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Abstract: We study the Hessian of the Yang-Mills-Higgs functional as the self-interaction

parameter λ varies and examine how convergence in the configuration space controls the sign

of the first eigenvalue at the limit. As an application, we show that the spherically symmetric

solutions of ’t Hooft and Polyakov are stable for λ in the neighborhood of 0 and that the

kernels of their Hessians are precisely the spaces generated by their spatial derivatives.

1. Introduction

In 1966 Higgs [H] introduced a Lagrangian coupling vector gauge fields with a pair of

scalar fields and inducing spontaneous symmetry breaking. In this way, the fields of the

model acquired masses, which corresponded to exponential decay. The Yang-Mills-Higgs

functional Eλ on R3 is the static, classical version of Higgs’ functional and describes massive

particles with magnetic charge. These are the magnetic monopoles. The massive components

of the Higgs field Φ have mass bounded by
√

λ, for λ a parameter in the functional.

The Prasad-Sommerfield limit of the theory is obtained by setting λ = 0. Inevitably, at

this limit some exponential decay is lost. The idea is that information at the limit ought to

propagate to the λ 6= 0 case, and trying to substantiate this has been the main motivation

for this paper. A unique feature of the λ = 0 limit is that the minima satisfy first order

equations, the Bogomo’lnyi equations that, of course, imply the second order variational

equations for λ = 0. In fact, Prasad and Sommerfield gave closed form solutions for these

minima when the magnetic charge is 1. For λ = 0 it is now known that there exist minimal

solutions for any magnetic charge [JT], as well as non-minimal solutions of arbitrarily high

energy [T3].
1
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On the other hand, spherically symmetric solutions of the variational equations of Eλ,

for any λ ≥ 0, were suggested by ’t Hooft and Polyakov [tH], [P]. For each λ these are

obtained by minimizing Eλ amongst all spherically symmetric configurations. For λ = 0 the ’t

Hooft-Polyakov solutions are precisely the Prasad-Sommerfiled solutions of the Bogomol’nyi

equations and hence minima.

It has however not been known whether for λ > 0 the ’t Hooft-Polyakov solutions are

minima, either global or local. In fact, it is still not known whether each component of the

configuration space does have minima of Eλ, just as it does for E0. Even more mysteriously,

a minimum over all components exists in an as yet unknown component [ST]. The main

application of this paper is:

Theorem 5.6 For positive λ in a neighborhood of 0 the ’t Hooft Polyakov spherically symmet-

ric solution is stable. The kernel of the corresponding Hessian consists entirely of translation

modes.

Stability here is the same as in [BL]: the index of the Hessian Qλ at the solution cλ is

zero. However, the methods here provide control also on the Kernel of Qλ. Therefore the

absence of energy decreasing directions is also established.

In general, minimizers amongst suitably symmetric configurations will always be critical

points. However they will not necessarily be minimizers (either local or global) over all

configurations. For an energy functional where the spherically symmetric minimizer is overall

unstable see the Skyrmion functional in [WB].

The proof of the main result has two parts:

1. It is first shown that cλ converges to c0 in the configuration space and therefore for small

λ the difference between the Hessians Qλ and Q0 is small. This convergence follows

from energy bounds and control of the first derivatives of the fields.

2. It is then shown that if v is orthogonal to the translation modes of the λ-solution for

some small λ, then v will stay almost orthogonal to the kernel of Q0. For this one

needs control on the second derivatives of the fields. Although for different λ’s the Qλ’s

are defined on different Hilbert spaces, the convergence of step (1) allows isomorphisms
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between them and therefore orthogonality will always be with respect to the same inner

product. This step is formalized by defining “subspaces containing the kernel of Q0 at

the limit”.

With these established, if v is a decreasing direction for Eλ it would also have to be decreasing

for E0, by (1). Since the λ = 0 solution is a minimum, Q0 has no negative eigenvalues. What

could still happen is that v could end up in the kernel of Q0. This cannot happen by (2).

Section 2 describes the set-up. Section 3 presents the main results for quadratic forms

in general. Section 4 applies section 3 to the Yang-Mills-Higgs Hessians. Section 5 applies

section 4 to spherically symmetric solutions.

All estimates needed for steps (1) and (2) above for the spherically symmetric solutions

are first outlined in 6 and then provided in sections 7 to 10. The estimates are then put

together in Section 11. Section 12 presents some arguments for all λ, not necessarily close

to 0.

The estimates obtained for spherically symmetric solutions are uniform in λ and sharper

than the estimates known to hold for arbitrary critical points of the Yang-Mills-Higgs func-

tional, [JT]. Some effort has been made to keep control of the range of λ for which the

statements are valid. The first restriction appears in Proposition 9.1, where λ has to be

chosen so that a certain coefficient is negative. The second restriction happens in Step 2 of

Proposition 10.1, where bounds needed for certain norms to be uniformly bounded do not

come as a direct consequence of bounded energies.

As usual, C will denote a generic constant, with value possibly changing from line to line.

2. Set-up

The classical Yang-Mills-Higgs action functional Eλ with self-interaction parameter λ ≥ 0

is defined by

Eλ(A, Φ) =
1

2

∫
R3

{|FA|2 + |dAΦ|2 +
λ

4
(|Φ|2 − 1)2}d3x,

on pairs c = (A, Φ). Here A is a connection on the SU(2) bundle SU(2)×R3 over R3. Φ is

a section of the associated bundle E with fibre the Lie Algebra su(2), E = su(2)×R3. FA
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is the curvature of the connection A:

FA = dA +
1

2
[A, A],

and dA the covariant derivative of Φ with respect to the connection A

dAΦ = dA + [A, Φ].

All inner products are with respect to the Killing inner product on su(2) and the standard

metric on R3.

The Prasad-Sommerfeld limit is the corresponding functional for λ = 0:

E0(A, Φ) =
1

2

∫
R3

{|FA|2 + |dAΦ|2}d3x,

defined on the configuration space

Ĉ = {(A, Φ) : A ∈ L2
1,loc, Φ ∈ L2

1,loc, E0(A, Φ) < ∞}

equipped with the L2
1,loc topology intersected with the topology that makes ‖dAΦ‖2 and

‖FA‖2 continuous. With respect to this topology, Ĉ consists of countably many connected

components labeled by the integer monopole number

N =
1

4π

∫
R3

Tr(FA ∧ dAΦ). (1)

Now for any λ, all configurations (A, Φ) with Eλ(A, Φ) < ∞ clearly lie in Ĉ. However, the

third term in Eλ(A, Φ) is not always finite for c in Ĉ. For this, define

Ĉ+ = {c ∈ C : Eλ(c) < ∞, for some λ > 0}

and consider on it the topology it acquires as a subset of Ĉ.

In addition, Eλ, λ ≥ 0 is invariant under the action of the gauge group

G = {g : R3 → SU(2), g ∈ L2
2,loc},

where

g ·A = gAg−1 + gdg−1, g · Φ = gΦg−1.

In reality then E0 and Eλ are defined on the quotients

C = Ĉ/G, C+ = Ĉ+/G
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respectively. It follows from Part 1 of Theorem 5.5 below that C+ is not closed in C.

To define the space of infinitesimal perturbations at c = (A, Φ) in C, start by defining Hc

to be the completion of C∞
0 sections with respect to the inner product norm

‖(a, φ)‖2
c = ‖∇Aa‖2

2 + ‖∇Aφ‖2
2 + ‖[Φ, a]‖2

2 + ‖[Φ, φ]‖2
2,

which allows for finite E0 directions only, c.f. [T2]. In addition the norm also fixes the

behavior of Φ at infinity by excluding the directions

(a(x), φ(x)) =
d

dσ

∣∣∣∣
σ=1

(σA(σx), σΦ(σx)).

With respect to the L2-inner product the (a, φ)’s that are perpendicular to the gauge orbit

of c = (A, Φ) must satisfy

∂c(a, φ) := d∗Aa + [Φ, φ] = 0.

However, since all L2
2,loc gauge transformations are allowed, for λ = 0 the Kernel of ∂c

still contains a gauge direction, namely (dAΦ, 0). Hence for λ = 0 the space of admissible

perturbations at c will be isometric to

TcC = {(a, φ) ∈ Hc : ∂c(a, φ) = 0, (a, φ) ⊥c (dAΦ, 0)},

where ⊥c indicates perpendicularity with respect to <, >c. It is a fact that with these

conventions C can be thought of as a Banach manifold with tangent space TcC, see [F].

If Eλ(A, Φ) < ∞ it will be useful to distinguish those directions in TcC that keep Eλ finite.

For this, define the subspace of TcC

TcC+ = {(a, φ) ∈ TcC : ‖φ‖2 < ∞.}

It is also a fact that in this way C+ also a Banach manifold with tangent space TcC+, see

[D1].

The variational equations for λ ≥ 0 are the Yang-Mills-Higgs equations

d∗AFA = [dAΦ, Φ],

d∗AdAΦ = −λ

2
Φ(|Φ|2 − 1).
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Note that for λ = 0 the functional can be written as

E0(A, Φ) = ‖FA ∓ ∗dAΦ‖2
2 ± 4πN

for N defined by (1), which shows why for the unique case λ = 0 the minima in each

connected component satisfy the first order Bogomo’lnyi equation

± FA = ∗dAΦ. (2)

For any c = (A, Φ) in C, the second derivative of the energy Eλ defines a bilinear form on

Hc

Q̂c
λ((a1, φ1), (a2, φ2)) =

d2

dsdt
Eλ(A + sa1 + ta2, Φ + sφ1 + tφ2), λ ≥ 0.

Calculate that

Q̂c
λ((a1, φ1), (a2, φ2)) = < FA, [a1, a2] > + < dAΦ, [a1, φ2] + [a2, φ1] > + < dAa1, dAa2 >

+ < dAφ1, dAφ2 > + < [a1, Φ], [a2, Φ] > + < dAφ1, [a2, Φ] >

+ < dAφ2, [a1, Φ] > +
λ

2

∫
R3

(|Φ|2 − 1) < φ1, φ2 > d3x

+ λ

∫
R3

< Φ, φ1 >< Φ, φ2 > d3x.

and the corresponding quadratic form

Qc
λ(a, φ) = < FA, [a, a] > +2 < dAΦ, [a, φ] > +‖dAa‖2

2

+ ‖dAφ‖2
2 + ‖[a, Φ]‖2

2 + 2 < dAφ, [a, Φ] >

+
λ

2

∫
R3

(|Φ|2 − 1)|φ|2d3x + λ

∫
R3

< Φ, φ >2 d3x.

