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Statistical Hypothesis Testing

Statistical Hypothesis Testing
A statistician challenges the general belief that a certain hypothesis H0 is
correct. The statistician suggests that H1 is in fact correct.

H0 Null Hypothesis.

H1 Alternative Hypothesis.

The statistician collects data, makes measurements on these data, and
then either

accepts the alternative hypothesis, or

rejects the alternative hypothesis.

This is not a mathematical proof! There are two types of errors:

Type I Error H0 is correct, but H1 is accepted.

Type II Error H1 is correct, but it is rejected.

α = P(Type I Error) = P(H1|H0), β = P(Type II Error) = P(H0|H1).
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Statistical Hypothesis Testing

Example 1
In 19th century it was believed that the average human body temperature
for ages 11-65 is 98.6 F. Later, doctors challenged that:

H0: The average human body temperature for ages 11-65 is 98.6 F.

H1: The average human body temperature for ages 11-65 is lower
than 98.6 F.

After collecting enough data, the Alternative Hypothesis was accepted.
Today it is believed that it is 97.6 F.
Evaluation of severity of errors:

Type I Error: The average human body temperature is equal to 98.6
F, but people accept that the average human body temperature is
lower than that. Some sick people with hypothermia will not be
diagnosed.

Type II Error: The average human body temperature is below 98.6 F,
but people reject that. Some sick people with fever will not be
diagnosed.
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Statistical Hypothesis Testing

Example 2

A person is suspected for committing a crime.

H0: The suspect is innocent.

H1: The suspect is guilty.

Data will be collected and measured. The Alternative Hypothesis will be
rejected or accepted.
Evaluation of severity of errors:

Type I Error: The suspect is innocent, but people believe that the
suspect is guilty. An innocent person goes to jail.

Type II Error: The suspect is guilty, but people reject that. A criminal
is released in the society.
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Statistical Hypothesis Testing

Example 3

An individual has symptoms of COVID-19 and decides to be tested.

H0: The individual has COVID-19.

H1: The individual is healthy.

The individual will be tested. The Alternative Hypothesis will be accepted
or rejected.
Evaluation of severity of errors:

Type I Error: The individual has COVID-19, but test is negative.
More people will be infected with COVID-19 by coming in contact
with the individual.

Type II Error: The individual is healthy, but the test is positive. The
individual will be quarantined unnecessarily.

In this example the severity of Type I Error is very large, so we want a
guarantee that α is small.
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Quantum Hypothesis Testing

Basics of quantum state discrimination
A quantum state on B(H) is a positive semi-definite operator on H
of trace equal to 1, (a.k.a. density operator). It is the quantum
analogue of a classical probability distribution.
A measurement (POVM) is a finite collection of positive
semi-definite operators on a Hilbert space whose sum is equal to the
identity operator. It is the quantum analogue of a finite partition of
the classical probability sample space.
If ρ is a quantum state and we measure it using the POVM
{A0, . . . ,An−1}, then we obtain i(∈ {0, . . . n − 1}) with probability
Tr (ρAi ).
You are presented with one of two states ρ or σ which are known to
you in advance, but you do not know which of the two states you are
presented with. The task is to design a measurement {A0,A1} that
will be able to reveal the presented state. If Tr (ρA0), Tr (σA1) are
large, (hence Tr(ρA1) and Tr (σA0) are small), then if the
measurement yields 0 then you guess ρ, and if the measurement
yields 1 then you guess σ.
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Quantum Hypothesis Testing

Asymmetric Quantum Hypothesis Testing

You are presented with one of two states ρ or σ which are known to you in
advance, but you do not know which of the two states you are presented
with.

H0: You are presented with ρ.

H1: You are presented with σ.

You design measurements A = {A0,A1} that will help you recognize the
presented state. Assume that the severity of Type I Error is very
large. Hence, for some ϵ ∈ (0, 1) and you only consider measurements
A = {A0,A1} such that α(A) = P(H1|H0) = Tr (ρA1) ≤ ϵ. Quantity of
interest:

β∗(ϵ) = min
{A:α(A)≤ϵ}

β(A) = min
{A=(A0,A1):Tr (ρA1)≤ϵ}

Tr (σA0).
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Quantum Hypothesis Testing

Hiai-Petz (1991), Ogawa-Nagaoka (2000)

You are presented with n many independent copies of one of two states ρ
or σ (asymptotic i.i.d. case) which are known to you in advance, but you
do not know which of the two states you are presented with.

H0: You are presented with ρ⊗n.

