak0,jyk0,j‖ −
1

2C(1 + η)

∑
{(i,j)∈I:j≥min(F )}\{(k0,j):j∈F}

|ai,j||g(yi,j)|

≥ 1

2C(1 + η)
‖
∑
j∈F

ak0,jyk0,j‖ −
1

1 + η

∑
{(i,j):j≥min(F )}\{(k0,j):j∈F}

|g(yi,j)|

≥ 1

2C(1 + η)
‖
∑
j∈F

ak0,jyk0,j‖ −
1

1 + η
η.

(9)

Thus by (8) and (9) we have

‖
∑

(i,j)∈I

ai,jyi,j‖ = 1 ≥ 1

2C(2η + 1)
‖
∑
j∈F

ak0,jyk0,j‖ ≥
1

C(2 + ε
2
)
‖
∑
j∈F

ak0,jyk0,j‖

.
Since we can choose C, the basis constant of our regular array, arbitrarily close to 1 (see

Remark 2.3) we have shown the result. �

3. Existence of Non-trivial Operators

In this section we give an application of Theorem 1.2 to the ”multiple of the inclusion plus
compact problem”. The problem has been previously studied in [9], [2] and [21]. The main
results of this section are Theorems 3.2 and 3.8. In order to formulate these results we need
some definitions.

Recall that [4, 5, 6] for every seminormalized basic sequence (yn) in a Banach space X
and for every (εn) ↘ 0 there exists a subsequence (xn) of (yn) and a seminormalized basic
sequence (x̃n) (not necessarily in X) such that for all n ∈ N, scalars (ai)

n
i=1 with |ai| ≤ 1

and n ≤ k1 < · · · < kn, ∣∣∣∣∣‖
n∑

i=1

aki
xki
‖ − ‖

n∑
i=1

aix̃i‖

∣∣∣∣∣ < εn.

The sequence (x̃n) is called a spreading model of (xn). If (xn) is a seminormalized weakly
null basic sequence then (x̃n) is an unconditional basic sequence. Thus if X is an HI Banach
space and (xn) is a seminormalized basic sequence in X with spreading model (x̃n), then it
may be easier to study (x̃n) than to study (xn) itself.

A similar notion to the next one was introduced in [21].

Definition 3.1. Let (xn) and (zn) be two seminormalized basic sequences (not necessarily in
the same Banach space), such that (zn) is not equivalent to the unit vector basis of c0. We

10



say that (zn) dominates (xn) on small coefficients, (denoted by (xn) << (zn) and abbreviated
as “(zn) s.c. dominates (xn))”, if

(10) lim
ε↘0

inf{‖
∑

aizi‖ : |ai| ≤ ε and ‖
∑

aixi‖ = 1} = ∞,

where inf ∅ = ∞.

Theorem 3.2. Let X be a Banach space containing seminormalized basic sequences (xi)i

and (xn
i )i for all n ∈ N, such that 0 < infn,i ‖xn

i ‖ ≤ supn,i ‖xn
i ‖ < ∞. Let (zi)i be a basic

sequence not necessarily in X. Assume that (xi) satisfies:

(11) The sequence (xi)i has a spreading model (x̃i)
∞
i=1 such that (x̃i)i∈N << (zi)i∈N.

Assume that for all n ∈ N the sequence (xn
i )i satisfies:

The sequence (xn
i )i has a spreading model (x̃n

i )i such that

(zi)
n
i=1 is C-dominated by (x̃n

i )n
i=1 for some C independent of n.

(12)

Then there exists a subspace Y of X which has a basis and an operator T ∈ L(Y,X) which
is not a compact perturbation of a multiple of the inclusion map.

For the proof of Theorem 3.2 we need the following three lemmas whose proofs are post-
poned. For their formulation we need to introduce the following

Definition 3.3. A seminormalized basic sequence (xn) has Property P if for all ρ > 0 there
exists an M = M(ρ) ∈ N, such that if ‖

∑
aizi‖ = 1 then |{i : |ai| ≥ ρ}| ≤ M.

Obviously Property P can be equivalently stated with the equality “‖
∑

aizi‖ = 1” re-
placed by “‖

∑
aizi‖ ≤ 1” (and everything else staying unchanged).

Lemma 3.4. Let X be a Banach space which does not contain an isomorphic copy of `1 and
let (zi) be a basic sequence not necessarily in X. Assume that X contains basic sequences
(xi) and (xn

i ) for all n ∈ N such that 0 < infn,i ‖xn
i ‖ ≤ supn,i ‖xn

i ‖ < ∞ and conditions (11)
and (12) of Theorem 3.2 are satisfied. Then there exist seminormalized basic sequences (Xi)i

and (Zi) not necessarily in X and for each n ∈ N there exists a basic sequence (Xn
i )i in X

such that 0 < infn,i ‖Xn
i ‖ ≤ supn,i ‖Xn

i ‖ < ∞ and the following conditions are satisfied:

(a) The sequence (Xi)i dominates (xi)i, where (xi)i = (xm2i
−xm2i−1

) for some increasing
subsequence (mi) of positive integers, and (xi) is weakly null.

(b) (Xi) and (Zi) satisfy (11) of Theorem 3.2.
(c) (Xi) has Property P.
(d) (Xn

i )i and (Zi) satisfy (12) of Theorem 3.2.
(e) The sequence (Xn

i )i is weakly null for all n ∈ N.

