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Abstract: Let (xn) be a sequence in a Banach space X which does not converge in
norm, and let E be an isomorphically precisely norming set for X such that

∑

n

|x∗(xn+1 − xn)| < ∞, ∀x∗ ∈ E. (∗)

Then there exists a subsequence of (xn) which spans an isomorphically polyhedral
Banach space. It follows immediately from results of V. Fonf that the converse is also
true: If Y is a separable isomorphically polyhedral Banach space then there exists a
normalized M-basis (xn) which spans Y and there exists an isomorphically precisely
norming set E for Y such that (∗) is satisfied. As an application of this subsequence
characterization of sequences spanning isomorphically polyhedral Banach spaces we
obtain a strengthening of a result of J. Elton, and an Orlicz-Pettis type result.
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1. Introduction

In 1958 C. Bessaga and A. Pelczynski proved the following

Theorem 1.1 ([BP]). If (xn) is a non-weakly convergent sequence in a Banach space
X such that

sup
x∗∈Ba(X∗)

∑

n

|x∗(xn+1 − xn)| < ∞ (1)

then there exists a subsequence of (xn) which is equivalent to the summing basis (sn)
of c0.

Recall that the summing basis (sn) of c0 is defined by sn = e1 + . . . + en, ∀n ∈ N,
where (en) denotes the unit vector basis of c0. In 1981 J. Elton was able to eliminate
the assumption “non-weakly convergent” and relax the condition (1) and still obtain
that c0 embeds in the closed linear span [xn] of (xn). The result of J. Elton can be
stated as follows:
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Theorem 1.2 ([E2]). If (xn) is a semi-normalized basic sequence in a Banach space
X such that

∑ |x∗(xn)| < ∞, ∀x∗ ∈ ext Ba(X∗) (2)

(where ext Ba(X∗) denotes the set of the extreme points of the dual ball) then c0 embeds
in [xn].

In order to prove this result, J. Elton first showed that there exists a polyhedral Banach
space which embeds in [xn] (for the definition, examples and properties of the polyhe-
dral Banach spaces see the next section). Then the result of Theorem 1.2 follows from
the following theorem of V. Fonf:

Theorem 1.3 ([F3]). Every polyhedral Banach space X contains an isomorph of c0,
and if in addition X is separable, then X∗ is separable.

We prove a stronger result than Theorem 1.2 by eliminating the condition of having
a basic sequence, by replacing the set of the extreme points in condition (2) by any
isomorphically precisely norming set, and finally by obtaining the precise way that a
polyhedral Banach space embeds in [xn]. Our main result can be stated as follows:

Theorem 1.4. If (xn) is a sequence in a Banach space X which does not converge in
norm, and E is an isomorphically precisely norming set for X such that

∑

n

|x∗(xn+1 − xn)| < ∞, ∀x∗ ∈ E (3)

then there exists a subsequence of (xn) which spans an isomorphically polyhedral Banach
space.
Conversely, if Y is a separable isomorphically polyhedral Banach space then there exists
an M-basis (xn) in Y , ‖xn‖ = 1 for all n, and an isomorphically precisely norming set
E for Y such that [xn] = Y and (3) holds.

We recall the following terminology:

Definition 1.5. Let (X, ‖ · ‖) be a Banach space.

1. A set E ⊂ X∗ is called isomorphically precisely norming for (X, ‖ · ‖), (the ter-
minology is due to H. Rosenthal [R]), if there exists C ≥ 1 such that
(a) E ⊆ C · Ba(X∗),
(b) 1

C
‖x‖ ≤ supe∈E |e(x)|, ∀x ∈ X, and

(c) ∀x ∈ X ∃e0 ∈ E |e0(x)| = supe∈E |e(x)|.
If E satisfies (a), (b), and (c) for C = 1 then E is called precisely norming (or
boundary) for (X, ‖ · ‖).

2. A sequence of vectors (vi) in X is called to be a “complete minimal system in X
with dual system (v∗i )” if
(a) the finite linear combinations of {vi}i∈N are dense in X, and
(b) v∗i (vj) = δij for all i, j ∈ N.
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An M-basis for the Banach space X is a complete minimal system (vi)i∈N for X
with dual system (v∗i )i∈N such that whenever v∗i (x) = 0 for all i ∈ N we have that
x = 0.

Recall that the set of the norm achieving extreme points of the dual ball of a Banach
space X is defined as follows:

next Ba(X∗) = {x∗ ∈ ext Ba(X∗) : ∃x ∈ Ba(X) |x∗(x)| = 1}.
The set next Ba(X∗) is an example of a precisely norming set for X.