H1: You are presented with σ⊗n.

Then,

lim
n→∞

−1

n
log min

{A(n)=(A
(n)
0 ,A

(n)
1 ):Tr (ρ⊗nA

(n)
1 )≤ϵ}

Tr (σ⊗nA
(n)
0 )

= (optimal error exponent) = the Umegaki relative entropy D(ρ||σ)

=

{
Tr(ρ(log ρ− log σ)) if supp (ρ) ⊆ supp (σ)
∞ otherwise

(Quantum Stein’s Lemma).
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Quantum Hypothesis Testing

Symmetric Quantum Hypothesis Testing

Given two known states ρ and σ, and a known p ∈ (0, 1), a quantum
source emits the state ρ with probability p and the state σ with probability
1 − p. You are trying to design a measurement A = {A0,A1} which
minimizes the probability of error

Perr(p, ρ, σ) := min
A

pα(A) + (1 − p)β(A)

= min
A=(A0,A1)

pTr (ρA1) + (1 − p)Tr (σA0).
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Quantum Hypothesis Testing

Nussbaum-Szko la (2009), Audenaert et al. (2007)

(Asymptotic i.i.d. case.) Given two known states ρ and σ, and a known
p ∈ (0, 1), a quantum source emits the state ρ⊗n with probability p and
the state σ⊗n with probability 1 − p. Then,

lim
n→∞

−1

n
logPerr(p, ρ⊗n, σ⊗n) = optimal error exponent

= C (ρ||σ) := sup
0≤t≤1

− log Tr (ρtσ1−t)

(quantum Chernoff divergence).

The proof of Nussbaum-Szko la (2009) uses a corresponding classical result
of Chernoff (1952).
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Quantum Hypothesis Testing

Definition of Nussbaum-Szko la distributions
In the course of their proof, Nussbaum and Szko la (2009) observed the
following:

For every two states ρ and σ on a finite dimensional Hilbert space there
exist two probability distributions P and Q such that

Tr (ρtσ1−t) =
∑
k

Pt
kQ1−t

k , for every t ∈ (0, 1).

Definition of P and Q (Nussbaum-Szko la distributions): Let

ρ =
n∑

i=1

ri |ui ⟩⟨ui | and σ =
n∑

j=1

sj |vj⟩⟨vj |

be the spectral decompositions of ρ and σ. Then

P(i , j) = ri | ⟨ui |vj⟩ |2 and Q(i , j) = sj | ⟨ui |vj⟩ |2 for i , j ∈ {1, . . . n}.
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Uses of Nussbaum-Szko la distributions

Uses of the Nussbaum-Szko la distributions in literature

Nussbaum and Szko la (2010) studied the symmetric quantum
hypothesis testing (quantum Chernoff bounds) for finitely many
states on a finite dimensional Hilbert space. They conjectured that
the optimal error exponent is equal to the minimum of all pairwise
error exponents. This conjecture was finally proved by Li (2016).

Audenaert-Mosonyi-Verstraete (2012) study both the symmetric
hypothesis testing, as well as the asymmetric hypothesis testing for
finite sampling size (without taking limits to infinity).

Mosonyi (2009) uses Nussbaum-Szko la distributions to discriminate
certain Gaussian states.

Hiai-Mosonyi-Petz-Bény (2011) use Nussbaum-Szko la distributions
for general f -divergences between states on finite dimensional
C ∗-algebras.
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Uses of Nussbaum-Szko la distributions

More uses of the Nussbaum-Szko la distributions
Tomamichel-Hayashi (2013) studied second order asymptotics of
certain entropic quantities of i.i.d. copies of classical and quantum
states. Datta-Mosonyi-Hsieh-Brandao (2013) and (independently) Li
(2014) also studied second order asymptotics in quantum hypothesis
testing. Datta-Pautrat-Rouzé compute second order asymptotics in
non-i.i.d. quantum hypothesis testing.

The classical capacity of a quantum channel is defined as the
maximum number of bits that can be reliably transmitted via a
quantum channel. It is described via the
Holevo-Schumacher-Westmoreland Theorem. The question of
whether one can transmit reliably classical information via a quantum
channel at a rate asymptotically close to its classical capacity has
been studied using Nussbaum-Szko la distributions by several authors
such as: Hayashi (2007), Dalai (2013), Tomamichel-Tan (2015),
Chung-Guha-Zheng (2016), Chubb-Tan-Tomamichel (2017),
Cheng-Hsieh (2018), Cheng-Hsieh-Tomamichel (2019).