Lemma 3.5. Let X be a Banach space, (Xi) be a seminormalized basic sequence in X
having Property P and (Zi) be a seminormalized basic sequence not necessarily in X. As-
sume that the sequence (Xi) and (Zi) satisfy condition (11) of Theorem 3.2. Then for all
(δn)∞n=2 ⊆ (0,∞) there exists an increasing sequence M1 < M2 < · · · of positive integers and
a subsequence (Xni

) of (Xi) such that for all (ai) ∈ c00,

(13) ‖
∑

aiXni
‖ ≤ sup

n∈N
sup

n≤F⊆N;|F |≤Mn

δn‖
∑
i∈F

aiZi‖,

for some δ1 (where “n ≤ F” means n ≤ min(F )).
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Lemma 3.6. Let X be a Banach space, (δn) be a summable sequence of positive numbers,
(Mn)∞n=1 ⊆ N be a sequence of positive integers, (Zn) be a seminormalized basic sequence
(not necessarily in X) and for every n ∈ N let (Xn

j )∞j=1 be a weakly null basic sequence

in X having spreading model (X̃n
j )∞j=1 such that 0 < infn,j ‖Xn

j ‖ ≤ supn,j ‖Xn
j ‖ < ∞ and

condition (12) of Theorem 3.2 is satisfied. Then there exists a seminormalized weakly null
basic sequence (yi) in X such that

(14)
1

6C
sup

n
sup

n≤F⊆N;|F |≤Mn

δn‖
∑
i∈F

aiZi‖ ≤ ‖
∑

aiyi‖.

Moreover, ‖yj‖ ≥ δ1
2

infn,m ‖Xn
m‖. Furthermore, if (x∗i ) is any given sequence of functionals

in X∗ and ε > 0 we can choose (yi) to satisfy |x∗i yi| < ε.

We now present the

Proof of Theorem 3.2. Obviously, if `1 embeds in X, (or if, more generally, X contains an
unconditional basic sequence), then the conclusion of Theorem 3.2 is satisfied. Thus we can
assume that X does not contain an isomorphic copy of `1 and consider the sequences (Xi),
(Zi), (Xn

i ) and (xi) which satisfy the conclusion of Lemma 3.4. Let (δn)∞n=2 be a summable
sequence of positive numbers. Apply Lemma 3.5 to obtain a subsequences (Xni

), δ1 > 0 and
an increasing sequence (Mn)n∈N of positive integers which satisfies (13). For every i ∈ N let
a norm 1 functional x∗i satisfying x∗i xni

= ‖xni
‖. Then apply Lemma 3.6 for (δn)n∈N and

(Mn)n∈N to obtain a basic sequence (yi) which satisfies (14).
Assume also that (yi) satisfies the “furthermore” part of the statement of Lemma 3.6 for

the sequence (x∗i ) and ε = δ1 infn,i ‖Xn
i ‖ infi ‖xi‖/(8 supi ‖xi‖). Note that if |λ| ≥ 4 supi ‖xi‖

δ1 infn,i ‖Xn
i ‖

then

‖xnj
+ λyj‖ ≥ |λ|‖yj‖ − ‖xnj

‖ ≥ 4 supi ‖xi‖
δ1 infn,i ‖Xn

i ‖
δ1

2
inf
n,i
‖Xn

i ‖ − ‖xnj
‖ ≥ ‖xnj

‖ ≥ inf
i
‖xi‖

(by the “moreover” part of the statement of Lemma 3.6). Also if |λ| < 4 supi ‖xi‖
δ1 infn,i ‖Xn

i ‖
then

‖xnj
+ λyj‖ ≥ |x∗j(xnj

+ λyj)| ≥ ‖xnj
‖ − 4 supi ‖xi‖

δ1 infn,i ‖Xn
i ‖

ε ≥ 1

2
inf

i
‖xi‖.

Thus for all scalars λ we have

‖xnj
+ λyj‖ ≥

1

2
inf

i
‖xi‖.

Thus if we define T : [(yi)] → X by

T (
∑

aiyi) =
∑

aixni

we have that this operator is bounded by (13), (14) and our assumption that (xi)i is domi-
nated by (Xi)i. We also have that for any scalar λ, (T−λi[(yi)]→X)(yk) = xnk

−λyk. But since
(yk) and (xk) are weakly null and (xnk

−λyk) is not norm null, T −λi[(yi)]→X is not compact.
In other words T is not a compact perturbation of a scalar multiple of the inclusion. �
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Proof of Lemma 3.4. Since `1 does not embed in X, by Rosenthal’s `1 Theorem [18] and a
diagonal argument, by passing to subsequences of (xi), (xn

i ) and (zi) and relabeling we can
assume that (xi) and (xn

i )i are weakly Cauchy for all n ∈ N. Set (xi)i = (x2i − x2i−1)i,
(xn

i )i = (xn
2i− xn

2i−1)i and (zi)i = (z2i− z2i−1)i. For every n ∈ N the sequences (xi) and (xn
i )i

are weakly null. Moreover the sequences (xi)i and (zi)i satisfy (11) and the sequences (xn
i )i