Theorem 1.4 is a strengthening of the following remark which can be easily derived
from a result of V. Fonf [F4].

Remark 1.6. Under the same hypotheses of Theorem 1.4 there exist a sequence (εn) ∈
{±1}N and an increasing sequence of positive integers (`k) such that [(

∑`k
i=1 εi(xi −

xi−1))k] is an i.p. space.

We sketch the proof of Remark 1.6 at the end of Section 3.

The last section is devoted to applications of Theorem 1.4. One application is given
in C(K) spaces. If K is a compact metric space then DSC(K) denotes the class
of bounded differences of semi-continuous functions on K (the definition appears in
section 4). An immediate corollary of Theorem 1.4 is the following:

Theorem 1.7. Let f ∈ DSC(K)\C(K) be given, where K is a compact metric space.
Then f strictly governs the class of (separable) polyhedral Banach spaces.

This theorem was the main motivating result for this research. The definitions of
the terms “strictly governs” and “governs” appear in section 4. This generalizes the
following theorem of J. Elton which was also proved by R.Haydon, E. Odell and H.
Rosenthal:

Theorem 1.8 ([E2], [HOR]). Let f ∈ DSC(K)\C(K) be given, where K is a compact
metric space. Then f governs {c0}.
Another application is the following Orlicz-Pettis type result:

Theorem 1.9. Let (yn) be a sequence in a Banach space X and let E be an isomor-
phically precisely norming set for X. If c0 does not embed isomorphically in the closed
linear span [yn] of (yn) and

∑

n

|x∗(yn)| < ∞, ∀x∗ ∈ E,

then
∑

n yn converges unconditionally.
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2. Isomorphically polyhedral Banach spaces

Polyhedral Banach spaces were introduced by V. Klee [K]. An infinite dimensional
Banach space is called polyhedral if the ball of any of its finite dimensional subspaces is
a polyhedron, i.e. it has finitely many extreme points. c0 is an example of a polyhedral
Banach space. A Banach space will be called isomorphically polyhedral (i.p. in short)
if it is polyhedral under some equivalent norm. We are interested in isomorphic theory
and therefore in i.p. Banach spaces. Examples of i.p. Banach spaces are: c (the space
of convergent sequences), the `1 preduals [F4], the spaces C(α) for any ordinal α [F2],
c0-sum of separable i.p. spaces (easy to prove using Theorem 2.1), finite dimensional
extensions of i.p. spaces (easy to prove), the Orlicz sequence space hM where M is a
non-degenerate Orlicz function satisfying limt→0 M(Kt)/M(t) = ∞ for some K > 1
[L]. The following characterization of the separable i.p. Banach spaces was proved by
V. Fonf: (note that if (X, ‖ · ‖) is a Banach space, | · | is an equivalent norm and C ≥ 1
then we say that these norms are C equivalent if C−1‖x‖ ≤ |x| ≤ C‖x‖ for all x ∈ X)

Theorem 2.1 ([F3], [F4], [F5]). Let (X, ‖ · ‖) be a separable Banach space. TFAE

(1) For every ε > 0 there exists a 1 + ε equivalent norm | · | on X such that (X, | · |)
is polyhedral.

(2) For every ε > 0 there exists a 1 + ε equivalent norm ||| · ||| on X such that the set
next Ba(X, ||| · |||)∗ is countable.

The next two lemmata give sufficient conditions for a Banach space to be an i.p. space.
We start with some notation: If X is a Banach space and K is a subset of the unit
dual ball then the space [X, ‖ · ‖K ] is the completion of the space X in the norm

‖x‖K = sup{|f(x)| : f ∈ K}
for all x ∈ X. Note that if X is separable then w∗−cl (K) is a compact metric space
in the weak∗ topology and [X, ‖ · ‖K ] is isometric to a subspace of C(w∗−cl (K)) hence
it is separable.

Lemma 2.2. Let X be a separable Banach space having a boundary K with K =
∪∞i=1Ki, such that for all i we have Ki ⊂ Ki+1 and Xi = [X, ‖ · ‖Ki

] is an i.p. space.
Then X is an i.p. space.