The importance of Qc
λ becomes clear when one writes the Taylor expansion of Eλ:

Eλ(c + tv) = Eλ(c) + t(∇Eλ)c(v) +
t2

2
Qc

λ(v) + o(t2). (3)

Then if c is a critical point, v’s on which Qc
λ(v) is negative correspond to energy decreasing

directions. According to Lemma 6.6 of [T1] this corresponds to eigenvectors with negative

eigenvalue with respect to the norm above.

The aim now will be to investigate the behavior of Qci
λ as ci tends to c0 in C, especially

when the ci’s are in C+ but the limit c0 lies in C \ C+. For this it is useful to digress from



MONOPOLE STABILITY 7

the Yang-Mills-Higgs Theory for a while and investigate some properties of quadratic forms

in general.

3. Quadratic Forms

Let Q̂ : H × H → R be a symmetric bilinear form on a Hilbert space (H, <, >) with

associated quadratic form Q : H → R,

Q(v) = Q̂(v, v), (4)

for v in H . If Q is a quadratic form, then Q̂ will denote the unique (by the polarization

identity) symmetric bilinear form that satisfies (4).

For a quadratic form Q, define the linear subspace of H

KerQ := {v ∈ H : Q̂(v, w) = 0 for all w ∈ H}

Now let v be such that Q(v) < 0 and let P be the projection on the KerQ. Then writing

v as v = Pv ⊕ (I − P )v and noting that by the definition of KerQ and the symmetry of Q̂

Q̂(v, v) = Q̂((I − P )v, (I − P )v),

one needs only consider those v’s that make Q negative and are perpendicular to KerQ.

Recall that a quadratic form is weakly lower semi-continuous if vn → v0 weakly in H

implies Q(v0) ≤ lim inf Q(vn). For example, on any Hilbert space v 7→ ‖v‖2 is weakly lower

semi-continuous. To examine the properties of quadratic forms that will be important for

the Hessians of the next section, start with the following

Definition 3.1. A quadratic form Q : H → R has Property (†) if

1. Q : H → R is not identically zero and differentiable

2. there is ε > 0 such that Q(.)− ε‖.‖2 is weakly lower semi-continuous.

Lemma 3.2. Let X be a subspace of H with the property that: there exists v0 with ‖v0‖ = 1

in X such that Q(v0) = inf{Q(v) : v ∈ X, ‖v‖ = 1}. Then

Q̂(v0, v) = Q̂(v0, v0) < v0, v >

for all v in X.
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Proof. Since v0 is a critical point for Q on the unit sphere of X there is Lagrange multiplier

µ such that

< (∇Q)v0 , w >= µ < (∇‖.‖)v0 , w >,

or equivalently

Q̂(v0, w) = µ < v0, w >,

for all w in X. Now set w = v0.

The following Proposition shows that if Q is non-negative then Property (†) guarantees

that 0 is at most an isolated point of its spectrum. (The Yang-Mills-Higgs Hessian at the

spherically symmetric solution at λ = 0 is non-negative and satisfies (†), see Section 4.)

Proposition 3.3. Any Q satisfying Q(v) ≥ 0 for all v in H and Property (†) also satisfies

inf{Q(v) : v ⊥ KerQ, ‖v‖ = 1} 	 0.

Proof. Assume to the contrary that

inf{Q(v) : v ⊥ KerQ, ‖v‖ = 1} = 0.

By Property (†), (KerQ)⊥ is non-zero. Choose a sequence vn in (KerQ)⊥ with ‖vn‖ = 1

such that Q(vn) → 0. Passing to a subsequence if necessary, assume that there exists v0 in

(KerQ)⊥ such that vn → v0 weakly in H . That v0 is not 0 and indeed ‖v0‖ = 1, follows from

(2) of Property (†) which implies that

Q(v0)− ε‖v0‖2 ≤ lim inf(Q(vn)− ε‖vn‖2) = −ε.

By (2) of Property (†), Q is also weekly lower semi-continuous. Therefore Q(v0) = 0 by the

assumption. Now use Lemma 3.2 to have that for any v in (KerQ)⊥

Q̂(v0, v) = Q̂ (v0, v0) < v0, v >= 0.

Since also Q̂(v0, v) = 0 for v in KerQ, v0 lies in KerQ. I.e. v0 would have to lie both in KerQ

and (KerQ)⊥ and be non-zero.
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Definition 3.4. Let (H, <, >) be a Hilbert space and Vλ, V0 be closed subspaces of H for

λ > 0. Vλ contains V0 at the limit as λ → 0 if for all ε > 0 there is δ > 0 such that

|λ− 0| < δ implies that for any u in V ⊥
λ of norm 1 there exists v′ in V ⊥

0 of norm 1 such that

‖v′ − u‖ < ε.

The following shows that the uniform convergence on the unit sphere and the existence of

“kernel-subspaces containing kernel at the limit”, along with some fairly mild assumptions,

guarantee that if zero is an isolated point of the spectrum of Q0 then it is an isolated point

of the spectrum of Qλ for λ in an open neighborhood of 0. (The Yang-Mills-Higgs Hessians

at spherically symmetric configurations have kernel-subspaces containing kernel at the limit,

see Section 4.)

Theorem 3.5. Let Qλ (λ > 0) and Q0 be quadratic forms and assume that there are sub-

spaces Nλ of KerQλ satisfying

1. Q0 is uniformly continuous on the unit sphere of H i.e. for all ε > 0 there exists δ > 0

such that if u, v are on the unit sphere of H and ‖u− v‖ < δ then |Q0(u)−Q0(v)| < ε.

2. α := inf{Q0(v) : v ⊥ KerQ0, ‖v‖ = 1} 	 0

3. sup‖v‖=1 |Q0(v)−Qλ(v)| → 0 as λ → 0

4. Nλ contains KerQ0 at the limit as λ → 0.

Then there exists ε > 0 such that whenever 0 < λ < ε then

1. inf{Qλ(v) : v ⊥ Nλ, ‖v‖ = 1} >
α

3
	 0

2. Nλ = KerQλ.

Proof. Fix u in N⊥
λ with ‖u‖ = 1, for |λ − λ0| < η, where η is guaranteed by (3) to give

|Q0(u)−Qλ(u)| < α/3. Therefore

Qλ(u) ≥ Q0(u)− |Q0(u)−Qλ(u)| > Q0(u)− α/3.

Now use Definition 3.4 and (4) to choose η′ such that 0 < λ < η′ gives a v of norm 1

in (KerQ0)
⊥ such that ‖v − u‖ < δ, for the δ guaranteed by (1) for ε = α/3. Then

0 < λ < min{η, η′} implies that

Qλ(u) ≥ Q0(v)− 2α/3 ≥ a/3 > 0
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by (2).

To see that Nλ = KerQλ, merely note that H = Nλ + (Nλ)
⊥.

4. Application to the Yang-Mills-Higgs Hessians

This section will demonstrate that the conditions required for the results of the previous

sections hold for Yang-Mills-Higgs hessians.

Start by recalling that as in [T2], the Yang-Mills-Higgs Hessian for λ = 0 can be written

as

Qc
0(a, φ) = ‖(a, φ)‖2

c + 2 < FA, [a, a] > +4 < dAΦ, [a, φ] >, (5)

where <, > is the L2 inner product on R3.

Proposition 4.1. For any c in C the corresponding Hessian Qc
0 satisfies the following:

1. Qc
0 : TcC → R is differentiable and uniformly continuous on the unit ball of (TcC, ‖.‖c).

2. there is ε > 0 such that Qc
0 − ε‖.‖2

c is weakly lower semi-continuous.

Proof. (1) For any quadratic form Q its differential at v is DQv(h) = Q̂(h, v) + Q̂(v, h)

whenever Q is continuous at 0. The continuity of the quadratic form at hand follows from

equation (5) and from the estimates

< FA, [a, a] >≤ ‖FA‖2‖[a, a]‖2 ≤ C‖FA‖2‖(a, φ)‖2
c,

< dAΦ, [a, φ] >≤ ‖dAΦ‖2‖[a, φ]‖2 ≤ C‖DAΦ‖2‖(a, φ)‖2
c .

For the proof that

‖[a, a]‖2 ≤ C‖(a, φ)‖2
c , ‖[a, φ]‖2 ≤ C‖(a, φ)‖2

c

see Lemma B6.4 of [T2]. The proof of the uniform continuity follows along similar lines and

is left to the reader.

For (2), write the Hessian as in (5) so that

Qc
0(a, φ)− ε‖(a, φ)‖2

c = (1− ε)‖(a, φ)‖2
c + 2 < FA, [a, a] > +4 < dAΦ, [a, φ] > . (6)
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For ε < 1 the first term in the right hand side is clearly weakly lower semi-continuous. For

the remaining terms, following section VI. of [T2], note that the finite energy of (A, Φ) and

the estimates of part (1) of this Proposition imply that for any δ > 0 there exists r > 0 such

that on the complement of the ball of radius r the following are true:

< FA, [a, a] >≤ δ‖(a, φ)‖2
c ,

< dAΦ, [a, φ] >≤ δ‖(a, φ)‖2
c.

From these it is standard to show that the last two terms of (6) are weakly continuous.

Now to employ the results of the previous section as a sequence of configurations ci con-

verges to c0 in C it is convenient to realize all the quadratic forms involved on the same

Hilbert space. Happily, this is precisely the context of Propositions B6.1. and B6.2. of [T2]:

for c and c0 sufficiently close in C the identity map on C∞
0 (R3) induces an isomorphism

between the tangent spaces (Tc, ‖.‖c) and (Tc0 , ‖.‖c0). Furthermore, a neighborhood of c0 in

C can be identified with a ball around the origin of Tc0 , so that c is close to c0 if c− c0 has

small Tc0-norm.