and (zi) satisfy (12) of Theorem 3.2.
Since (xi) and (xn

i )i are weakly null for all n ∈ N, and satisfy conditions (11) and (12)
of Theorem 3.2, we have that the spreading models of normalized weakly null sequences in
X are not uniformly equivalent. Thus, (since every normalized suppression 1-unconditional
basic sequence 2-dominates the unit vector basis of c0), for every n ∈ N, there exists a nor-
malized weakly null sequence (un

i )i in X which has spreading model (ũn
i )i and there exist

finitely supported scalars (a
(n)
i )i such that ‖

∑
i a

(n)
i ũn

i ‖ ≥ 22n yet maxi |a(n)
i | = 1. By [2,

Proposition 3.2] there exists a seminormalized weakly null sequence (ui) in X having spread-

ing model (ũi) such that (ũi) 2n-dominates (ũn
i )i. Thus ‖

∑
i a

(n)
i ũi‖ ≥ 1

2n‖
∑

i a
(n)
i ũn

i ‖ ≥ 2n.
Hence (ũi) is not equivalent to the unit vector basis of c0. By passing to a subsequence of (ui)
and relabeling we can assume by Theorem 1.1 that (ui) is Schreier unconditional. Moreover,
by passing to a subsequence of (ui) and relabeling we can assume that for any Schreier set
F ⊆ N and scalars (ai)i∈F ,

(15)
1

2
‖
∑
i∈F

aiũi‖ ≤ ‖
∑
i∈F

aiui‖ ≤ 2‖
∑
i∈F

aiũi‖.

Define the basic sequence (Zi) by

‖
∑

aiZi‖ := max(‖
∑

aizi‖, ‖
∑

aiui‖),

(first for finitely supported sequences (ai) and then take its completion). Obviously (Zi) has
a spreading model (Z̃i) which satisfies

‖
∑

aiZ̃i‖ = max(‖
∑

aiz̃i‖, ‖
∑

aiũi‖),

for finitely supported sequences of scalars (ai).
Since (ui) and (xn

i )i are weakly null seminormalized sequences in X for all n ∈ N, by
[2, Proposition 3.2] there exist weakly null basic sequences (Xn

i )i in X such that 0 <
infn,i ‖Xn

i ‖ ≤ supn,i ‖Xn
i ‖ < ∞ and the spreading model (X̃n

i )i of (Xn
i )i 1-dominates the

spreading models of both sequences (xn
i )i and (ui). By the definitions of (Xn

i )i and (Zi) it is
obvious that (Xn

i )i and (Zi) satisfy condition (12) of Theorem 3.2. Thus we have satisfied
conditions (d) and (e) of Lemma 3.4. It remains to define the basic sequence (Xi) in order
to satisfy (a), (b) and (c).

Before defining (Xi) we define an auxiliary basic sequence (u−i ) by

‖
∑

i

aiu
−
i ‖ := sup

1≤n<m

1√
Lm−n

‖
m−1∑
i=n

aiui‖,

where

Lk := ‖
k∑

i=1

ui‖,

13



(first for finitely supported sequences (ai) of scalars and then take the completion). Obviously
(u−i ) is seminormalized since

infj ‖uj‖√
L1

≤ ‖u−i ‖ ≤
supj ‖uj‖
infj

√
Lj

, for all i.

Notice that

‖
n∑

i=1

u−i ‖ ≥
‖
∑n

i=1 ui‖√
Ln

=
Ln√
Ln

=
√

Ln

≥

√√√√ 1

1 + C
‖

n∑
i=dn/2e

ui‖ (where C is the basis constant of (ui))

≥ 1

2

√√√√ 1

1 + C
‖

n∑
i=dn/2e

ũi‖ (by (15)),

where the last quantity tends to infinity as n →∞ since the basic sequence (ũi) is spreading,
unconditional and not equivalent to the unit vector basis of c0. Thus

(16) ‖
n∑

i=1

u−i ‖ → ∞ as n →∞.

Claim 1: (u−i ) << (ui).
In order to prove Claim 1, let 0 < ε < 1 and choose N ∈ N such that

√
Lk > 2C/ε for all

k > N (by (16)) where C is the basis constant of (ui). Let

δ := min
1≤n≤N

ε
√

Ln

supi ‖ui‖n
.

Let (ai) be a finitely supported sequence of scalars such that ‖
∑

aiu
−
i ‖ = 1 and |ai| ≤ δ.

Let 1 ≤ n0 < m0 such that

(17) 1 = ‖
∑

aiu
−
i ‖ =

1√
Lm0−n0

‖
m0−1∑
i=n0

aiui‖.

Notice that if m0 − n0 ≤ N then

1√
Lm0−n0

‖
m0−1∑
i=n0

aiui‖ ≤
1√

Lm0−n0

(m0 − n0) max
n0≤i≤m0−1

|ai| sup
i
‖ui‖

≤ 1√
Lm0−n0

(m0 − n0)δ sup
i
‖ui‖

≤ 1√
Lm0−n0

(m0 − n0)
ε
√

Lm0−n0

supi ‖ui‖(m0 − n0)
sup

i
‖ui‖

= ε < 1,

14



which contradicts (17). Thus m0 − n0 > N . Therefore, if C is the basis constant of (ui),
equation (17) implies that

‖
∑

aiui‖ ≥
1

2C
‖

m0−1∑
i=n0

aiui‖ ≥
1

2C

√
Lm0−n0 >

1

2C

2C

ε
=

1

ε
,

(by the choice of N and the fact that m0 − n0 > N). This finishes the proof of Claim 1.
Since (ui) is Schreier unconditional, we easily obtain that (u−i ) is Schreier unconditional.