George Androulakis (Univ. of South Carolina) Nussbaum-Szko la distributions 2023/10/5 14 / 31



Classical divergences

Classical f -divergences

Definition (Cziszár (1963))

Let P, Q be probability distributions in a measure space (X ,F). Let µ be
a σ-finite measure with P ≪ µ and Q ≪ µ. Let p = dP

dµ and q = dQ
dµ . Let

f : (0,∞) → R be a convex or concave function. Define the f -divergence
by

Df (P||Q) =

∫
{pq>0}

f (
p

q
)dQ + f (0)Q(p = 0) + f ′(∞)P(q = 0),

where f ′(∞) := limt→∞
f (t)
t , and “natural” conventions about 0 and ∞.
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Classical divergences

Special cases of f -divergences
Assume that P and Q are discrete.

f (t) = t log t gives the Kullback-Leibler relative entropy

Df (P||Q) = D(P||Q) =

{ ∑
i P(i) log P(i)

Q(i) if P ≪ Q

∞ otherwise

fα(t) = tα for α ∈ (0, 1) ∪ (1,∞) gives the Rényi α-relative
entropy Dα(P||Q) = 1

α−1 log Dfα(P||Q) with

Dα(P||Q) =

{
1

α−1 log
∑

i P(i)αQ(i)1−α if P ≪ Q

∞ otherwise

f (t) = 1
2 (
√

t − 1)2 gives the squared Hellinger distance

Df (P||Q) = H2(P||Q) =
1

2

∑
i

(
√

P(i) −
√

Q(i))2
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Classical divergences

More special cases of f -divergences

fα(t) = tα−1
α−1 for α ∈ (0, 1) ∪ (1,∞) gives the Hellinger

α-divergence Dfα(P∥Q) = Hα(P||Q), with

Hα(P||Q) =

{
1

α−1

((∑
i P(i)αQ(i)1−α

)
− 1

)
, if α < 1 or P ≪ Q;

∞, otherwise.

f (t) = |t − 1| gives the total variation distance

Df (P∥Q) = V (P∥Q) =
∑
i

|P(i) − Q(i)|.

f (t) = (t − 1)2 gives the χ2-divergence,

χ2(P||Q) =

{ ∑
{i |Q(i)>0}

(P(i)−Q(i))2

Q(i) , if P ≪ Q;

∞, otherwise.
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Quantum divergences

The relative modular operator

Notation

B(H): bounded operators on H.

B2(H): Hilbert-Schmidt operators on H.

Πρ: the projection on the supp (ρ), (if ρ is a state).

Definition (Araki (1977))

D(S) = {X
√
σ : X ∈ B(H)} + {Y (I − Πσ) : Y ∈ B2(H)} ⊆ B2(H).

Define the antilinear operator S : D(S) → B2(H) by

S
(
X
√
σ + Y (I − Πσ)

)
= ΠσX †√ρ. (1)

Then, the relative modular operator ∆ρ,σ is defined by

∆ρ,σ = S†S .
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Quantum divergences

The relative modular operator in a simplified case

Remark

Assume that H is a finite dimensional Hilbert space, ρ, σ are density
operators on H, and σ is invertible. Then

∆ρ,σ : B(H) → B(H)

is given by
∆ρ,σ(X ) = ρXσ−1.
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Quantum divergences

Quantum f -divergences

Definition

Let ρ, σ be states on H. Let f : (0,∞) → R be a convex or concave
function. Then the quantum f -divergence Df (ρ||σ) is defined by

Df (ρ||σ) =

∫ ∞

0+

f (λ)
〈√

σ
∣∣ξ∆ρ,σ(dλ)

∣∣√σ
〉

2
+f (0) tr

(
σΠ⊥

ρ

)
+f ′(∞) tr

(
ρΠ⊥

σ

)
,

where ξ∆ρ,σ is the spectral measure of the relative modular operator ∆ρ,σ

and ⟨·|·⟩2 denotes the inner product in B2(H).
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Quantum divergences

Special cases of quantum f -divergences

f (t) = t log t gives the Umegaki Relative Entropy
D(ρ∥σ) := Df (ρ∥σ).

fα(t) = tα for α ∈ (0, 1) ∪ (1,∞) gives the Petz-Rényi α-relative
entropy Dα(ρ||σ) := 1

α−1 log Dfα(ρ∥σ).

fα(t) = tα−1
α−1 for α ∈ (0, 1) ∪ (1,∞) gives the quantum Hellinger

α-divergence.

f (t) = |t − 1| gives the quantum total variation
V (ρ||σ) := Df (ρ∥σ).

f (t) = (t − 1)2 gives the quantum χ2-divergence
χ2(ρ||σ) := Df (ρ∥σ).
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The Nussbaum-Szko la distributions

The Nussbaum-Szko la distributions

Definition (The Nussbaum-Szko la distributions)

Let H be a Hilbert space. Let ρ and σ be states on B(H) with spectral
decompositions

ρ =
∑
i∈I

ri |ui ⟩⟨ui | and σ =
∑
j∈I

sj |vj⟩⟨vj | .