With this understood, and after equipping all Tc’s for c in a sufficiently small neighborhood

of c0 in C with the c0-inner product, it makes sense to compare the Hessians using the c0-

norm:

Lemma 4.2. Let ci converge to c0 in C. Then sup‖v‖c0=1 |Qci
0 (v)−Qc0

0 (v)| → 0.

Proof. Simply calculate that for some constant C depending only on c0

|Qci
0 (v)−Qc0

0 (v)| ≤ C‖v‖2
c0
‖ci − c0‖c0.

(This is statement (5) of Proposition A.4.3. of [T3].)

When λ is not zero the Hessian Qλ will be defined on TC+ rather than the whole of TC.

The following shows that, due to the rather remarkable fact that the only part of φ that

matters for the λ-terms of Qλ is the part that is orthogonal to Φ in the Lie Algebra, the

c0-norm suffices to control the Qλ Hessian from below even when λ 6= 0.
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Lemma 4.3. Assume that λ → 0, that |Φλ|(x) < 1 for all x and that there is R such that

for all λ smaller than some λ0 and x with |x| > R ,
1

2
< |Φλ|2(x).

Then

lim inf
λ→0

inf
u∈TC+,‖u‖c0=1

(Qcλ
λ (u)−Qcλ

0 (u)) ≥ 0.

Proof. First note that for |x| > R

1

2
|φ|2 < |Φλ|2|φ|2 =< Φλ, φ >2 +|[Φλ, φ]|2.

Now for u = (a, φ) with ‖u‖c0 = 1 estimate as follows:

λ

2

∫
R3

(|Φλ|2 − 1)|φ|2d3x + λ

∫
R3

< Φλ, φ >2 d3x

≥ λ

2

∫
|x|≤R

(|Φλ|2 − 1)|φ|2d3x +
λ

2

∫
|x|>R

(|Φλ|2 − 1)|φ|2d3x + λ

∫
|x|>R

< Φλ, φ >2 d3x

≥ −λ

2

∫
|x|≤R

|φ|2d3x +
λ

2

∫
|x|>R

(|Φλ|2 − 1)2
(|[Φλ, φ]|2+ < Φλ, φ >2

)
d3x

+λ

∫
|x|>R

< Φλ, φ >2 d3x

≥ −λ

2
CR‖φ‖2

6 + λ

∫
|x|>R

(|Φλ|2 − 1)|[Φλ, φ]|2d3x + λ

∫
|x|>R

|Φλ|2 < Φλ, φ >2 d3x

≥ −λ(
1

2
CR + 1)‖u‖2

c0,

where CR is a constant depending only on R.

Now Proposition 4.1, Lemmata 4.2 and 4.3 together with Theorem 3.5 yield the following:

Theorem 4.4. Assume that

1. As λ → 0, cλ converge to c0 in C
2. Qc0

0 is non-negative and not identically 0.

3. |Φλ|(x) < 1 for all x and there is V compact in R3 such that for all λ sufficiently small

and x not in V ,
1

2
< |Φλ|2(x).

4. there are subspaces Nλ of KerQcλ
0 containing KerQ0 at the limit

Then for λ small enough

KerQcλ
λ = Nλ
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and

Qcλ
λ ≥ 0.

Proof. By assumption 2 and Proposition 4.1, Qc0
0 has property (†); therefore by Proposition

3.3 is strictly positive away from its kernel.

Assumption 1 and Lemma 4.2 give

sup
‖v‖c0=1

|Qcλ
0 (v)−Qc0

0 (v)| → 0

as λ → 0. With this and the first part of Lemma 4.1, all assumptions of Theorem 3.5 are

satisfied, therefore there is I > 0 such that for sufficiently small λ

inf{Qcλ
0 (v) : ‖v‖c0 = 1, v ⊥ Nλ} ≥ I,

and

Nλ = KerQcλ
0 .

By assumption 3 and Lemma 4.3

inf{Qcλ
λ (v) : v ∈ TC+, ‖v‖c0 = 1, v ⊥ Nλ} ≥ I/2

for small λ. For those λ,

Qcλ
λ ≥ 0,

and

KerQcλ
λ = KerQcλ

0 = Nλ.

(since Nλ ⊂ KerQcλ
λ and N⊥

λ ∩KerQcλ
λ = {0}).

5. Application to the spherically symmetric monopole solutions

This section argues that the conditions of Theorem 4.4 are satisfied when cλ is the sequence

of spherically symmetric solutions of the variational equations for Eλ.

In [tH] and [P], ’t Hooft and Polyakov suggested spherically symmetric solutions for the

three-dimensional Yang-Mills-Higgs equations. With respect to the standard basis ea, a =

1, 2, 3 of su(2) their Ansatz reads

A = εija
xj

r2
(1−K(r))eadxi,
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Φ =
xα

r

H(r)

r
ea.

When evaluated on configurations of this form, the Yang-Mills-Higgs functional with self-

interaction parameter λ reduces to the one-dimensional integral

Eλ(H, K) = 4π

∫ ∞

0

{(K ′)2 +
1

2
(H ′ − H

r
)2 +

K2H2

r2
+

1

2

(K2 − 1)2

r2

+
λ

4
(
H2

r
− r)2}dr.

Further assume the boundary conditions

K(r) → 0, r →∞, (7)

(8)

H

r
→ 1, r →∞,

which, although stronger than finite action, are satisfied by any finite action critical point

for λ > 0, see [M]. Therefore for λ > 0 there is no loss of generality under these conditions.

For λ = 0 the asymptotic behavior of
H

r
is ad hoc.

At a critical point (Kλ, Hλ) of Eλ, the variational equation

d

dt

∣∣∣∣
t=0

Eλ(Hλ + th, Kλ + tk) = 0

for all h, k of compact support, yields the following system of non-linear, second order,

ordinary differential equations

K ′′
λ =

H2
λ − 1 + K2

λ

r2
Kλ (YMH 1)

H ′′
λ =

2K2
λ

r2
Hλ − 4λHλ(1− H2

λ

r2
) (YMH 2)

The ’t Hooft-Polyakov Ansatz has fixed gauge so that solutions are smooth.

For rigorous proofs (of various degrees of generality) of the existence of such spherically

symmetric solutions for any λ ≥ 0, see [TFS], [RFS], [R] and [D2]. What is important to

recall at this point is that for each λ, the ’t Hooft-Polyakov solution is obtained by minimizing
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Eλ over all (K, H) of the form above. For the remainder of this paper, and for λ ≥ 0,

cλ = (Kλ, Hλ)

will denote this solution.

Crucial in what follows is the explicit solution of (YMH 1-2) for λ = 0, found by Prasad

and Sommerfield:

H0 = r coth r − 1,

K0 =
r

sinh r
.

That the ’t Hooft-Polyakov spherically symmetric solution c0 is precisely this Prasad- Som-

merfiled solution was proved in [M]. Note that although E0(c0) is finite, Eλ(c0) is not finite

for λ > 0.

Definition 5.1. For cλ = (Aλ, Φλ) the 3-dimensional subspace Scλ
of TcC is defined as the

linear span

Sλ =

〈
(
∂Aλ

∂xα
,
∂Φλ

∂xα
), α = 1, 2, 3

〉
.

Observe that for each λ ≥ 0 the space Sλ is always in the Kernel of Qcλ
λ and of Qcλ

0 .

This follows from the fact that the energy functional for any value of λ is invariant under

translations. By finite energy the translates cannot be gauge equivalent to each other, hence

they are non-zero vectors in the tangent space. A straightforward calculation shows that the

three vectors are linearly independent.

To identify the Kernel of Qc0
0 it is useful to rewrite the Hessian yet again:

Lemma 5.2.

Qc0
0 (a, φ) = ‖ ∗ dAa− dAφ− [a, Φ]‖2

2+ < ∗FA − dAΦ, ∗[a, a]− [a, φ] >2 .

Proof. Recall that the magnetic charge

N =
1

4π

∫
R3

tr(FA ∧ dAΦ) ,

is a constant on each path component of C and differentiate it twice to get the identity

2 < ∗FA, [a, φ] > + < ∗dAΦ, [a, a] > +2 < dAφ + [a, Φ], ∗dAa >= 0. (9)
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Therefore,

Qc0
0 (a, φ) = ‖dAφ + [a, Φ]‖2 + ‖dAa‖2+ < FA, [a, a] > +2 < dAΦ, [a, φ] >

= ‖dAφ + [a, Φ]‖2 + ‖dAa‖2+ < FA − ∗dAΦ, [a, a] >

+ < ∗dAΦ, [a, a] > +2 < dAΦ− ∗FA, [a, φ] > +2 < ∗FA, [a, φ] > .

Now use equation (9) to replace the last and third-from-the-end terms in the right hand side

by

−2 < dAφ + [a, Φ], ∗dAa >

to get

Qc0
0 (a, φ) = ‖dAφ + [a, Φ]‖2 + ‖dAa‖2+ < FA − ∗dAΦ, [a, a] >

− 2 < dAφ + [a, Φ], ∗dAa > +2 < dAΦ− ∗FA, [a, φ] >

= ‖dAφ + [a, Φ]− ∗dAa‖2+ < FA − ∗dAΦ, [a, a]− 2 ∗ [a, φ] > .

Proposition 5.3. Ker(Qc0
0 ) = S0.

Proof. By [M], the spherically symmetric solution (A0, Φ0) solves the first order Bogomol’nyi

equation (2), therefore the second term of Qc0
0 when rewritten as in Lemma 5.2 vanishes.

Then Qc0
0 (a, φ) is zero if and only if

∗dAa− dAφ− [a, Φ] = 0 .

But this is exactly the linearization of equation (2), i.e. the only zero directions are the

directions tangent to the moduli space of charge 1 minima. With the conventions of section

2 the main result in [M] gives that the dimension of this moduli space is 3. (The dimension

counting there gives an extra dimension that has been excluded here by the choice of norm

on TcC.) Since the energy is invariant under translations, all translates of a minimum are

still minima and this accounts for all minima. Therefore Qc0
0 is zero only on the translation

directions.