Also it is easy to verify that (u−i ) has a spreading model (ũ−i ) which satisfies

‖
∑

aiũ
−
i ‖ = sup

1≤n<m

1√
Lm−n

‖
m−1∑
i=n

aiũi‖,

for all finitely supported sequences (ai) of scalars. Thus by (15) we obtain that for any
Schreier set F ⊆ N and scalars (ai)i∈F ,

(18)
1

2
‖
∑
i∈F

aiũ
−
i ‖ ≤ ‖

∑
i∈F

aiu
−
i ‖ ≤ 2‖

∑
i∈F

aiũ
−
i ‖.

Also, since (ũi) is unconditional we obtain that (ũ−i ) is unconditional. Since (ũ−i ) is spreading,
unconditional and it is not equivalent to the unit vector basis of c0 (by (16)), it is easy to
see that (ũ−i ) has Property P.

Claim 2: (u−i ) has Property P.
This will follow from the fact that (ũ−i ) has Property P, equation (18) and that (u−i ) is

Schreier unconditional. Indeed, let ρ > 0. Since (ũ−i ) has Property P, there exists M ∈ N
such that if ‖

∑
aiũi‖ ≤ 1 then |{i : |ai| > ρ

2CS
}| ≤ M (where CS is the Schreier uncondi-

tionality constant of (u−i )). Assume that ‖
∑

biu
−
i ‖ ≤ 1 and let A = {i : |bi| > ρ}. We claim

that |A| ≤ 3M which finishes the proof of Claim 2. Indeed, if |A| > 3M then let A1, A2 ⊆ A
with A1 ∪ A2 = A, a1 < a2 for all a1 ∈ A1, a2 ∈ A2 and |A2| = b|A|/2c. Since |A| > 3M we
have that

(19) |A2| > M.

Since A2 is a Schreier set we obtain by (18),

‖
∑
i∈A2

biũ
−
i ‖ ≤ 2‖

∑
i∈A2

biu
−
i ‖ ≤ 2CS‖

∑
biu

−
i ‖ ≤ 2CS.

Therefore

‖
∑
i∈A2

bi

2CS

ũ−i ‖ ≤ 1.

Hence |{i ∈ A2 : | bi

2CS
| > ρ

2CS
}| ≤ M i.e. |A2| ≤ M which contradicts (19). This finishes the

proof of Claim 2.
Now define the basic sequence (Xi) by

‖
∑

aiXi‖ := max(‖
∑

aixi‖, ‖
∑

aiu
−
i ‖),

(first for finitely supported sequences (ai) of scalars and then take the completion). Obviously
(Xi) dominates (xi) thus (a) is satisfied. Since (u−i ) has Property P we obtain that (Xi) has

15



Property P, hence (c) is satisfied. Also, since (xi) << (zi) and (u−i ) << (ui) we have that
(Xi) << (Zi), therefore (b) is satisfied. �

Now we present the proof of Lemma 3.5. Our arguments resemble the ones found in [2].

Proof of Lemma 3.5. Since (Xn) has Property P, for each ρ > 0 we can define M = M(ρ)
such that if ‖

∑
aiXi‖ = 1 then |{i : |ai| > ρ}| ≤ M .

Let (εj)
∞
j=1 be such that

∞∑
j=2

εj−1

δj

≤ 1

2
.

Since (Zn) >> (X̃n) by (10) we may choose a decreasing sequence (ρj)
∞
j=1 ⊆ (0, 1] such

that
∑

j

√
ρj(j + 1) ≤ 1/4 and satisfying the following: for all (ai) ∈ c00 with |ai| ∈ [0,

√
ρj]

for each i and ‖
∑

aix̃i‖ = 1 we have

(20) ‖
∑

aiX̃i‖ ≤ εj‖
∑

aiZi‖.

Finally let Mj = M(ρj) as above.
By the definition of spreading models, by passing to a subsequence of (Xi) and relabeling,

we can assume that if j ≤ F and |F | ≤ Mj then for all (ai) ∈ c00,

(21)
1

2
‖
∑
i∈F

aiXi‖ ≤ ‖
∑
i∈F

aiX̃i‖ ≤ 2‖
∑
i∈F

aiXi‖.

Now fix (ai) ∈ c00 such that ‖
∑

aiXi‖ = 1. For j ∈ N consider the vector ỹ =∑
i>j;ρj<|ai|≤ρj−1

aiX̃i. If ‖ỹ‖ ≥ √
ρj−1 then

‖ỹ‖ =‖ỹ‖‖ ỹ

‖ỹ‖
‖ = ‖ỹ‖

∥∥∥∥ ∑
i>j

ρj<|ai|≤ρj−1

ai

‖ỹ‖
X̃i

∥∥∥∥
≤‖ỹ‖εj−1

∥∥∥∥ ∑
i>j

ρj<|ai|≤ρj−1

ai

‖ỹ‖
Zi

∥∥∥∥ (by (20) since

∥∥∥∥ ∑
i>j

ρj<|ai|≤ρj−1

ai

‖ỹ‖
X̃i

∥∥∥∥ = 1)

=εj−1

∥∥∥∥ ∑
i>j

ρj<|ai|≤ρj−1

aiZi

∥∥∥∥.
Thus in general, (without assuming that ‖ỹ‖ ≥ √

ρj−1), we get

(22) ‖ỹ‖ ≤ √
ρj−1 + εj−1‖

∑
i>j;ρj<|ai|≤ρj−1

aiZi‖.
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Let ρ0 be twice the basis constant of (Xi) divided by the infi ‖Xi‖. Since ‖
∑

aiXi‖ = 1,
we have that |ai| ≤ ρ0.

