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Quantum Data Compression for an i.i.d. quantum source
Notation
H⊕ := ⊕∞`=1H

⊗` is the Free Fock space associated with a Hilbert space H .

Given a symbol set S containing normalized vectors (pure states) spanning a Hilbert space HS , a quantum
source of symbols produces finite strings (tensor products) of symbols |x1〉|x2〉 · · · |xn〉 = |x1x2 · · · xn〉 ∈
S⊗n ⊆ H⊗nS with n ∈ N and |xk〉 ∈ S for every k. For every n ∈ N the set S⊗n is equipped with a proba-
bility distribution P so that each string |x1 · · · xn〉 is produced with probability P(||x1 · · · xn〉). Let (Xn)n∈N
be the stochastic process describing the string of symbols produced. If (Xn)n∈N is i.i.d. then we say that the
quantum source of symbols is i.i.d. In that case, P(|x1 · · ·xn〉) = P(|x1〉) · · ·P(|xn〉).
A quantum code is a linear isometry U : HS → (C2)⊕. This induces a TPCP map on the set Σ(HS) of the
states of HS defined by ρ 7→ UρU∗.
The extended quantum code U⊕ : H⊕S → (C2)⊕ is defined by “concatenation” (i.e. tensor products of the
values of U ).
The quantum code U is called uniquely decodable if U⊕ is an isometry.
The average state produced by the quantum source is equal to ρS =

∑
|x〉∈S P(|x〉)|x〉.

The von Neumann entropy of a density matrix ρ is given by S(ρ) = −tr (ρ log2 ρ).

Theorem (Noiseless Quantum Coding Theorem) [6]
Assume that a quantum source is i.i.d. and let ρ be the average state produced. For any δ > 0, (S(ρ) + δ) -
many qubits per symbol are sufficient in order to encode strings of symbol states with probability of error
tending to zero as the length of the strings tends to infinity.
Moreover, for any R < S(ρ), if at most R qubits are used per symbol, then the probability of error tends to
one as the length of the strings tends to infinity.

Interpetation
S(ρ) is the minimum number of qubits per symbol that are necessary for asymptotically uniquely decodable
(lossless) coding when the quantum source is i.i.d..

Indeterminate length and optimal codes
Definition [3, 7]

The (indeterminate) length of an element ω ∈ (C2)⊕ is defined by length (ω) = 〈ω|Λ|ω〉 = tr (|ω〉〈ω|Λ)
where Λ : (C2)⊕→ (C2)⊕ is the length observable defined by Λ =

∑∞
`=1 `Π` where Π` : (C2)⊕→ (C2)⊗`

denotes the orthogonal projection. In general, if ρ ∈ Σ((C2)⊕) then define length (ρ) = tr (ρΛ).

Let U : HS → (C2)⊕ be a uniquely decodable quantum code. For n ∈ N, the average length of U over
the symbols S⊗n is defined as

ALS⊗n(U) =
∑

|x1···xn〉∈S⊗n
P|x1 · · · xn〉)length (U⊗n(|x1 · · · xn〉))

=
∑

|x1···xn〉∈S⊗n
P(|x1 · · · xn〉)tr (U⊗n|x1 · · ·xn〉〈x1 · · ·xn|U†⊗nΛ).

For n ∈ N, a code Uopt,S⊗n : HS → (C2)⊕ is called optimal for the set of symbols S⊗n if

Uopt,S⊗n = argminU{ALS⊗n(U) : U is a uniquely decodable code }.

The optimal average length of S⊗n via lossless coding is defined as OAL(S⊗n) = ALS⊗n(Uopt,S⊗n).
The optimal average length per symbol for the first n symbols via lossless coding is defined as
OALPSn =

OAL(S⊗n)
n . The asymptotic optimal average length per symbol via lossless coding, (i.e.

asymptotic optimal lossless compression rate), is given by R = lim supn→∞OALPSn.

Theorem [3]
For every quantum source producing quantum states from a symbol set S we have

S(ρS) ≤ OAL(S) < S(ρS) + 1

where ρS is the average state produced by the quantum source.

Corollary
For every quantum source producing quantum states from a symbol set S and for every n ∈ N we have

1

n
S(ρS⊗n) ≤ OALPSn <

1

n
S(ρS⊗n) +

1

n

where ρS⊗n is the average state produced by the quantum source for the strings of symbols of length equal
to n. Hence the asymptotic lossless optimal lossless compression rate is given by

R = lim sup
n→∞

1

n
S(ρS⊗n).

How do we recognize the uniquely decodable codes? In the classical case one uses the Kraft-McMillan In-
equality. There are a few versions of quantum Kraft-McMillan inequalities [3,5,7]. Our version generalizes [3]
and has a converse statement, but in order to state it we need two definitions:
A quantum code U : HS → (C2)⊕ is said to have length eigenstates if it has the form U =

∑
i |ψi〉〈ei|

where (ei)i is an o.n. basis of HS and there exist positive integers (`i)i, (called length eigenstates), such that
ψi ∈ (C2)⊗`i.
A uniquely decodable quantum code U : HS → (C2)⊕ is called a classical-quantum scheme, if there exists
a classical code C : S → {0, 1}+ with #(S) = dim (HS) = d and an o.n. basis (ei)

d
i=1 of HS such that

U =
∑d
i=1 |C(xi)〉〈ei| where S = {xi : i = 1, . . . , d}.