Propositions 4.1 and 5.3 together yield
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Corollary 5.4. The Yang-Mills-Higgs Hessian Qc0
0 at the spherically symmetric solution for

λ = 0 has Property (†).

The remaining sections of this paper will be devoted to proving the following

Theorem 5.5. 1. The λ-spherically symmetric solution cλ converges to c0 in C as λ → 0.

2. |Φλ|(x) < 1 for all x and there is V compact in R3 such that for λ sufficiently small

and x not in V ,
1

2
< |Φλ|2(x).

3. Sλ contain KerQc0
0 at the limit.

With this, all conditions are satisfied for Theorem 4.4 to yield

Theorem 5.6. For λ in an neighborhood of 0, the Hessian of the λ-’t Hooft-Polyakov mono-

pole satisfies

Qcλ
λ (a, φ) ≥ 0

for any (a, φ) in Hλ.

Furthermore,

Ker(Qcλ
λ ) = Sλ.

Corollary 5.7. There is λ0 such that for λ ≤ λ0, the Yang-Mills-Higgs functional Eλ has

no decreasing directions at (Aλ, Φλ).

Proof. Use equation (3).

6. Outline of proof of Theorem 5.5

Proof of Part 1. of Theorem 5.5

According to the definition of the topology on C, the following are needed:

I. On any K compact in R3,

‖cλ − c0‖L2
1(K) → 0.

II. On R3

‖FAλ
‖2 − ‖FA0‖2 → 0.
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III. On R3

‖dAλ
Φλ‖2 − ‖dA0Φ0‖2 → 0.

I. follows for any compact K if it is true on any sphere centered at 0 of radius b. For this,

calculate

‖Aλ − A0‖2
L2(K) + ‖∇(Aλ −A0)‖2

L2(K) ≤ C

(∫ b

0

(Kλ −K0)
2dr +

∫ b

0

(K ′
λ −K ′

0)
2dr

+

∫ b

0

1

r2
(Kλ −K0)

2dr

)
(10)

and

‖Φλ − Φ0‖2
L2(K) + ‖∇(Φλ − Φ0)‖2

L2(K) ≤ C

(∫ b

0

(Hλ −H0)
2dr +

∫ b

0

(H ′
λ −H ′

0)
2dr

+

∫ b

0

1

r2
(Hλ −H0)

2dr

)
. (11)

That the right-hand side of (10) goes to zero as λ goes to 0 is part of Theorem 11.2.

That the right-hand side of (11) goes to zero as λ goes to 0 is part of Theorem 11.1.

II. and III. follow from the fact that for small λ

|‖FAλ
‖2 − ‖FA0‖2|+ |‖dAλ

Φλ‖2 − ‖dA0Φ0‖2| ≤ C ‖cλ − c0‖c0
,

see part (1) of Proposition A.4.3. of [T4]. To estimate the right-hand side of this, calculate

‖cλ − c0‖2
c0

= ‖∇A0(Aλ −A0)‖2
2 + ‖∇A0(Φλ − Φ0)‖2

2

+‖[Φ0, Aλ −A0]‖2
2 + ‖[Φ0, Φλ − Φ0]‖2

2

≤ ‖∇(Aλ − A0)‖2
2 + ‖ [A0, Aλ − A0] ‖2

2

+‖∇(Φλ − Φ0)‖2
2 + ‖ [A0, Φλ − Φ0] ‖2

2

+ ‖ [Φ0, Aλ − A0] ‖2
2 + ‖ [Φ0, Φλ − Φ0] ‖2

2.

The right hand side of this is bounded as follows:

‖∇(Aλ −A0)‖2
2 ≤

∫ ∞

0

(K ′
λ −K ′

0)
2 +

1

r2
(Kλ −K0)

2dr,

‖ [A0, Aλ − A0] ‖2
2 ≤ max

R3
|A0|‖Aλ −A0‖2

2 ≤ C

∫ ∞

0

(Kλ −K0)
2dr,
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‖∇(Φλ − Φ0)‖2
2 ≤

∫ ∞

0

(H ′
λ −H ′

0)
2 +

1

r2
(Hλ −H0)

2dr,

‖ [A0, Φλ − Φ0] ‖2
2 ≤ ‖ |A0||Φλ − Φ0| ‖2

2

≤ C‖ 1

r
|Φλ − Φ0| ‖2

2

≤ C

∫ ∞

0

1

r2
(Hλ −H0)

2dr,

‖ [Φ0, Aλ − A0] ‖2
2 ≤ ‖Aλ − A0‖2

2 ≤ C

∫ ∞

0

(Kλ −K0)
2dr,

[Φ0, Φλ − Φ0] = 0.

That the right hand sides of all the above inequalities go to 0 as λ tends to 0, is proved

as Theorems 11.2 and 11.1.

Proof of Part 2. of Theorem 5.5

This follows from Theorem IV.10.1 of [JT] and Lemma 7.2 below.

Proof of Part 3. of Theorem 5.5

This follows immediately from

Theorem 6.1. As λ → 0,∥∥∥∥
(

∂Aλ

∂xa
,
∂Φλ

∂xa

)
−
(

∂A0

∂xa
,
∂Φ0

∂xa

)∥∥∥∥
c0

→ 0.

Proof of Theorem 6.1

As a matter of a straightforward calculation using that |Φ0|(x) < 1, and that |A0|(x) < 1,∥∥∥∥∂cλ

∂xa
− ∂c0

∂xa

∥∥∥∥
2

c0

= ‖∇A0

∂(Aλ −A0)

∂xa
‖2

2 + ‖∇A0

∂(Φλ − Φ0)

∂xa
‖2

2

+‖ [Φ0,
∂(Aλ − A0)

∂xa
] ‖2

2 + ‖ [Φ0,
∂(Φλ − Φ0)

∂xa
] ‖2

2

≤ C

(
‖∇∂(Aλ −A0)

∂xa

‖2
2 + ‖∇∂(Φλ − Φ0)

∂xa

‖2
2

+ ‖∂(Aλ − A0)

∂xa

‖2
2 + ‖∂(Φλ − Φ0)

∂xa

‖2
2

)
.
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Now calculate that

‖∇∂(Aλ −A0)

∂xa
‖2

2 ≤ C

(∫ ∞

0

1

r4
(K0 −Kλ)

2dr

+

∫ ∞

0

1

r2
(K ′

0 −K ′
λ)

2dr

+

∫ ∞

0

(K ′′
0 −K ′′

λ)2dr

)

That the right hand side of this inequality goes to zero is part of Theorem 11.2.

Also,

‖∇∂(Φλ − Φ0)

∂xa
‖2

2 ≤ C

(∫ ∞

0

1

r4
(H0 −Hλ)

2dr

+

∫ ∞

0

1

r2
(H ′

0 −H ′
λ)

2dr

+

∫ ∞

0

(H ′′
0 −H ′′

λ)2dr

)
.

That the right hand side of this inequality goes to zero as λ goes to zero is part of Theorem

11.1. Similarly,

‖∂(Aλ − A0)

∂xa
‖2

2 ≤ C

(∫ ∞

0

1

r2
(K0 −Kλ)

2dr +

∫ ∞

0

(K ′
0 −K ′

λ)
2dr

)
,

‖∂(Φλ − Φ0)

∂xa

‖2
2 ≤ C

(∫ ∞

0

1

r2
(H0 −Hλ)

2dr +

∫ ∞

0

(H ′
0 −H ′

λ)
2dr

)
.

That the right hand side of these inequalities goes to zero as λ goes to zero is proved as

Theorems 11.2 and 11.1, respectively.

7. Uniform bounds on the energy

As usual, the first step in the convergence argument for Part 1. of Theorem 5.5 is to show

that the part of the energy containing the derivatives of the fields stays uniformly bounded.

This is shown in Proposition 7.1 below.

That bounds on the energy imply bounds on derivatives and therefore local convergence

is shown as Proposition 7.4 which follows closely arguments in [R]. In this way, Proposition

7.4 is the one-dimensional version of the Uhlenbeck compactness for Yang-Mills-Higgs as in

section V. of [T3].
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Proposition 7.1. Let cλ and cλ′ be ’t Hooft-Polyakov solutions for λ and λ′ respectively,

with λ′ < λ. Then

E0(cλ′) ≤ E0(cλ).

Proof. First write the functional Eλ as

Eλ(c) = E0(c) + λV (c).

Recall that cλ minimizes Eλ amongst all spherically symmetric configurations. Therefore

Eλ(cλ) ≤ Eλ(cλ′),

or

E0(cλ) + λV (cλ) ≤ E0(cλ′) + λV (cλ′). (12)

Similarly, cλ′ minimizes Eλ′ , therefore

Eλ′(cλ′) ≤ Eλ′(cλ) ,

or

E0(cλ′) + λ′V (cλ′) ≤ E0(cλ) + λ′V (cλ). (13)

Adding equations (12) and (13)

λV (cλ) + λ′V (cλ′) ≤ λV (cλ′) + λ′V (cλ),

or

(λ− λ′)V (cλ) ≤ (λ− λ′)V (cλ′) .

Since λ′ < λ

V (cλ) ≤ V (cλ′) .

This and the second inequality gives

0 ≤ λ′(V (cλ′)− V (cλ)) ≤ E0(cλ)−E0(cλ′) .
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Now fix some λ0 > 0 and use Proposition 7.1 in the Lemmata that follow to obtain

estimates uniform in λ ≤ λ0, without any reference to the equations. Set

B(λ0) = E0(cλ0).

The following two lemmata follow [R]. The first uses the term in the energy involving the

derivative of Hλ to obtain bounds on Hλ.