1 =‖
∑

aiXi‖ ≤
∞∑

j=1

‖
∑

ρj<|ai|≤ρj−1

aiXi‖

≤‖
∑

ρ1<|ai|≤ρ0

aiXi‖+
∞∑

j=2

‖
∑

i≤j;ρj<|ai|≤ρj−1

aiXi‖+
∞∑

j=2

‖
∑

i>j;ρj<|ai|≤ρj−1

aiXi‖

≤ sup
F⊆N,|F |≤M1

δ1‖
∑
i∈F

aiZi‖+
∞∑

j=2

jρj−1 + 2
∞∑

j=2

‖
∑

i>j;ρj<|ai|≤ρj−1

aiX̃i‖

where

δ1 = sup

{
‖
∑

i∈F aiXi‖
‖
∑

i∈F aiZi‖
: (ai)i∈F ⊆ C with |F | ≤ M1 and (ai)i∈F 6= 0F

}
which is clearly finite by using an `1 estimate for the numerator and an `∞ estimate for the
denominator. Note the third piece of the last inequality is true by (21) since the cardinality
of {i > j : ρj < |ai| ≤ ρj−1} is at most Mj. Continuing the calculations from above, we get

1 ≤ sup
F⊆N,|F |≤M1

δ1‖
∑
i∈F

aiZi‖+
1

4
+ 2

∞∑
j=2

√
ρj−1 + 2

∞∑
j=2

εj−1‖
∑

i>j;ρj<|ai|≤ρj−1

aiZi‖ by (22)

≤ sup
F⊆N,|F |≤M1

δ1‖
∑
i∈F

aiZi‖+
1

2
+ 2

∞∑
j=2

εj−1

δj

δj‖
∑

i>j;ρj<|ai|≤ρj−1

aiZi‖

≤ sup
F⊆N,|F |≤M1

δ1‖
∑
i∈F

aiZi‖+
1

2
+ sup

n≥2
sup

n≤F⊆N;|F |≤Mn

δn‖
∑
i∈F

aiZi‖.

Thus

1 ≤ 2 sup
n∈N

sup
n≤F⊆N;|F |≤Mn

δn‖
∑
i∈F

aiZi‖

proving the lemma. �

Now we present the proof of Lemma 3.6.

Proof of Lemma 3.6. Assume that for each n ∈ N (XMn
j )j has spreading model (X̃Mn

j )Mn
j=1,

(X̃Mn
j )j C-dominates (Zi)

Mn
i=1 and moreover if |F | ≤ Mn and (aj)j∈F are scalars then

(23)
1

2
‖
∑
j∈F

ajX̃
Mn
j ‖ ≤ ‖

∑
j∈F

ajX
Mn
j ‖ ≤ 2‖

∑
j∈F

ajX̃
Mn
j ‖.

By Remark 2.3 by passing to subsequences and relabeling, assume that (XMn
j )(n,j)∈I forms a

regular array with basis constant at most equal to 2. Apply Theorem 1.2 to (XMn
j )(n,j)∈I to

get a subarray which satisfies the conclusion of Theorem 1.2. By relabeling call (XMn
j )(n,j)∈I

the resulting subarray. Define
17



yj =

j∑
n=1

δnX
Mn
`j

where (`j) is an increasing sequence of positive integers which guarantees that |x∗i yi| < ε.
Note that (yj) is weakly null since (XMn

j )j is weakly null for all n and δn is summable. Since

(XMn
j )(n,j)∈I is regular, (yj) is a basic sequence with

(24) ‖yj‖ ≥
δ1

2
inf
n,m

‖Xn
m‖

(since the basis constant of (XMn
j )(n,j)∈I is at most equal to 2 by Remark 2.3). Since (δn) is

summable, (yj) is also bounded. Fix n ∈ N and let n ≤ F ⊆ N, with |F | ≤ Mn. Then

‖
∑

ajyj‖ ≥
1

3
‖
∑

j∈F ;j≥n

δnajX
Mn
`j
‖ (by Theorem 1.2)

≥1

6
‖
∑

j∈F ;j≥n

δnajX̃
Mn
j ‖ (by (23))

=
1

6
‖
∑

j∈F ;j≥n

δnajX̃
Mn
kj
‖

where the map F 3 j 7→ kj ∈ {1, 2, . . . , |F |} is a 1-1 increasing function

≥ 1

6C
δn‖

∑
j∈F ;j≥n

ajZj‖ (by (12))

Thus

‖
∑

ajyj‖ ≥ sup
n

1

6C
sup

n≤F⊆N;|F |≤Mn

δn‖
∑
i∈F

aiZi‖.