Proof Take a decreasing sequence of positive numbers (εi)i∈N, and using the main
result of [DFH] (Theorem 1 and Proposition 1-2) find an approximating polytope Vi

for the unit ball Ba (Xi) of Xi such that

Vi ⊂ Ba (Xi) ⊂ (1 + εi)Vi

and Vi is a closed absolutely convex body i.e there is a (1 + εi) equivalent norm ‖ · ‖Vi

whose unit ball is the set Vi. Moreover, the unit dual ball V ∗
i has a countable boundary

{hi
j}∞j=1 with the property that every weak∗-approximation point of {hi

j}∞j=1 does not



ISOMORPHICALLY POLYHEDRAL BANACH SPACES 5

attain its supremum on Vi, where the set of weak∗-approximation points of a set A is
defined as the set of points of the weak∗ closure of A which don’t belong to A:

w∗−ap (A) = w∗−cl (A)\A.

It is clear that for all i ∈ N,

V ∗
i ⊃ Ba (X∗

i ) ⊃ 1

1 + εi

V ∗
i .

For i ∈ N consider the natural restriction map

Ti : X → Xi

and note that

T ∗
i (Ba (X∗

i )) ⊃ Ki.

Now put

W ∗ = w∗−cl co {(1 + εi)T
∗
i (hi

j) : i, j ∈ N}
and for x ∈ X define

|||x||| = sup{|f(x)| : f ∈ W ∗}.
We first show that ||| · ||| is an equivalent norm on X.

Indeed, for every x ∈ X there exists x∗ ∈ K such that

‖x‖ = |x∗(x)|.
There exists i ∈ N and y∗ ∈ Ba (X∗

i ) such that x∗ = T ∗
i y∗. Thus

‖x‖ = |y∗(Tix)|.
Since y∗ ∈ V ∗

i and {hi
j}∞j=1 is a boundary for V ∗

i , there exists j ∈ N with

|y∗i (Tix)| ≤ |hi
j(Tix)| < (1 + εi)|(T ∗

i hi
j)(x)| ≤ |||x|||.

Also, since

T ∗
i (hi

j) ⊂ (1 + εi)T
∗
i (BaX∗

i ) ⊂ (1 + εi)Ba (X∗)

we have that

|||x||| ≤ (1 + ε1)
2‖x‖

which proves the equivalence of the norms.

We now claim that for every x ∈ X\{0}
sup{|T ∗

i (hi
j)(x)| : i, j ∈ N} < sup{(1 + εi)|T∗

i (h
i
j)(x)| : i, j ∈ N}. (4)

Indeed, let x ∈ X\{0}. Let x∗ ∈ K such that

‖x‖ = |x∗(x)|
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and let i0 ∈ N with x∗ ∈ Ki0 . Note that

sup{|T ∗
i (hi

j)(x)| : i > i0, j ∈ N} ≤ sup{(1 + εi)|(T ∗
i y∗)(x)| : i > i0, y

∗ ∈ Ba (X∗
i )}

≤ (1 + εi0+1) sup{|(T ∗
i y∗)(x)| : i > i0, y

∗ ∈ Ba (X∗
i )}

≤ (1 + εi0+1) sup{|y∗(x)| : y∗ ∈ Ba (X∗)}
= (1 + εi0+1)‖x‖
= (1 + εi0+1) sup{|y∗(x)| : y∗ ∈ Ki0}
= (1 + εi0+1)‖Ti0x‖Ki0

≤ (1 + εi0+1) sup{|y∗(Ti0x)| : y∗ ∈ V ∗
i0}

= (1 + εi0+1) sup{|hi0
j (Ti0x)| : j ∈ N}

< sup{(1 + εi0)|(T ∗
i0
hi0

j )(x)| : j ∈ N}
≤ sup{(1 + εi)|T ∗

i (hi
j)(x)| : i, j ∈ N}.

Also for every i ∈ N there exists i′ ∈ N such that

sup{|hi
j(Tix)| : j ∈ N} = |hi

i′(Tix)|.
Thus

sup{|(T ∗
i hi

j)(x)| : i ≤ i0, j ∈ N} = max{|(T ∗
i hi

i′)(x)| : i ≤ i0}
< max{(1 + εi)|(T ∗

i hi
i′)(x)| : i ≤ i0}

≤ sup{(1 + εi)|T ∗
i (hi

j)(x)| : i, j ∈ N}
which finishes the proof of (4).