Lemma 7.2. For all r > 0, and for all λ in [0, λ0]:

∣∣∣∣1− Hλ(r)

r

∣∣∣∣ ≤
√

B(λ0)

r
, (14)

hence

1−
√

B(λ0)

r
≤
∣∣∣∣Hλ(r)

r

∣∣∣∣ . (15)

Proof. For 0 < r < R < ∞,∣∣∣∣Hλ(R)

R
− Hλ(r)

r

∣∣∣∣ =

∣∣∣∣
∫ R

r

(
Hλ(ρ)

ρ
)′dρ

∣∣∣∣
=

∣∣∣∣
∫ R

r

1

ρ
ρ(

Hλ(ρ)

ρ
)′dρ

∣∣∣∣
≤

(∫ R

r

1

ρ2
dρ

)1/2
(∫ R

r

ρ2

[(
Hλ(ρ)

ρ

)′]2

dρ

)1/2

≤
(

1

r
− 1

R

)1/2
(∫ R

r

(
H ′

λ(ρ)− Hλ(ρ)

ρ

)2

dρ

)1/2

.

Then for every λ ∈ [0, λ0], Proposition 7.1 gives that E0(Aλ, Φλ) ≤ B(λ0). Thus

∫ R

r

(
H ′

λ(ρ)− Hλ(ρ)

ρ

)2

dρ ≤ B(λ0)

Taking R →∞ gives (14). Then (15) follows immediately from (14).

The following uses the term in the energy involving the derivative of K to obtain estimates

on K.
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Lemma 7.3. There is constant cB(λ0) > 0 depending only on B(λ0) such that

|Kλ(r)| ≤ cB(λ0)

for all r ≥ 0 and for all λ in [0, λ0].

Proof. As before, for 0 < x < y

|Kλ(x)2 −Kλ(y)2|2 = |
∫ y

x

2Kλ(r)K
′
λ(r)dr|2

≤ 4

∫ y

x

Kλ(r)
2dr

∫ y

x

(K ′
λ(r))

2dr

≤ 4B(λ0)

∫ y

x

Kλ(r)
2dr.

To bound the integral in the last term use inequality 15 of Lemma 7.2 to fix r0 > 2B(λ0)

such that for all r ≥ r0

0 < 1/2 <

(
1−

√
B(λ0)

r

)2

≤
(

Hλ(r)

r

)2

.

Now use the third term in the energy to have∫ y

x

Kλ(r)
2dr ≤ 2

∫ y

x

K2
λH

2
λ

r2
dr ≤ 2B(λ0),

for r0 ≤ x ≤ y. Therefore for such x and y

|Kλ(x)2 −Kλ(y)2|2 ≤ 8B(λ0)
2

and, using the boundary condition for K as x →∞,

|Kλ(y)|4 ≤ 8B(λ0)
2 (16)

which proves the statement for y ≥ r0. For when 0 ≤ y ≤ r0 note that

|Kλ(y)| ≤ |Kλ(r0)|+ |
∫ r0

y

K ′
λ(r)dr|

≤ |Kλ(r0)|+ (r0 − y)1/2B(λ0)
1/2

≤ |Kλ(r0)|+ r
1/2
0 B(λ0)

1/2,

with |Kλ(r0)| itself bounded by (16).
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Proposition 7.4. For any a and b with 0 < a < b < ∞ the following hold as λ → 0:

1. Kλ converges to K0 weakly in L2
1[0, b], therefore strongly in C0[0, b], therefore pointwise.

2. Hλ converges to H0 weakly in L2
1[a, b], therefore strongly in C0[a, b], therefore pointwise.

Proof. To show (1), define an equivalent norm on L2
1[0, b] by

‖f‖1 =

(∫ b

0

(f ′)2
dr + |f(0)|2

)1/2

and note that Lemma 7.3 and the first term in the energy give that for any b > 0 and all

λ ≤ λ0

‖Kλ‖1 ≤ (B(λ0) + C2
B(λ0))

1/2.

For (2), define an equivalent norm on L2
1[a, b] by

‖f‖2 =

(∫ b

a

r2 (f ′)2
dr + |f(a)|2

)1/2

and note that Lemma 7.2 and the second term in the energy give that for any a > 0 and for

all λ ≤ λ0

‖Hλ(r)

r
− 1‖2 ≤

√
B(λ0) +

B(λ0)

a
.

Therefore both ‖Kλ‖1 and ‖1 − Hλ(r)
r
‖2 are bounded for λ ≤ λ0, therefore any sequence

has weakly convergent subsequence as λ → 0. To see that these limits are (K0, H0) for all

sequences, note that since (Kλ, Hλ) solve (YMH1-2) for λ, the weak limit as λ → 0 solves

(YMH1-2) for λ = 0. Then use the uniqueness of the spherically symmetric solution for

λ = 0, see [M].

By the standard embedding theorems these limits are strong in C0 and therefore pointwise.

8. Estimates Uniform in λ for Kλ

First the comparison method is used to obtain exponential decay for Kλ, uniform in λ and

on domains of the form [r0,∞), for r0 independent of λ.

As before, B(λ0) = E0(cλ0) for some fixed λ0.
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Proposition 8.1. There exist α > 0 and r0 > 0 such that

|Kλ(r)| ≤ αe−r/2

for all r ≥ r0 and for all λ in [0, λ0].

Proof. By (15) of Lemma 7.2, for all r ≥ max{2, 2B(λ0)}

1 < H2
λ(r),

hence the coefficient of Kλ in (YMH-1) satisfies

0 <
H2

λ(r)− 1 + K2
λ(r)

r2
. (17)

Also note that the limit

lim
r→∞

H2
λ(r)− 1 + K2

λ(r)

r2
(18)

exists (and it is equal to 1) by Lemma 7.2.

Now let

s(r) = αe−r/2

be the comparison function, for α to be determined. The claim here is that there exists

r0 ≥ max{2, 2B(λ0)} such that for all r ≥ r0 and for all λ ∈ [0, λ0]

(s(r)±Kλ(r))
′′ ≤ H2

λ(r)− 1 + K2
λ(r)

r2
(s(r)±Kλ(r)). (19)

When this is the case, choose α > 0 depending on cB of Lemma 7.3 so that

0 < s(r0)±Kλ(r0). (20)

Then conditions (17),(18), (19) and (20) allow the maximum principle, [JT], to be applied

and yield

|Kλ(r)| ≤ αe−r/2

for r ≥ r0 and λ ≤ λ0.

To check that (19) indeed holds, first note that by (YMH 1-2) (19) is equivalent to

s(r)′′ ≤ H2
λ(r)− 1 + K2

λ(r)

r2
s(r),



26 GEORGE ANDROULAKIS AND STAMATIS DOSTOGLOU

which in turn is equivalent to

αe−r/2

4
≤ H2

λ(r)− 1 + K2
λ(r)

r2
αe−r/2,

i.e.
1

4
≤ H2

λ(r)− 1 + K2
λ(r)

r2
.

For the last inequality to hold it is enough that:

1

4
≤ H2

λ(r)

r2
− 1

r2
.

By (15) of Lemma 7.2 it is enough to take r0 > 2 +
√

B(λ0)2 + 1.

Now it is easy to obtain estimates for K ′
λ and K ′′

λ .

Lemma 8.2. The estimate of the previous proposition is also valid for K ′
λ and K ′′

λ for pos-

sibly different values of α.

Proof. For all r > 1 and for all λ ≤ λ0∣∣∣∣H2
λ

r2
− 1

r2
+

K2
λ

r2

∣∣∣∣ ≤ (
√

B(λ0) + 1)2 + 1 + c2
B(λ0)

by (15) of Lemma 7.2 and Lemma 7.3. Then, for a new α (YMH-1) gives

|K ′′
λ(r)| ≤ αe−r/2.

for r ≥ r0 where r0 is specified in Proposition 8.1.

This, and the finite energy condition give that K ′
λ is in L2

1[r0,∞]. ¿From this it is standard

to conclude that

lim
r→∞

K ′
λ(r) = 0,

see for example [JT], page 86. Using this,

|K ′
λ(r)| = |

∫ ∞

r

K ′′
λ(ρ)dρ|

≤
∫ ∞

r

αe−ρ/2dρ

= 2αe−r/2,

for all r ≥ r0 and for all λ in [0, λ0].
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9. Estimates for the decay of 1− Hλ(r)
r

To obtain estimates for Hλ, H ′
λ and H ′′

λ , by (YMH-2) sharper estimates on |1 − Hλ(r)

r
|

are in order. The following two propositions improve on Lemma 7.2.

First estimate exponential decay which, unlike that of Kλ, depends on λ and, for the first

time, imposes restrictions on λ0.

Proposition 9.1. There exist α > 0, r0 > 0 such that for all λ <
1

8
and for all r ≥ r0

∣∣∣∣1− Hλ(r)

r

∣∣∣∣ ≤ αe−
√

λr.

Proof. Let uλ(r) = 1− Hλ(r)

r
. Differentiate twice to obtain

u′′λ +
2

r
u′λ = −H ′′

λ

r
.

Replacing H ′′
λ from (YMH-2) yields

u′′λ +
2

r
u′λ −

4λHλ

r

(
1 +

Hλ

r

)
uλ = −2K2

λHλ

r3
. (21)

Now let

s(r) = αe−
√

λr − e−r

to be the test function. The aim is to show that there exist α > 0 and r0 > 0 such that

|uλ(r)| ≤ s(r),

for all r ≥ r0 and for all λ in an appropriate range. The term −e−r in the formula of s

seems to be necessary for the maximum principle and it is imposed by the form of (21). By
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Proposition 8.1 and Lemma 7.2, for λ smaller than some λ0:

(s± uλ)
′′ +

2

r
(s± u)′ − 4λHλ

r
(1 +

Hλ

r
)(s± uλ)

= ∓2K2
λHλ

r3
+ αλe−

√
λr − e−r +

2

r
(−α

√
λe−

√
λr + e−r)

−4λHλ

r
(1 +

Hλ

r
)(αe−

√
λr − e−r)

≤ 2

r2
e−r − e−r +

2

r
e−r +

4λHλ

r
(1 +

Hλ

r
)e−r

+

(
λ− 2

√
λ

r
− 4λHλ

r
(1 +

Hλ

r
)

)
αe−

√
λr

≤
(

2

r2
− 1 +

2

r
+ 8λ

)
e−r +

(
λ− 2

√
λ

r
− 4λ(1−

√
B(λ0)√

r
)(1 + 1−

√
B(λ0)√

r
)

)
αe−

√
λr

≤
(

2

r2
− 1 +

2

r
+ 8λ

)
e−r +

(
λ(−7 +

4
√

B(λ0)√
r

+ 8

√
B(λ0)

r
)− 2

√
λ

r

)
αe−

√
λr.