�

An easy corollary of Theorem 3.2 is Theorem 3.8 which is obtained if we set (zi) to be the
unit vector basis of `p for some fixed p ∈ [1,∞). In order to formulate Theorem 3.8 we need
to recall the notion of the Krivine set of a 1-subsymmetric (i.e. 1-equivalent to all of its
subsequences and unconditional) basic sequence.

Definition 3.7. Let (xn) be a 1-subsymmetric basic sequence in some Banach space. The
Krivine set of (xn) is defined to be the set of all p’s in [1,∞] with the following property.
For all ε > 0 and N ∈ N there exists m ∈ N and scalars (λk)

m
k=1 such that for all scalars

(an)N
n=1,

1

1 + ε
‖(an)N

n=1‖p ≤ ‖
N∑

n=1

anyn‖ ≤ (1 + ε)‖(an)N
n=1‖p

where

yn =
m∑

k=1

λkx(n−1)m+k for n = 1, . . . , N

and ‖ · ‖p denotes the norm of the space `p.
18



The Krivine’s theorem as it was proved by H. Rosenthal [17] and H. Lemberg [13] states
that if (xn) is a 1-subsymmetric basic sequence then the Krivine set of (xn) is non-empty.
In particular, if (xn) is a seminormalized weakly null basic sequence in a Banach space
having spreading model (x̃n) then (x̃n) is 1-subsymmetric, hence the Krivine set of (x̃n) is
non-empty.

Theorem 3.8. Let X be a Banach space. Assume that there exist seminormalized basic
sequences (xi), (yi) in X such that (xi) has spreading model (x̃i) which is s.c. dominated by
the unit vector basis of `p, for some p ∈ [1,∞) and (yi) has spreading model (ỹi) which is
unconditional and p belongs to the Krivine set of (ỹi). Then there exists a subspace Y of X
with a basis and an operator T ∈ L(Y, X) which is not a compact perturbation of a multiple
of the inclusion map.

For applying this result for p = 1, recall that by [2, Proposition 2.1], a seminormalized
subsymmetric basic sequence is not equivalent to the unit vector basis of `1 if and only if
it is s.c. dominated by the unit vector basis of `1. Thus Theorem 3.8 for p = 1 implies [2,
Theorem 6.4].

Proof of Theorem 3.8. Since p belongs to the Krivine set of (ỹi) then for all n ∈ N there
exists (xn

i )i∈N a block sequence of (yi) of identically distributed blocks such that any n terms
of (xn

i )i∈N are 2-equivalent to the unit vector basis of `n
p . Then apply Theorem 3.2 for (zi)

being the unit vector basis of `p. �

4. An Application of Theorem 3.8

Next we give an application of Theorem 3.8. As mentioned before the “multiple of the
inclusion plus compact” problem is non trivial only in HI-saturated Banach spaces. The HI
space to which Theorem 3.8 will be applied was constructed by N. Dew [7], and here will
be denoted by D. The construction of the space D is based on the 2-convexification of the
Schlumprecht space S [20] in a similar manner that the space of T.W. Gowers and B. Maurey
[11] is based on S. We recall the necessary definitions.

Let X be a Banach space with a basis (ei). For any interval E in N and a vector x =∑
xjej ∈ X define Ex =

∑
j∈E xjej ∈ X. There is a unique norm ‖·‖S on c00 which satisfies:

‖x‖S = sup

{
1

f(`)

∑̀
i=1

‖Eix‖S : E1 < · · · < E`

}
∨ ‖x‖`∞

where f(`) = log2(` + 1). The completion of c00 under this norm is the Banach space S.
Let S2 be its 2-convexification. Recall if X is a Banach space having an unconditional basis
(en), then we can define the 2-convexification X2 of X by the norm

‖
∑

an

√
en‖X2 := (‖

∑
a2

nen‖X)1/2

where (
√

en) denotes the basis of X2, (we will talk more later about the “square root” map
from X to X2). We will show that the spreading model of the unit vector basis of D is the
unit vector basis of S2. Before we do this we must see the definition of D.

In order to define the Banach space D, a lacunary set J ⊆ N is used which has the
property that if n,m ∈ J and n < m then 8n4 ≤ log log log m, and f(min J) ≥ 454. Write
J in increasing order as {j1, j2, . . .}. Now let K ⊂ J be the set {j1, j3, j5, · · · } and L ⊂ J
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be the set {j2, j4, j6, . . .}. Let Q be the set of scalar sequences with finite support and
rational coordinates whose absolute value is at most one. Let σ be an injective function
from Q to L such that if z1, . . . , zi is such a sequence, then (1/400)f(σ(z1, . . . , zi)

1/40)
1
2 ≥

#supp (
∑i

j=1 zj). Then, recursively, we define a set of functionals of the unit ball of the dual
space D∗ as follows: Let

D∗
0 = {λe∗n : n ∈ N, |λ| ≤ 1}.

Assume that D∗
k has been defined. Define the norm ‖ · ‖k on c00 by

(25) ‖x‖k = sup{|x∗(x)| : x∗ ∈ D∗
k}

and let ‖ · ‖∗k denote its dual norm. Then D∗
k+1 is the set of all functionals of the form F z∗

where F ⊆ N is an interval and z∗ has one of the following three forms:

(26) z∗ =
∑̀
i=1

αiz
∗
i

where
∑`

i=1 |αi| ≤ 1 and z∗i ∈ D∗
k for i = 1, . . . , `.