Obviously,

ext Ba (X, ||| · |||)∗ ⊂ w∗−cl {(1 + ei)T
∗
i hi

j : i, j ∈ N}.
We claim that

next Ba (X, ||| · |||)∗ = {(1 + εi)T
∗
i hi

j : i, j ∈ N} (5)

which will finish the proof of the Lemma by Theorem 2.1. In order to prove (5) it is
enough to show that every

x∗ ∈ w∗−ap {(1 + ei)T
∗
i hi

j : i, j ∈ N}
does not achieve its supremum on Ba (X, ||| · |||). Indeed for such x∗ there exists a
sequence

((1 + εi(n))T
∗
i(n)h

i(n)
j(n))n∈N

which converges weak∗ to x∗. If there exists an infinite subsequence of (i(n))n∈N which
is constant, then the result follows by the choice of (hi

j)j∈N for each i ∈ N. Otherwise,
we can assume that i(n) →∞. Since εi(n) → 0 we have that

T ∗
i(n)h

i(n)
j(n) → x∗, weak∗.
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i.e.

x∗ ∈ w∗−cl {T ∗
i (hi

j) : i, j ∈ N}.
If there exists x ∈ X, |||x||| = 1 with |x∗(x)| = 1 then (4) gives a contradiction. 2

The following Lemma is just a combination of Lemma 1.5 from [DFH] and Theorem
2.1.

Lemma 2.3. Let X be a Banach space having a boundary which may be covered by a
countable union of norm-compact sets. Then X is an i.p. space.

The next Lemma gives sufficient conditions for detecting norm-precompact sets.

Lemma 2.4. Let {vi}∞i=1 be a complete minimal system in a Banach space X with dual
system {v∗i }∞i=1. If D ⊂ Ba (X∗) has the property

∞∑

i=1

‖v∗i ‖ sup
d∈D

|d(vi)| < ∞

then D is ‖ · ‖-precompact.

Proof Take ε > 0 and let n ∈ N be such that

∞∑

i=n+1

‖v∗i ‖ sup
d∈D

|d(vi)| < ε

4
.

Without loss of generality we may assume that D is weak∗ compact, so that the re-
striction D|[vi]

n
i=1 of D on the (closed) linear span [vi]

n
i=1 (where D is now considered

as a subset of X∗∗) is norm-compact. Choose {dj}`
j=1 ⊂ D such that {dj|[vi]

n
i=1}`

j=1 is

a δ-net for D|[vi]
n
i=1 where δ = ε

2
(
∑n

i=1 ‖v∗i ‖‖vi‖)−1. We claim that {dj}`
j=1 is a finite

ε-net for D which finishes the proof. Indeed, for d ∈ D find j ∈ {1, . . . , `} such that
‖(d − dj)|[vi]

n
i=1‖ < δ. For every finite linear combination x =

∑m
i=1 xivi of {vi} with

‖x‖ ≤ 1 we have

|(d− dj)(x)| ≤
m∑

i=1

|xi||(d− dj)(vi)|

≤
n∑

i=1

‖v∗i ‖δ‖vi‖+
m∑

i=n+1

‖v∗i ‖2 sup
d′∈D

|d′(vi)| < ε

which proves that {dj}`
j=1 is an ε-net for D since the finite linear combinations of {vi}

are dense in X. 2

Finally, the last ingredient of the proof is a technical Lemma which makes repeatedly
use of diagonal arguments.



8 G. ANDROULAKIS

Lemma 2.5. Let K be a set which can be written as an increasing union of sets K =
∪∞m=1Km and let {xn}∞n=1 be a sequence in `∞(K). Suppose that for each m ∈ N and
for each subsequence {yn} of {xn} we have that

inf
p 6=q

‖yp − yq‖Km = 0,

where
‖y‖Km = sup

k∈Km

|k(y)|
for y ∈ `∞(K). Then there exists a subsequence {zn} of {xn} such that

∞∑

n=1

n‖zn+1 − zn‖Km < ∞

for each m ∈ N.

Proof We begin with the following claim: For every subsequence (yn) of (xn), for every
m ∈ N, and for every ε > 0 there exists a subsequence (zn) of (yn) such that

‖z1 − zn‖Km < ε, ∀n ∈ N.

Indeed, assume that the claim is false. Thus, if we set

I1 = {n ∈ N : ‖y1 − yn‖Km < ε},
then I1 is finite. Set i1 = max I1 + 1. Also, the set

I2 = {n > i1 : ‖yi1 − yn)‖Km < ε}
is finite. Set i2 = max I2 + 1. We continue similarly. Then the subsequence (yin) of
(yn) satisfies

inf
p 6=q

‖(yip − yiq)‖Km > ε

which is a contradiction. The claim is proved.

Note that if (zn) satisfies the previous claim then

‖zp − zq‖Km < 2ε

for all p, q ∈ N.