Therefore set λ0 =
1

8
and choose r0 > 0 such that

(s± uλ)
′′ +

2

r
(s± u)′ − 4λHλ

r
(1 +

Hλ

r
)(s± uλ) < 0,

for all r ≥ r0 and λ in [0, 1/8).

Now use for all λ < 1/8 the bound

|uλ(r0)| ≤ 1 +

√
B(1/8)

r0

of Lemma 7.2 to choose α > 0 such that

0 < s(r0)± uλ(r0).

To obtain a uniform in λ estimate on the decay of |1− Hλ(r)

r
|, one has to make do with

power low decay:
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Proposition 9.2. There exist α > 0 and r0 > 0 such that for all λ in [0, 1/8) and for all

r ≥ r0 ∣∣∣∣1− Hλ(r)

r

∣∣∣∣ ≤ α

r
.

Proof. Repeat the proof of 9.1 for the same uλ but now change the comparison function to

s(r) =
α

r
− e−r

where α is specified below.

Again, Lemma 7.2 and Proposition 8.1 give for any λ smaller than some λ0

(s± uλ)
′′ +

2

r
(s± u)′ − 4λHλ

r
(1 +

Hλ

r
)(s± uλ)

= ∓2K2
λHλ

r3
− e−r +

2e−r

r
− 4λHλ

r
(1 +

Hλ

r
)
α

r
+

4λHλ

r
e−r

≤ 2e−r

r2
− e−r +

2e−r

r
− 4λ(1 + 1− B(λ0)√

r
)
α

r
+ 8λe−r

= (
2

r2
− 1 +

2

r
+ 8λ)e−r − 4λ(2− B(λ0)√

r
)
α

r
.

Now set λ0 =
1

8
and choose r0 > 0 such that

(s± uλ)
′′ +

2

r
(s± u)′ − 4λHλ

r
(1 +

Hλ

r
)(s± uλ) < 0,

for all r ≥ r0, and λ in [0, 1/8). Finally, choose α > 0 such that

0 < s(r0)± uλ(r0),

λ in [0, 1/8)

Here are two immediate applications of the last proposition.

Corollary 9.3. There exists M > 0 such that for λ in [0, 1/8) the following holds for r ≥ 0

|Hλ(r)−H0(r)| ≤ M.

Proof. By Proposition 9.2 there is r0 satisfying

|r −Hλ(r)| ≤ α
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for r ≥ r0. It is also immediate that

|H0(r)− r| ≤ 1

for all r ≥ 0. Thus the required estimate follows for r ≥ r0. Also, since |Hλ(r)| ≤ r for all

λ ≥ 0 and r ≥ 0, see Theorem IV.10.1 of [JT], the result follows.

Corollary 9.4.

lim
r→∞

H ′
λ(r) = 1

for all λ < 1/8.

Proof. Recall that on one dimension functions in L2
1 are zero at infinity, see Proposition 7.5

of [JT]. To use this, estimate that for the L2 norm on [r0,∞), for r0 as in Proposition 9.2

‖H ′
λ − 1‖2 ≤ ‖H ′

λ −
Hλ

r
‖2 + ‖Hλ

r
− 1‖2 < ∞

since the first term on the right hand side is part of the energy and the second term is finite

by 9.2 for λ < 1/8.

For the derivative of H ′
λ − 1 estimate using (YMH-2)

‖H ′′
λ‖2 ≤ 2‖K2

λ

r2
Hλ‖2 + 4λ‖Hλ(1− Hλ

r
)(1 +

Hλ

r
)‖2.

For the first term of the right hand side recall Proposition 8.1 and that |Hλ(r)| < r, see

Theorem 10.1 of [JT]. For the second term use Proposition 9.1 and that

‖re−
√

λr‖L2[0,∞] =
1

2λ3/4
. (22)

Now estimate the behavior of H ′
λ at infinity.

Proposition 9.5. For every p ∈ (3/2, 2) there exist r0, α > 0 such that∣∣∣∣
(

Hλ

r

)′∣∣∣∣ ≤ α

rp
,

for all r ≥ r0 and for all λ in [0, 1/8).
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Proof. Set

vλ(r) =

(
Hλ

r

)′
.

Differentiate (21) to obtain

v′′λ +
2

r
v′λ −

(
2

r2
+ 4λ(2− 3(1− H2

λ

r2
)) +

2K2
λ

r2

)
vλ = −2

(
K2

λ

r2

)′
Hλ

r
(23)

For p ∈ (3/2, 2) set

s(r) =
α

rp
− e−r,

for α to be determined again.

Then

s′′ +
2

r
s′ = α

p(p− 1)

rp+2
− (1− 2

r
)e−r.

By Lemma 8.2 and Proposition 9.2 there is r0 and A such that for all r > r0 and λ < 1/8

(s± vλ)
′′ +

2

r
(s± vλ)

′ −
(

2

r2
+ 4λ(2− 3(1− H2

λ

r2
)) +

2K2
λ

r2

)
(s± vλ)

= ∓2

(
K2

λ

r2

)′
Hλ

r
+ α

p(p− 1)

rp+2
− (1− 2

r
)e−r − 2α

rp+2
+

12λα

rp
(1− H2

λ

r2
)− 8λα

rp
− 2K2

λα

rp+2

+

(
2

r2
+ 12λ(

H2
λ

r2
− 1) + 8λ +

2K2
λ

r2

)
e−r

≤ 4|KλK
′
λ|

r2
+

4K2
λ

r3
− 2− p(p− 1)

rp+2
α− (1− 2

r
)e−r +

24λA

rp+1
α− 8λ

rp
α− 2K2

λ

rp+2
α

+

(
2

r2
+ 8λ +

2e−r

r2

)
e−r

≤ 4A2e−r

r2
+

4A2e−r

r3
− (1− 2

r
)e−r − 8λα(1− 3A

r
)

1

rp
− 2− p(p− 1)

rp+2
α

+

(
2

r2
+ 8λ +

2e−r

r2

)
e−r.

Now, for λ still in [0, 1/8), choose a different r0 so that for r > r0 this last quantity becomes

negative:
4A2

r2
+

4A2

r3
− (1− 2

r
) < 0,

−8λα(1− 3A

r
)

1

rp
< 0,

−2− p(p− 1)

rp+2
+

(
2

r2
+ 8λ +

2e−r

r2

)
e−r < 0,
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where to make the last inequality valid α will have to be greater than 1. Since the L∞(0,∞)-

norm of vλ is uniformly bounded for λ in any bounded interval by Proposition 7.1 and

Theorem IV.11.1 of [JT], such that s(r0)± vλ(r0) > 0 for all λ ∈ [0, 1/8).

10. Estimates uniform in λ for Hλ and Kλ at 0

The next proposition describes the behavior of Hλ and Kλ near zero. The technique here

is an adaptation to uniform estimates of the technique in [R] for individual ones.

Proposition 10.1. There exists M > 0 and λ0 > 0 such that∣∣∣∣Hλ(r)

r2

∣∣∣∣ ≤ M,

and ∣∣∣∣1−Kλ

r2

∣∣∣∣ ≤ M,

for all r in [0, 1] and λ in [0, λ0].

Proof. The proof consists of four steps:

Step 1: For every λ0 > 0 the set

(
Hλ(r)

r3/2

)
λ∈[0,λ0]

is bounded in C[0, 1]:

by (YMH 2)

rH ′′
λ −

2Hλ

r
=

2(K2
λ − 1)Hλ

r
+

4λH3
λ

r
− 4λrHλ (24)

and the left hand side now equals

1

r

(
r3(

Hλ

r
)′ − r2Hλ

r

)′
.

Rewriting (24) as(
r3(

Hλ

r
)′ − r2Hλ

r

)′
= r3

(
2
K2

λ − 1

r
− 4λr(1− H2

λ

r2
)

)
Hλ

r2
,

integrating both sides from y to x for some 0 < y < x and then to taking y → 0 while

noticing that the extra y-terms go to zero gives

x3(
Hλ

x
)′ − x2Hλ

x
=

∫ x

0

r3

(
2
K2

λ − 1

r
− 4λr(1− H2

λ

r2
)

)
Hλ

r2
dr.
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Noting that the left hand side equals x4

(
Hλ

x2

)′
, set

hλ(r) = 2
K2

λ − 1

r
− 4λr(1− H2

λ

r2
). (25)

Note that the L2[0, 1] norms of the functions (hλ)λ∈[0,λ0] are uniformly bounded by the

monotonicity of the energies and the estimate |Hλ(r)| ≤ r for all r ≥ 0 and for all λ ≥ 0.

In addition,

x4

(
Hλ

x2

)′
=

∫ x

0

r3hλ
Hλ

r2
dr. (26)

and ∣∣∣∣r2 Hλ(r)

r2

∣∣∣∣ ≤ 1, (27)

for all r in [0, 1] and λ ≥ 0. This will be the first step in a bootstrapping which uses the

following Lemma. The Lemma is stated in a general form for it will be applied repeatedly

during the course of this proof. The proof of the Lemma itself is postponed for the moment.

Lemma 10.2. Let α, β, γ, and k be positive numbers such that 0 < γ − α + 3/2 < k and

α ≤ β + 1. Let fλ, gλ, and hλ be functions defined on [0, 1] where λ runs in some parameter

set Λ. Assume that

1. the functions fλ are differentiable on [0, 1]

2. the set (fλ(1))λ∈Λ is bounded

3. the set (gλ)λ∈Λ is bounded in C[0, 1]

4. the L2[0, 1] norm of the functions (hλ)λ∈Λ is uniformly bounded

5. the functions fλ, gλ, and hλ satisfy

xα|f ′λ(x)| ≤
∫ x

0

rβ|gλ(r)|dr +

∫ x

0

rγ|fλ(r)hλ(r)|dr (28)

and

6. the set of functions (rkfλ(r))λ∈Λ is bounded in C[0, 1].