(27) z∗ =
1√
f(`)

∑̀
i=1

αiz
∗
i

where
∑`

i=1 α2
i ≤ 1, z∗i ∈ D∗

k for i = 1, . . . , `, and z∗1 < · · · < z∗` .

(28) z∗ =
1

4
√

f(`)

∑̀
i=1

z∗i where z∗i =
1√

f(mi)

mi∑
j=1

αi,j

Ez∗i,j
‖Ez∗i,j‖∗k

for certain (αi,j) where
∑

i,j α2
i,j ≤ 1 (αi,j’s are explicitly chosen in [7], but the exact

values are not needed for our purposes) where z∗i,j ∈ D∗
k for 1 ≤ i ≤ ` and 1 ≤ j ≤ mi,

z∗1,1 < · · · < z∗1,m1
< z∗2,1 < · · · < z∗`,m`

, m1 = j2`, βz∗i has rational coordinates for some β > 0
(whose exact value is not needed for our purpose), mi+1 = σ(βz∗1 , . . . , βz∗i ), for i = 1, . . . , `−1
and E is an interval.

Finally, the norm of D is defined by

‖x‖D = sup{z∗(x) : z∗ ∈ ∪∞k=0D
∗
k}.

Proposition 4.1. The spreading model of the unit vector basis of D is the unit vector basis
of S2.

Proof. From the definitions of the two spaces it is easy to see that for (ai) ∈ c00, ‖
∑

aiei‖S2 ≤
‖
∑

aiei‖D ((en) will denote the bases of both spaces S2 and D but there will be no confusion
about which space we consider at each moment). Thus to show Proposition 4.1 we need only
show for any given ε > 0, and finitely many scalars (ai)

N
i=1 there exists n0 such that for any

n1, n2, . . . , nN ∈ N with n0 < n1 < n2 < · · · < nN , we have

‖x‖D ≤ ‖y‖S2 + ε.

where x =
∑N

i=1 aieni
∈ D and y =

∑N
i=1 aiei ∈ S2. This will follow immediately once we

show by induction on n that for any n ∈ N, ε > 0 and scalars (ai)
N
i=1 we have
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(29) ‖x‖n ≤ ‖y‖S2 + ε

where ‖ · ‖n is defined in (25). For “n = 0” we have ‖x‖0 = max1≤i≤N |ai| ≤ ‖y‖S2 . Now for
the inductive step assume that (29) is valid for n. Let ε > 0 and scalars (ai)

N
i=1.

First note that by the induction hypothesis there exists n1
0 ∈ N such that for all n1

0 < n1 <
n2 < · · · < nN we have

(30) ‖x‖n ≤ ‖y‖S2 + ε.

Secondly, by the inductive hypothesis there exists n2
0 ∈ N such that for all 1 ≤ i0 ≤ j0 ≤ N

and n2
0 < n1 < n2 < · · · < nN we have

(31) ‖
j0∑

i=i0

aieni
‖n ≤ ‖

j0∑
i=i0

aiei‖S2 +
ε√
N

.

And finally there exists j0 ∈ L such that 1√
f(j0)

N‖y‖S2 ≤ ε. Let G = σ−1({1, 2, . . . , j0 −
1}), So G is a finite subset of finite sequences of vectors with rational coefficients. Let
n3

0 be the maximum of the support of any vector in any sequence in G. And then set
n0 = max{n1

0, n
2
0, n

3
0}. Recall the norming vectors z∗ ∈ D∗

n+1 can be one of three different
types. Each type of functional will present us with a different case.
CASE 1: Let z∗ be given by (26). Then

|z∗(x)| ≤
∑̀
i=1

|αi||z∗i (x)|

≤
∑̀
i=1

|αi|(‖x‖S2 + ε) (by the (30))

= ‖x‖S2 + ε.

CASE 2: Let z∗ be given by (27). Thus for n0 < n1 < n2 < · · · < nN we have

|z∗(x)| ≤ 1√
f(`)

∑̀
j=1

|αj||z∗j (x)|

≤ 1√
f(`)

∑̀
j=1

|αj||z∗j (Ejx)|

where Ej is the smallest interval containing the support of z∗j intersected with the support
of x. Continuing the above calculation we have
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|z∗(x)| ≤ 1√
f(`)

∑̀
j=1

|αj|‖Ejx‖n

≤ 1√
f(`)

∑̀
j=1

|αj|(‖Ejx‖s2 +
ε√
N

) (by (31))

≤ 1√
f(`)

(
∑̀
j=1

|αj|2)1/2(
∑̀
j=1

‖Ejx‖2
s2

)1/2 + ε

(by Cauchy-Schwarz’ inequality since there are at most N many nonempty Ej’s )

≤ ‖x‖s2 + ε.

CASE 3: Let z∗ be given by (28). We can of course assume z∗(x) 6= 0 thus let i0 be the
smallest natural number such that

∪i0
i=1supp (z∗i ) ∩ {n0 + 1, n0 + 2, . . .} 6= ∅.