For m = 1, using this remark and a diagonal argument we can choose a subsequence
(z1

n) of (xn) such that

‖z1
p − z1

q‖K1 <
1

2n

for all n ∈ N and for all p, q ≥ n. Take m = 2 and similarly find a subsequence (z2
n) of

(z1
n) such that

‖z2
p − z2

q‖K2 <
1

2n

for all n ∈ N and for all p, q ≥ n. We continue in the same manner. It is easy to verify
that the diagonal sequence (zn

n) satisfies the statement of the Lemma. 2
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3. The proof of the main result

Before we present the proof of Theorem 1.4, we give some more preliminary ingre-
dients. We use the following subsequence dichotomy for the c0 basis, due to J. Elton:

Theorem 3.1 ([E1]). Every semi-normalized weakly null sequence which does not have
a semi-boundedly complete subsequence, has a subsequence equivalent to the unit vector
basis of c0.

Recall that a sequence (xn) is called semi-boundedly complete if for every sequence
(λn) ⊂ R we have

sup
m
‖

m∑

n=1

λnxn‖ < ∞⇒λn → 0.

Our main result will follow from the following:

Theorem 3.2. If (xn) is a basic sequence in a Banach space X with infn ‖xn‖ > 0,
and E is an isomorphically precisely norming set for X such that

∑

n

|x∗(xn+1 − xn)| < ∞, ∀x∗ ∈ E,

then there exists a subsequence of (xn) which spans an isomorphically polyhedral Banach
space.

We postpone the proof of Theorem 3.2 for the moment. We first give a proof of
Theorem 1.4 using the result of Theorem 3.2.

Definition 3.3. Let (X, ‖ · ‖) be a Banach space and Y be a linear (not necessarily
closed) subspace of X∗. Y is a norming linear space if there exists C > 0 such that

1

C
‖x‖ ≤ sup

y∈Y,‖y‖=1
|y(x)| ≤ C‖x‖

for every x ∈ X.

The following criterion for extracting basic sequences will be used:

Criterion ([KP], see also [M]) Let (X, ‖ · ‖) be a Banach space, Y be a norming
subspace of X∗, (xn) be a sequence in X such that infn ‖xn‖ > 0. In each of the
following cases (xn) has a basic subsequence.

(a) y(xn) → 0 for all y ∈ Y .
(b) (y(xn)) is Cauchy for all y ∈ Y yet there is no x in X with y(xn − x) → 0 for all

y ∈ Y .

Proof of Theorem 1.4 Let (xn) be a sequence in a Banach space X which does not
converge in norm, and let E be an isomorphically precisely norming set for X such that
(3) holds. We define the (not necessarily closed) subspace Y = span (E) of X∗. Then
Y is norming. If (b) of the above criterion applies then (xn) has a basic subsequence,
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and the result follows from Theorem 3.2. If (b) does not apply then there exists x
in X such that y(xn − x) → 0. Since (xn) does not converge in norm, there exists a
subsequence (xnk

) of (xn) with inf ‖xnk
−x‖ > 0. Thus (a) of the above criterion gives

that there exists a subsequence (xnk`
) of (xnk

) such that (xnk`
−x) is a basic sequence.

Since ∞∑

`=1

|x∗[(xnk`+1
− x)− (xnk`

− x)]| < ∞,

Theorem 3.2 gives the existence of a subsequence (yn) of xn) such that [(yn − x)n] is
isomorphically polyhedral. Thus the 1-dimensional extension [(yn−x)n] + [x] is an i.p.
space, and therefore so is its subspace [yn].

Conversely, consider a separable isomorphically polyhedral Banach space Y . By Theo-
rem 2.1 there exists a countable isomorphically precisely norming set E = {f1, f2, . . . }
of non zero functionals which are finitely linearly independent (i.e. dim[fi]

n
i=1 = n for all

n. Using [M] find an M-basis (xn) of X with dual system (x∗n) such that [x∗i ]
n
i=1 = [fi]

n
i=1,

and ‖xn‖ = 1 for all n. It is trivial that (3) holds. 2

We now present the

Proof of Theorem 3.2 We can assume without loss of generality that X is separable
(e.g. by considering X = [xn]). For every x ∈ X we define

‖x‖ = sup
e∈E

|e(x)|.