Then the set of functions (rk−(γ−α+3/2)fλ(r))λ∈Λ is also bounded in C[0, 1].
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Since Hλ(1) < 1 for all λ, use equations (26) and (27) and apply the above lemma for

Λ = [0, λ0], α = 4, fλ(r) =
Hλ(r)

r2
, gλ(r) = 0, hλ(r) as in (25), γ = 3, k = 2,

to have that the set (r3/2fλ(r))λ∈[0,λ0] is bounded in C[0, 1].

Repeating twice gives that the set (
Hλ(r)

r3/2
)λ∈[0,λ0] is bounded in C[0, 1].

To bridge the gap between Step 1 and the statement of the Proposition, a similar boot-

strapping on Kλ is in order.

Step 2: There exists λ0 > 0 such that the set

(
1−Kλ(r)

r3/2

)
λ∈[0,λ0]

is bounded in C[0, 1].

By (YMH-1) we obtain:

−r2K ′′
λ − 2(1−Kλ) = −r3H2

λ

r3
Kλ + r3

(
K2

λ − 1

r
+

Kλ − 1

r

)
1−Kλ

r2
.

Noting that the left hand side of this equation equals(
r3

(
1−Kλ

r

)′
− r2

(
1−Kλ

r

))′
,

set

hλ(r) =
K2

λ − 1

r
+

Kλ − 1

r
, gλ(r) = −H2

λ

r3
Kλ (29)

to obtain (
r3

(
1−Kλ

r

)′
− r2

(
1−Kλ

r

))′
= r3gλ + r3hλ

1−Kλ

r2
.

By the convergence of Kλ to K0 in C[0, 1] there exists λ0 > 0 such that Kλ(r) > 0 for all λ

in [0, λ0] and for all r in [0, 1]. (This is the second time that λ0 need to be restricted, and for

the first time in an unknown range.) Thus the second term of hλ is dominated by the first

one. Therefore by Proposition 7.1 we obtain that the L2[0, 1] norms of the functions hλ are

uniformly bounded. Now integrate both sides from zero to x to obtain:

x3

(
1−Kλ(x)

x

)′
− x21−Kλ(x)

x
=

∫ x

0

r3gλdr +

∫ x

0

r3hλ
1−Kλ

r2
dr

and note that the left hand side equals

x4

(
1−Kλ(x)

x2

)′
.
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Thus

x4

(
1−Kλ(x)

x2

)′
=

∫ x

0

r3gλdr +

∫ x

0

r3hλ
1−Kλ

r2
, dr (30)

and by Lemma 7.3 ∣∣∣∣r21−Kλ(r)

r2

∣∣∣∣ ≤ 1 + CB(λ0) (31)

for all r and λ ∈ [0, λ0].

(30) and (31) become the first step in the bootstrapping when Lemma 10.2 is applied for

g and h as in (29) gives that the set

(
r3/21−Kλ(r)

r2

)
λ∈[0,λ2]

is bounded in C[0, 1].

Apply Lemma 10.2 twice more to obtain that the set(
r1/21−Kλ(r)

r2

)
λ∈[0,λ0]

is bounded in C[0, 1].

Step 3: Now the estimate on Hλ can be proved. For this, write (26) as follows:

x4

(
Hλ

x2

)′
=

∫ x

0

r7/2

(
2
K2

λ − 1

r3/2
− 4λ

√
r(1− H2

λ

r2
)

)
Hλ

r2
dr. (32)

Now Lemma 10.2 cannot be applied starting with (32), for γ = 7/2, and k = 1/2 because

k < γ − α + 3/2. However, it suffices to use part of its proof to get the required estimate.

Then for λ ∈ [0, λ0] set

hλ(r) = 2
K2

λ − 1

r3/2
− 4λ

√
r(1− H2

λ

r2
)

and note that by Step 2 the ‖hλ(r)‖L2[0,1] is uniformly bounded. Combining this with the

assertion of Step 1, there exists C > 0 such that for all λ in [0, λ0] :

(∫ 1

0

h2
λ(r)dr

)1/2

≤ C,

and ∣∣∣∣ Hλ

r3/2

∣∣∣∣ ≤ C,
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for r in [0, 1]. Then (32) gives

x4

(
Hλ

x2

)′
≤

(∫ 1

0

h2
λ(r)dr

)1/2(∫ x

0

r7(
Hλ

r2
)2dr

)1/2

≤ C

(∫ x

0

r6(
Hλ

r3/2
)2dr

)1/2

≤ C2

(∫ x

0

r6dr

)1/2

= C2x7/2.

Thus for λ in [0, λ0] and x in [0, 1]

(
Hλ

x2

)′
≤ C2

√
x
.

For 0 < r < 1 integrate the last inequality from r to 1 to obtain:

|Hλ(1)− Hλ(r)

r2
| ≤ 2C2|1−√

r|

for r in [0, 1]. Since |Hλ(1)| < 1, the estimate for Hλ follows.

Step 4: Now the statement for Kλ can be proved. For this write (30) as follows:

x4

(
1−Kλ(x)

x2

)′
=

∫ x

0

r4

(
−H2

λ

r4

)
Kλdr +

∫ x

0

r7/2

(
K2

λ − 1

r3/2
+

Kλ − 1

r3/2

)
1−Kλ

r2
dr.

(33)

Set

gλ(r) = −H2
λ

r4
Kλ

and

hλ(r) =
K2

λ − 1

r3/2
+

Kλ − 1

r3/2
.

By steps 2 and 3 and the choice of λ0 there exist C > 0 such that for all λ in [0, λ0]:

(∫
h2

λ(r)dr

)1/2

≤ C,

and

|gλ(r)| ≤ C
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for r in [0, 1]. Then (33) gives

x4

(
1−Kλ

x2

)′
≤ C

∫ x

0

r4dr +

(∫ 1

0

h2
λdr

)1/2
(∫ x

0

r7

(
1−Kλ

r2

)2

dr

)1/2

≤ Cx5 + C

(∫ x

0

r6

(
1−Kλ

r3/2

)2

dr

)1/2

≤ Cx5 + C2

(∫ x

0

r6dr

)1/2

= C(x7/2 + x5).

This gives (
1−Kλ

x2

)′
≤ C(x +

1√
x

),

which integrated from r to 1 gives that∣∣∣∣1−Kλ

r2
− (1−Kλ(1))

∣∣∣∣ ≤ C(
r2

2
+ 2

√
r) + C.

The estimate for Kλ follows.

Proof of Lemma 10.2

Choose a constant B > 0 such that for all λ ∈ Λ(∫ 1

0

h2
λdr

)1/2

≤ B, |gλ(r)| ≤ B,

for all r in [0, 1]. Therefore for every x in [0, 1]∫ x

0

rβ|gλ(r)|dr ≤ B

∫ x

0

rβdr =
B

β + 1
xβ+1,

and ∫ x

0

rγ|fλhλ|dr ≤
(∫ 1

0

h2
λ(r)dr

)1/2(∫ x

0

r2γf 2
λ(r)dr

)1/2

≤ B

(∫ x

0

r2(γ−k)(rkfλ(r))
2dr

)1/2

≤ B2

(∫ x

0

r2(γ−k)dr

)1/2

=
B2xγ−k+1/2

(2(γ − k) + 1)1/2
.
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Thus by equation (28)

|f ′λ(x)| ≤ B

β + 1
xβ+1−α +

B2

(2(γ − k) + 1)1/2

1

xα−γ+k−1/2
. (34)

But k > γ − α + 3/2 implies α− γ + k − 1/2 6= 1, thus by integrating (34) from y to 1 (for

some 0 < y ≤ 1)

|fλ(1)− fλ(y)| ≤ 2B

β + 1
+

B2

(2(γ − k) + 1)1/2(−γ + α + k − 3/2)

∣∣∣∣1− 1

yα−γ+k−3/2

∣∣∣∣ .
Now set

C =
B2

((2(γ − k) + 1)1/2(−γ + α + k − 3/2)

and multiply the last inequality by yα−γ+k−3/2 to have

|fλ(1)yα−γ+k−3/2 − fλ(y)yα−γ+k−3/2| ≤ 2Byα−γ+k−3/2

β + 1
+ C

∣∣yα−γ+k−3/2 − 1
∣∣ .

Now since k > γ − α + 3/2, and (fλ(1))λ∈Λ is bounded, the set

(fλ(y)yα−γ+k−3/2)λ∈Λ

is bounded in C[0, 1]. 2

Proposition 10.3. There exists M > 0 and λ0 > 0 such that∣∣∣∣H ′
λ(r)

r

∣∣∣∣ ≤ M

and ∣∣∣∣K ′
λ(r)

r

∣∣∣∣ ≤ M

for all r in [0, 1] and λ in [0, λ0].

Proof. Computation of the left hand side of (26) gives:

|x2H ′
λ − 2xHλ| ≤

∫ x

0

r3

∣∣∣∣hλ
Hλ

r2

∣∣∣∣ dr

for x in [0, 1]. By Proposition 10.1 there exists C > 0 such that∣∣∣∣hλ
Hλ

r2

∣∣∣∣ ≤ C
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for r in [0, 1] and λ in [0, λ0]. Therefore the last inequality gives:

|x2H ′
λ − 2xHλ| ≤ Cx4.

Dividing by x3 yields: ∣∣∣∣H ′
λ

x

∣∣∣∣ ≤ Cx +

∣∣∣∣Hλ

x2

∣∣∣∣
which gives the result for H ′

λ by virtue of Proposition 10.1.

The estimate for K ′
λ follows along similar lines: Computation of the left hand side of (30)

gives:

| − x2K ′
λ − 2x(1−Kλ)| ≤

∫ x

0

r3|gλ|dr +

∫ x

0

r3

∣∣∣∣hλ
1−Kλ

r2

∣∣∣∣ dr (35)

for x in [0, 1]. By Propositions 10.1 and 7.3 there exists C > 0 such that

|gλ(r)| ≤ C,

and ∣∣∣∣hλ
1−Kλ

r2

∣∣∣∣ ≤ C,

for r in [0, 1]. Thus (35) gives:

| − x2K ′
λ − 2x(1−Kλ)| ≤ Cx4.