Theorem (Quantum Kraft-McMillan Inequality) G. A. and D. Wright

If U is a uniquely decodable code with length eigenstates then tr (U∗2−ΛU) ≤ 1.
Conversely, if U is a linear isometry with length eigenstates satisfying the above inequality then there exists
a classical-quantum scheme Ũ having the same number of ` eigenstates for every ` ∈ N.

Dynamical entropy of a quantum dynamical system
Definition
A quantum dynamical system is a triple (A,Θ, φ) where A is a von Neumann algebra, Θ : A → A is a
positive unital map, and φ is a state on A.

Definition [1]
A quantum Markov chain is a tuple (φ, E) where φ is state on some von Neumann algebra A, and E is a
transition expectation, i.e. a linear bounded positive unital map E : Md⊗A → A for some fixed positive
integer d.

Definition [2, 4]

Let (A,Θ, φ) be a quantum dynamical system, and γ = (γ∗i γi)
d
i=1 be a POVM (acting on the same Hilbert

space as the von Neumann algebra A).

Define a quantum Markov chain (φ, E) as follows: The state φ is the same as the one appearing in the quan-
tum dynamical system. In order to define the transition expectation E , first define an auxiliary transition
expectation Eγ : Md ⊗A → A by

Eγ([ai,j]
d
i,j=1) =

d∑
i,j=1

γ∗i ai,jγj for all [ai,j]
d
i,j=1 ∈Md ⊗A,

and then define E : Md ⊗A → A by E = Θ ◦ Eγ.

Define a quantum Markov state ψ on MN
d of the quantum Markov chain (φ, E) by

ψ(m1 ⊗ · · · ⊗mn) = φ(E(m1 ⊗ E(m2 ⊗ E(· · · E(mn ⊗ 1) · · · )))) where 1 if the identity in A.

The joint correlations of a quantum Markov chain is a sequence (ρn)n∈N where ρn is a density matrix
in M⊗nd defined by ψ(m1 ⊗ · · · ⊗mn) = tr(ρn(m1 ⊗ · · ·mn)) for every n ∈ N and m1, . . . ,mn ∈Md.
The dynamical entropy of the quantum Markov chain (φ,E) is defined as

lim sup
n→∞

S(ρn)

n
,

and this is defined to be the dynamical entropy of the dynamical system (A,Θ, φ) with respect to the
POVM γ.

Quantum data compression for a stationary Markov source
A stochastic process (Xn)n∈N is called

• stationary if (X1, . . . , Xn) ∼ (X1+k, . . . , Xn+k) for all n, k.

• a Markov process if P(Xn+1|X1, X2, . . . , Xn) = P(Xn+1|Xn).

Easy Fact
A stochastic process (Xn)n∈N with values in a set S is a stationary Markov process if and only if the ran-
dom variables Xn’s are identically distributed and there exists a column stochastic matrix (pi,j)i,j∈S and
an invariant distribution (ps)s∈S such that for any n ∈ N and every s1, . . . sn ∈ S, P(X1 = s1, . . . , Xn =
sn) = ps1

∏n
j=2 psj,sj−1.

Let (Xn)n∈N be a stochastic process describing the strings of quantum symbols that are produced by a quan-
tum source. If (Xn)n∈N is a stationary Markov process then we say that the quantum source is a stationary
Markov source.

Thus every stationary quantum Markov source is characterized by:

•A symbol set S = {s1, . . . , sN} of normalized vectors spanning some Hilbert space HS ,

• a column stochastic matrix (pi,j)
N
i,j=1,

• an invariant distribution (pi)
N
i=1 for the above column stochastic matrix.

Construction: A quantum dynamical system and a POVM associated with a quantum stationary Markov
source
Let a stationary Markov quantum source associated with a symbol set S = {s1, . . . , sN} spanning a d-
dimensional Hilbert space HS , a column stochastic matrix (pi,j)

N
i,j=1 and a stationary distribution (pi)

N
i=1

as above. We construct a quantum dynamical system (A,Θ, φ) and a POVM as follows:

• A = B(CN ) (i.e. all bounded linear operators on CN ),

•Θ : B(CN )→ B(CN ) defined by Θ(|k〉〈`|) = δk,`
∑N
j=1 pk,j|j〉〈j|,

• φ(·) = tr (ρ·) where ρ ∈ Σ(CN ), (a state on CN ) is defined by ρ =
∑N
n=1 pn|n〉〈n|,

• if (ei)
d
i=1 is a fixed o.n. basis of HS then define operators (γi)

d
i=1 on CN by γi =

∑N
n=1〈ei|sn〉|n〉〈n|.

It is easy to verify that
∑d
i=1 γ

∗
i γi = 1CN i.e. (γ∗i γi)

d
i=1 is a POVM on CN .

Main Theorem (G. A. and D. Wright)
The asymptotic optimal lossless compression rate of a quantum stationary Markov source is equal to the
dynamical entropy of the associated quantum dynamical system with respect to the POVM that were given
in the above Construction.

Corollary
The asymptotic optimal lossless compression rate of an i.i.d. quantum source is equal to the von Neumann
entropy of the average state produced.
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