Then by the definition of n3
0 we have that σ(βz∗1 , βz∗2 , . . . , βz∗i ) > j0 for i0 + 1 ≤ i ≤ `. Thus

|z∗(x)|

≤ 1
4
√

f(`)

∣∣∣∣ 1√
f(mi0)

mi0∑
j=1

αi0,jz
∗
i0,j(x)

∣∣∣∣+ 1
4
√

f(`)

1√
f(mi0+1)

mi0+1∑
j=1

|αi0+1,j||z∗i0+1,j(x)|+ · · ·

≤ 1
4
√

f(`)
‖y‖S2 + ε +

1
4
√

f(`)

1√
f(mi0+1)

∑
{1≤j≤mi0+1:z∗i0+1,jx 6=0}

|αi0+1,j||z∗i0+1,j(x)|+ · · · (by CASE 2)

≤ 1
4
√

f(`)
‖y‖S2 + ε +

1
4
√

f(`)

1√
f(j0)

N(‖y‖S2 + ε),

(32)

where the last inequality is valid since |αi,j| ≤ 1, |z∗i,j(x)| ≤ ‖z∗i,j‖∗n‖x‖n ≤ ‖x‖n ≤ ‖y‖S2 + ε,
mi ≥ j0 for all i0 + 1 ≤ i ≤ `, (by the choice of n0), and there are at most N many indexes
(i, j) for which z∗i,j(x) 6= 0. The last expression in equation (32) is at most equal to ‖y‖S2 +3ε
which finishes the proof. �

For the following remark we will need a bit more notation. If X is a Banach space having an
unconditional basis (en) and X2 is the 2-convexification of X then for x =

∑
anen ∈ X then

there is a canonical image of x in X2 which we define as
√

x =
∑

sign(an)
√
|an|

√
en ∈ X2

(where (
√

en) denotes the basis of X2).

Remark 4.2. Let 1 ≤ p < ∞. Let X be a Banach space with an unconditional basis (ei)i

and let (
√

ei)i be the basis of X2. Then p is in the Krivine set of (ei) if and only if 2p is in
the Krivine set of (

√
ei).

Proof. Let n ∈ N and ε > 0 be given. Since p is in the Krivine set of X, there exists a block
sequence (vi)

n
i=1 of (ei) such that for any scalars (ai)

n
i=1 we have that
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1

1 + ε
(

n∑
i=1

ap
i )

1/p ≤ ‖
n∑

i=1

aivi‖ ≤ (1 + ε)(
n∑

i=1

ap
i )

1
p

Let wi =
√

vi ∈ X2, and scalars (ai)
n
i=1 then

‖
n∑

i=1

aiwi‖X2 = ‖
n∑

i=1

a2
i vi‖

1
2
X ≤ (1 + ε)(

n∑
i=1

a2p
i )

1
2p

and

‖
n∑

i=1

aiwi‖X2 = ‖
n∑

i=1

a2
i vi‖

1
2
X ≥ 1

1 + ε
(

n∑
i=1

a2p
i )

1
2p .

The proof of the converse is similar. �

It is known [20] that the Krivine set of the unit vector basis of S consists of the singleton
{1}. Thus by Remark 4.2 we have:

Remark 4.3. The Krivine set of the unit vector basis of S2 consists of the singleton {2}.

Proposition 4.4. Let X, Y be Banach spaces with unconditional bases, (xn) be a basic
sequence in X, (yn) be a basic sequence in Y such that (xn) >> (yn). Then (

√
xn) >> (

√
yn)

where (
√

xn) and (
√

yn) are the canonical images of (xn) and (yn) in X2 and Y2 respectively.

Proof. Note that

lim inf
n→∞

inf
A⊆N;|A|=n

‖
∑
i∈A

√
xi‖X2 = lim inf

n→∞
inf

A⊆N;|A|=n
‖
∑
i∈A

xi‖
1
2
X = ∞.(33)

Also

∆(
√

xn),(
√

yn)(ε) = sup{‖
∑

ai
√

yi‖Y2 : |ai| ≤ ε and ‖
∑

ai

√
xi‖X2 = 1}

= (sup{‖
∑

a2
i yi‖Y : |ai|2 ≤ ε2 and ‖

∑
a2

i xi‖X = 1})
1
2

≤ (∆(xn),(yn)(ε
2))

1
2 .

(34)

The result follows immediately from (33) and (34). �

It has been shown in [2, Proposition 2.1] that if (en) is the unit vector basis of `1 and (fn) is
a normalized subsymmetric basic sequence which is not equivalent to (en) then (en) >> (fn).
Thus since the unit vector basis of S is normalized and subsymmetric we have that the unit
vector basis of `1 s.c. dominates the unit vector basis of S. Thus Proposition 4.4 gives:

Remark 4.5. The unit vector basis of `2 s.c. dominates the unit vector basis of S2.

Theorem 4.6. There exists an infinite dimensional subspace Y of D having a basis and
T ∈ L(Y, D) such that T 6∈ CiY→D +K(Y, D).

Proof. We will refer to (si) as the unit vector basis of the Schlumprecht space S and (
√

si)
as the unit vector basis of S2. Then apply Theorem 3.8 for p = 2 and (xi)i = (yi)i =
the unit vector basis of D. By Proposition 4.1 we have that (

√
si) is the spreading model

of the unit vector basis of D. By Remark 4.3 we have that 2 is in the Krivine set of
(
√

si). By Remark 4.5 we have that the unit vector basis of `2 s.c. dominates (
√

si). Thus
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by Theorem 3.8 we have that there exists an infinite dimensional subspace Y of D and
T ∈ L(Y, D) such that T 6∈ CiY→D +K(Y,D). �
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