Dividing this by x3 yields ∣∣∣∣K ′
λ

x

∣∣∣∣ ≤ Cx + 2

∣∣∣∣1−Kλ

x2

∣∣∣∣ ,
which by Proposition 10.1 gives the required estimate for K ′

λ.

11. Estimates on [0,∞)

In this section the estimates of Sections 7, 8, 9 and 10 are put together to show the

convergence in L2 as required for the proof of Theorem 5.5

Theorem 11.1. As λ → 0 the following hold for the L2 norms on [0,∞)

1. ‖1

r
(Hλ −H0)‖2 → 0

2. ‖ 1

r2
(Hλ −H0)‖2 → 0

3. ‖H ′′
λ −H ′′

0‖2 → 0
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4. ‖H ′
λ −H ′

0‖2 → 0

5. ‖1

r
(H ′

λ −H ′
0)‖2 → 0

In addition, for any b > 0 the following holds:∫ b

0

(Hλ −H0)
2dr → 0,

as λ → 0.

Proof. For (1) let ε > 0 and consider C > 0 given by Proposition 10.1 and Corollary 9.3

such that:

(Hλ −H0)
2 ≤ C,

and for λ small, ∣∣∣∣ 1

r2
(Hλ −H0)

∣∣∣∣ ≤ C

for r in [0, 1]. Choose r0 such that max( ε
C
, 1

ε
) < r0 and write:

‖1

r
(Hλ −H0)‖2

2 =

∫ ε/C

0

1

r2
(Hλ −H0)

2dr +

∫ r0

ε/C

1

r2
(Hλ −H0)

2dr +

∫ ∞

r0

1

r2
(Hλ −H0)

2dr

≤ ε +
C2

ε2

∫ r0

ε/C

(Hλ −H0)
2dr + C

∫ ∞

r0

1

r2
dr

≤ 2ε +

∫ r0

ε/C

(Hλ −H0)
2dr.

Now use Proposition 7.4.

The proof of (2) is similar.

For (3) write

‖H ′′
λ −H ′′

0‖L2[0,∞) = ‖2K2
λHλ

r2
− 2K2

0H0

r2
− 4λHλ(1− H2

λ

r2
)‖L2[0,∞)

≤ ‖2K2
λHλ

r2
− 2K2

0H0

r2
‖L2[0,∞) + 4λ‖Hλ(1− H2

λ

r2
)‖L2[0,∞).

For α and r0 be as in Proposition 9.1. Then, using that |Hλ(r)| ≤ r for all λ > 0, r ≥ 0 and

the estimate of Proposition 9.1,

4λ‖Hλ(1− H2
λ

r2
)‖L2[0,∞) ≤ 4λ‖Hλ(1− H2

λ

r2
)‖L2[0,r0] + 8λ‖Hλ(1− Hλ

r
)‖L2[r0,∞)

≤ 8λr0 + 8λα‖re−
√

λr‖L2[r0,∞)
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which goes to zero as λ → 0 by (22). Now for ε > 0 let α and r0 be as in Proposition 8.1.

Let r0 be the maximum of the r0 given in Proposition 8.1 and the r0 which satisfies

∥∥∥∥αe−r/2

r

∥∥∥∥
L2[r0,∞)

≤ ε.

Since Kλ converges to K0 in C[0, r0] as λ → 0, choose λ0 to be the minimum of the λ0 given

in Proposition 10.1 and the λ0 which satisfies:

|Kλ(r)| ≤ 2,

for all r in [0, r0] and λ in [0, λ0]. Now for B be as in Proposition 10.1, r1 = min(1, B/ε)2

and for λ ∈ [0, λ0],

∥∥∥∥2K2
λHλ

r2
− 2K2

0H0

r2

∥∥∥∥
L2[0,∞)

≤
∥∥∥∥K2

λHλ

r2

∥∥∥∥
L2[0,r1]

+

∥∥∥∥K2
0H0

r2

∥∥∥∥
L2[0,r1]

+

∥∥∥∥K2
λ(Hλ −H0)

r2

∥∥∥∥
L2[r1,r0]

+

∥∥∥∥(K2
λ −K2

0)H0

r2

∥∥∥∥
L2[r1,r0]

+2

∥∥∥∥αe−r/2

r

∥∥∥∥
L2[r0,∞)

≤ 2B
ε

B
+ 2B

ε

B

+
4

r2
1

‖Hλ −H0‖L2[r1,r0] +
r0

r2
1

‖K2
λ −K2

0‖L2[r1,r0]

+2ε.

The last expression becomes smaller that 8ε if λ is small enough, by the uniform convergence

of Kλ to K0 and Hλ to H0 on the interval [r1, r0]. Since ε was arbitrary, this finishes the

proof.

For (4), let ε > 0 be arbitrary, fix 3/2 < p < 2 and choose r0 > 0 be the maximum of the

r0 in Proposition 9.5 and the r0 which satisfies:

∥∥∥ α

rp−1

∥∥∥
L2[r0,∞)

+
∥∥∥α

r

∥∥∥
L2[r0,∞)

+ ‖1−H ′
0‖L2[r0,∞) < ε
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where α is the maximum of the constants which appear in Propositions 9.2 and 9.5. Let λ0

and α be as in Proposition 9.5 and note that for λ ∈ [0, λ0] we have that:∣∣∣∣H ′
λ

r
− Hλ

r2

∣∣∣∣ =

∣∣∣∣
(

Hλ

r

)′∣∣∣∣ ≤ α

rp

thus ∣∣∣∣H ′
λ −

Hλ

r

∣∣∣∣ ≤ α

rp−1
.

Therefore

|H ′
λ −H ′

0| ≤
∣∣∣∣H ′

λ −
Hλ

r

∣∣∣∣+
∣∣∣∣Hλ

r
− 1

∣∣∣∣+ |1−H ′
0| ≤

α

rp−1
+

α

r
+ |1−H ′

0|.

Thus

‖H ′
λ −H ′

0‖L2[r0,∞) ≤
∥∥∥ α

rp−1

∥∥∥
L2[r0,∞)

+
∥∥∥α

r

∥∥∥
L2[r0,∞)

+ ‖1−H ′
0‖L2[r0,∞) < ε.

Also,

‖H ′
λ −H ′

0‖L2[0,r0] → 0 as λ → 0

by Poincare’s Theorem (which applies by Part 3 and the estimate H ′
λ(0) = H ′

0(0) = 0 for λ

small enough).

For (5) let ε > 0 and choose C by Proposition 10.3 to satisfy

1

r2
(H ′

λ −H ′
0)

2 ≤ C

for r in [0, 1]. Then

‖1

r
(H ′

λ −H ′
0)‖2

2 ≤
∫ ε/C

0

1

r2
(H ′

λ −H ′
0)

2dr +

∫ ∞

ε/C

1

r2
(H ′

λ −H ′
0)

2dr

≤ ε +
C2

ε2

∫ ∞

ε/C

(H ′
λ −H ′

0)
2dr.

Now note that the last integral goes to zero by (4).

To show the last statement of the theorem use Proposition 10.3 at a small neighborhood

of zero and Proposition 7.4 on the rest of the interval [0, b].

Theorem 11.2. As λ → 0 the following hold for the L2 norms on [0,∞)

1. ‖Kλ −K0‖2 → 0,

2. ‖1

r
(Kλ −K0)‖2 → 0,
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3. ‖ 1

r2
(Kλ −K0)‖2 → 0,

4. ‖K ′′
λ −K ′′

0‖2 → 0,

5. ‖K ′
λ −K ′

0‖2 → 0,

6. ‖1

r
(K ′

λ −K ′
0)‖2 → 0,

Proof. For (1) write

‖Kλ −K0‖2
2 =

∫ r0

0

(Kλ −K0)
2dr +

∫ ∞

r0

(Kλ −K0)
2dr.

Now use Proposition 7.4 to see that the first integral goes to zero and Proposition 8.1 to

choose r0 large enough to make the second integral arbitrarily small.

For (2) write

‖1

r
Kλ −K0‖2

2 =

∫ ε

0

1

r2
(Kλ −K0)

2dr +

∫ r0

ε

1

r2
(Kλ −K0)

2dr +

∫ ∞

r0

1

r2
(Kλ −K0)

2dr.

Now use Proposition 10.1 to choose ε that makes the first integral arbitrarily small, Propo-

sition 7.4 for the second integral and Proposition 8.1 for the third.

For (3) repeat the proof of (2).

For (4) equation (YMH-1) gives

‖K ′′
λ −K ′′

0‖2 ≤ ‖H2
λ −H2

0

r2
Kλ‖2 + ‖(H2

0 − 1 + K2
λ + KλK0 + K2

0 )
Kλ −K0

r2
‖2

≤ C

(
‖H2

λ −H2
0

r2
‖2 + ‖Kλ −K0‖2

)

≤ C

(
‖Hλ −H0

r3/2
‖2 + ‖Kλ −K0‖2

)

which goes to 0 by Proposition 11.1 and part (1) of this Theorem.

For (5) use Poincare’s inequality and part (4) on a compact interval and the exponential

decay on K ′
λ −K ′

0 of Proposition 8.2.

For (6) use Proposition 10.3 close to zero, Proposition 7.4 on a compact interval and the

exponential decay at infinity, as above.
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12. Arguments for any positive λ

The arguments above have made a step from the λ = 0 Yang-Mills-Higgs theory to λ 6= 0

Yang-Mills-Higgs theory. In particular it has been shown that the set

Λ = {λ 6= 0 : Qcλ
λ ≥ 0, KerQcλ

λ = Sλ}

is nonempty.

Once away from zero, the norm

|||(a, φ)|||2 = ‖∇Aa‖2
2 + ‖∇Aφ‖2

2 + ‖[Φ, a]‖2
2 + ‖φ‖2

2

becomes relevant on TC+ and with respect to this norm Qcλ
λ has property (†).

With this, and after repeating the arguments of sections 8, 9 and 10 with 0 replaced by

sup Λ, it can also show that the set Λ is open. To show that Λ is in fact closed will follow

once the lowest non-zero eigenvalue of Qcλ
λ is controlled by an increasing function of λ.

It is the intention of the authors to substantiate these claims in a paper currently in

progress.
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