This defines an equivalent norm on X, and E is a precisely norming set for (X, ‖ · ‖).
Also, the weak∗ topology is metrizable on Ba(X∗), and let d(·, ·) denote the induced
metric. For m ∈ N we define (set x0 = 0)

Km = {x∗ ∈ Ba(X, ‖ · ‖)∗ :
∞∑

n=1

|x∗(xn − xn−1)| ≤ m}.

Then, Km is a weak∗ closed subset of Ba(X∗) for every m ∈ N, K1 ⊆ K2 ⊆ · · · , and
K := ∪∞m=1Km ⊇ E. Define f : K −→ R by

f(k) = lim
n

k(xn), ∀k ∈ K.

We separate the following cases:

Case 1: Assume that there exists m ∈ N such that the restriction f | Km is not
continuous (Kn will always be equipped with the weak∗ topology of X∗, for every
n ∈ N).

We claim that for every m′ ≥ m there exists a subsequence (xm′
n )n of (xn) satisfying:

• (xm
n )n is a subsequence of (xn).

• (xm′+1
n )n is a subsequence of (xm′

n )n.
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• [(xm′
n | Km′)n] is an i.p. Banach space (where [(xm′

n | Km′)n] denotes the comple-
tion of the normed space span (xm′

n | Km′)n).

Indeed, for m′ = m we have that

sup{∑
n

|x∗(xn − xn−1)| : x∗ ∈ Ba([(xn | Km)n], ‖ · ‖C(Km))
∗} ≤ m

and (xn | Km)n is non-weakly convergent in C(Km). Thus by Theorem 1.1 there exists
a subsequence (xm

n )n of (xn) such that (xm
n | Km)n is equivalent to the summing basis.

Thus [(xm
n | Km)n] is an i.p. Banach space. The proof of the inductive step is a

repetition of the same argument, since the hypothesis “f | Km is not continuous” gives
that “f | Km′ is not continuous” for every m′ ≥ m. The proof of claim is complete.

Set yn = xn
n for every n ≥ m. Then (yn)n≥m is a subsequence of (xn) and satisfies the

assumptions of Lemma 2.2 , therefore [yn] is an i.p. space.

Case 2: Assume that f | Km is continuous for every m ∈ N.

We separate two cases:

Subcase 2.1: Assume that there exists a subsequence (yn) of (xn) and there exists
m ∈ N such that

inf
n
‖(yn − f) | Km‖C(Km) > 0

and therefore for every m′ ≥ m we have that

inf
n
‖(yn − f) | Km′‖C(Km′ ) > 0.

Thus for every m′ ≥ m, ((yn− f) | Km′)n is a weakly null semi-normalized sequence
(by the definition of Km′ , note that ‖yn | Km′‖C(Km′ ) ≤ m′, ∀n ∈ N).

For every subsequence (zn) of (yn) and for every m′ = m, m + 1, . . . we have that
((zn − f) | Km′)n is not semi-boundedly complete.

Indeed, for every n ∈ N we have that

‖[(z1 − f)− (z2 − f) + · · ·+ (−1)n+1(zn − f)] | Km′‖C(Km′ )

≤ ‖[z1 − z2 + · · ·+ (−1)n+1zn] | Km′‖C(Km′ ) + ‖f | Km′‖C(Km′ ).

There exists k ∈ Km′ such that

‖[z1 − z2 + · · ·+ (−1)n+1zn] | Km′‖C(Km′)

= |(z1 − z2 + · · ·+ (−1)n+1zn)(k)|
≤ |(z1 − z2)(k)|+ |(z3 − z4)(k)|+ · · ·+ m′

≤ ∑

i

|k(xi − xi−1)|+ m′

≤ 2m′.
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Thus

sup
n
‖[(z1 − f)− (z2 − f) + · · ·+ (−1)n+1(zn − f)] | Km′‖C(Km′ )

≤ 2m′ + ‖f | Km′‖C(Km′ ).

Therefore, the sequence ((zn − f) | Km′)n is not semi-boundedly complete since the
sequence ((−1)n+1)n does not converge to zero.

We claim that for every m′ ≥ m there exists a subsequence (ym′
n )n of (yn) satisfying

• (ym
n ) is a subsequence of (yn).

• (ym′+1
n )n is a subsequence of (ym′

n )n.
• ([(ym′

n | Km′)n], ‖ · ‖C(Km′ )) is an i.p. Banach space.

Indeed, for m′ = m, ((yn − f) | Km)n is a weakly null semi-normalized sequence which
does not have any semi-boundedly complete subsequence (by Claim B). By Theorem
3.1 there exists a subsequence (ym

n )n of (yn) such that ((ym
n − f) | Km)n is equivalent

to the unit vector basis of c0. Thus ([((ym
n − f) | Km)n], ‖ · ‖C(Km)) is an i.p. Banach

space. Hence [((ym
n − f) | Km)n] + [f | Km] is an i.p. Banach space, and therefore so is

its subspace [(ym
n | Km)n]. The proof of the inductive step is a repetition of the same

argument. The proof of Claim C is complete and the proof of Subcase 2.1 finishes
identically as in Case 1.

Subcase 2.2: Assume that for every subsequence (yn) of (xn), and for every m ∈ N we
have that

inf
n
‖(yn − f)|Km‖C(Km) = 0.

It is clear that in this case for every subsequence (yn) of (xn), and for every m ∈ N we
have that

inf
n 6=n′ ‖(yn − yn′)|Km‖C(Km) = 0.

Using Lemma 2.5 find a subsequence (zn) of (xn) such that
∞∑

n=1

n‖(zn+1 − zn)|Km‖C(Km) < ∞, m = 1, 2, . . .

Since (xn) is a basic sequence with infn ‖xn‖ > 0, the sequence of the biorthogonal
functionals is bounded:

sup
n
‖x∗n‖ = C < ∞.

Denote

vn = zn+1 − zn, Y = [vn]∞1 , v∗n = −
n∑

i=1

z∗i |Y, n = 1, 2, . . .

Then (vn) is a complete minimal system for Y with dual system (v∗i ). We have

‖v∗n‖ ≤ Cn, n = 1, 2 . . .
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It is clear that for each m ∈ N
∑

n

‖v∗n‖‖vn|Km‖C(Km) < ∞

and therefore by Lemma 2.4 each Km is ‖ · ‖-precompact (actually, ‖ · ‖-compact).
Using Lemma 2.3 we conclude that Y is an i.p. space, as well as [zn]∞1 = Y + [z1]. The
proof of the Theorem 3.2 is complete. 2

Using Theorem 1 of [F4] we can give an easy proof of the following weaker result than
Theorem 1.4.

Remark 1.6 Under the same hypotheses of Theorem 1.4 there exist a sequence (εn) ∈
{±1}N and an increasing sequence of positive integers (`k) such that [(

∑`k
i=1 εi(xi −

xi−1))k] is an i.p. space.

Indeed, the proof of Theorem 1 in [F4] shows the following:

Let (X, ‖·‖) be a Banach space, K1 ⊂ K2 ⊂ · · · be subsets of Ba(X∗) and let
(wn) be a sequence in X. If (wn) is basic, infn ‖wn‖ > 0,

∑
n ‖wn | Kn‖ < ∞

and ∪nKn is an isomorphically precisely norming set, then [wn] is an i.p.
Banach space.

Now, the proof of the assertion of the remark can be sketched as follows: If there is
no subsequence of (xn) equivalent to the summing basis, then there exists a sequence
(εn) ∈ {±1}N such that

(
n∑

i=1

εi(xi − xi−1))n is not bounded.

Therefore there exists an increasing sequence (nk) of integers such that

‖
nk∑

i=1

εi(xi − xi−1)‖ ≥ 2kk, ∀k ∈ N.

Set zk =
∑nk

i=1 εi(xi − xi−1) for every k ∈ N. Since (zk) does not converge in norm,
and (y(zk)) is Cauchy for every y ∈ span E, we obtain (as in the proof of Theorem
1.4) that there exists z ∈ X (z can also be zero) and an increasing sequence (mk) of
integers such that (zmk

− z) is a basic sequence. Set

Km = {x∗ ∈ Ba(X∗) :
∞∑

n=1

|x∗(xn − xn−1)| ≤ m}, ∀m ∈ N

(where x0 = 0). We easily see that

∑

k

‖ zmk
− z

‖zmk
− z‖ | Kk‖ < ∞.
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Thus, by the above mentioned Theorem 1 of [F4] we obtain that

[(

nmk∑

i=1

εi(xi − xi−1))k] is an i.p. space.

4. Applications

As a first application we strengthen a corollary of Theorem 1.2 which was also proved
in a different way by R. Haydon, E. Odell and H. Rosenthal [HOR]. First we need some
definitions. Let K be a compact metric space. B1(K) denotes the class of bounded
Baire-1 functions on K, i.e. the pointwise limits of the uniformly bounded sequences
of continuous functions on K. DSC(K) denotes the space of bounded Differences of
Semi-Continuous functions on K, i.e.

DSC(K) = {f : K −→ R | there exists a uniformly bounded sequence

(fn)∞n=1 ⊂ C(K) such that lim
n

fn(k) = f(k) and

∞∑

n=1

|fn+1(k)− fn(k)| < ∞ for all k ∈ K}.

Let f be a non-continuous function on B1(K) and C be a non-empty class of Banach
spaces. Using terminology which was introduced by R. Haydon, E. Odell and H.
Rosenthal [HOR], we say that f governs C if for every uniformly bounded sequence
(fn) of continuous functions on K which converges pointwise to f on K, there exists
X ∈ C which embeds isomorphically in the closed linear span [fn] of (fn) equipped
with the supremum norm. We say that f strictly governs C if for every uniformly
bounded sequence (fn) of continuous functions on K which converges pointwise to f
on K there exists a convex block sequence (gn) of (fn) such that the closed linear span
[gn] of (gn) is isomorphic to some X ∈ C. A corollary of Theorem 1.2 which was proved
in a different way by R. Haydon, E. Odell and H. Rosenthal can be stated as follows:

Theorem 1.8 [[E2], [HOR]] Let f ∈ DSC(K)\C(K) be given, where K is a compact
metric space. Then f governs {c0}.
A generalization of this result is the following:

Theorem 1.7 Let f ∈ DSC(K)\C(K) be given, where K is a compact metric space.
Then f strictly governs the class of (separable) polyhedral Banach spaces.

For deducing Theorem 1.7 from Theorem 1.4 we need the next well known remark. We
first fix some terminology: If A is a subset of a Banach space X then Ã denotes the
weak∗ closure of A in X∗∗. Also if A, B are non-empty subsets of (X, ‖ · ‖) then the
minimum distance between A and B is defined by:

md (A, B) = inf{‖a− b‖ : a ∈ A, b ∈ B}.
Remark 4.1. If A, B are convex subsets of a Banach space, then md (A, B) = md (Ã, B̃).
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Thus, if f ∈ DSC(K)\C(K) and a bounded sequence (fn) of continuous functions
which converges pointwise to f on K, are given, then by Remark 4.1 there exists a
convex block sequence (gn) of (fn) such that

∞∑

n=1

|gn+1(k)− gn(k)| < ∞, ∀k ∈ K.

Since f 6∈ C(K), we can also assume (by considering an appropriate subsequence)
that (gn) is a semi-normalized basic sequence. Thus Theorem 1.4 gives that some
subsequence of (gn) spans an i.p. Banach space, which proves Theorem 1.7.

As a second application we obtain an Orlicz-Pettis type result:

Theorem 1.9 Let (yn) be a sequence in a Banach space X and let E be an isomor-
phically precisely norming set for X. If c0 does not embed isomorphically in the closed
linear span [yn] of (yn) and

∑

n

|x∗(yn)| < ∞, ∀x∗ ∈ E,

then
∑

n yn converges unconditionally.

Proof For (ηi) ⊂ {±1}N define the sequence (xn) by

xn =
n∑

i=1

ηiyi, ∀n ∈ N.

We have that the sequence (xn) satisfies (3). Since c0 does not embed isomorphically
in [yn] = [xn], we have that the conclusion of Theorem 1.4 fails. Thus the sequence
(xn) converges in norm. Hence

∑
n yn converges unconditionally. 2

As a final application of Theorem 1.4 we prove the following immediate corollary which
has been proved previously by V. Fonf [F4].

Corollary 4.2. Let X be a Banach space which does not contain an isomorph of c0.
Let A be a subset of X, and let B be an isomorphically precisely norming subset of X∗.
If for every b ∈ B the set {b(a) : a ∈ A} is bounded, then A is bounded.

Proof If A is not bounded, we can find a sequence (an) ⊂ A such that ‖an‖ > 2n for
all n ∈ N. Set

αn =
n∑

i=1

ai

‖ai‖ , ∀n ∈ N.

Thus ∑ |b(αn+1 − αn)| < ∞, ∀b ∈ B.

Since X does not contain an isomorph of c0, by Theorem 1.4 we obtain that (αn)
converges in norm, which is a contradiction. 2
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Remark 4.3. It can be proved that if ‖ · ‖ is a Gateaux differentiable and locally
uniformly convex norm on c0, and B is an isomorphically precisely norming set for
(c0, ‖ · ‖) then for any A ⊂ c0 with {b(a) : a ∈ A} is bounded for every b ∈ B we have
that A is bounded.
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