Define the Nussbaum-Szko la distributions P and Q associated with ρ
and σ on I × I by,

P(i , j) = ri |⟨ui |vj⟩|2 and Q(i , j) = sj |⟨ui |vj⟩|2, ∀(i , j) ∈ I × I.
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The Nussbaum-Szko la distributions

More uses of the Nussbaum-Szko la distributions

Theorem (G.A., T.C.John)

Let H be a Hilbert space and ρ, σ be states on B(H). Let P, Q be the
Nussbaum-Szko la distributions associated with ρ and σ. Let
f : (0,∞) → R be a convex or concave function. Then

Df (ρ||σ) = Df (P||Q).
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The Nussbaum-Szko la distributions

Applications: f -divergence inequalities (G.A. T.C. John)

H2(P∥Q) ≤ V (P∥Q)2 ≤ H(P∥Q)
√

2 −H2(P∥Q),

hence

H2(ρ∥σ) ≤ V (ρ∥σ)2 ≤ H(ρ∥σ)
√

2 −H2(ρ∥σ).

D(P∥Q) ≤ log
(
1 + χ2(P∥Q)

)
,

hence
D(ρ∥σ) ≤ log

(
1 + χ2(ρ∥σ)

)
.

For 0 < α < 1 < β < ∞,

Hα(P∥Q) ≤ Dα(P∥Q) ≤ D(P∥Q) ≤ Dβ(P∥Q) ≤ Hβ(P∥Q),

hence

Hα(ρ∥σ) ≤ Dα(ρ∥σ) ≤ D(ρ∥σ) ≤ Dβ(ρ∥σ) ≤ Hβ(ρ∥σ).

etc.
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The Nussbaum-Szko la distributions

The Fock space in 1-mode

Definition (The Fock space of 1-mode and its basis)

The Fock space of 1-mode is ℓ2. Its basis (en)n∈N∪{0} is called the
particle basis.

Definition (The exponential vectors)

Define the exponential map e : C → ℓ2 by

e(h) =
∞∑
n=0

hn

√
n!

en.

The collection (e(h))h∈C is normalized, linearly independent, and total in
ℓ2.
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The Nussbaum-Szko la distributions

Definition of the Weyl map

Definition (The Weyl map in 1-mode)

Define the Weyl map W : C → B(ℓ2) by

W (µ)e(h) = e−
1
2
|µ|2−⟨µ|h⟩e(µ + h).

Then, W (µ) is a unitary operator and
W (µ1)W (µ2) = e−i Im⟨µ1|µ2⟩W (µ1 + µ2) (projective representation).
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The Nussbaum-Szko la distributions

The definition of Gaussian states

Definition (The quantum characteristic function of a state in 1-mode)

ρ̂(h) = Tr (W (h)ρ) for h ∈ C.

Definition (Gaussian states in 1-mode)

The state ρ is Gaussian with mean µ ∈ C and covariance S (symmetric
operator acting on the real vector space C) if

ρ̂(h) = e−2i Im⟨h|µ⟩−Re⟨h|Sh⟩, for all h ∈ C.
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The Nussbaum-Szko la distributions

Examples of Gaussian states

Definition

Thermal state with inverse temperature t ∈ (0,∞] in 1-mode:

γ(t) = (1 − e−t)
∞∑
k=0

etk |k⟩⟨k| = (1 − e−t)


1 0 0 0 · · ·
0 e−t 0 0 · · ·
0 0 e−2t 0 · · ·
0 0 0 e−3t · · ·
...

...
...

...
. . .


Definition (Displaced faithful thermal states)

ρ = W (µ)γ(t)W (µ)†

for some µ ∈ C and t ∈ (0,∞).
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The Nussbaum-Szko la distributions

Applications to Gaussian states

Theorem (G.A., T.C.John)

Petz-Rényi divergence of two 1-mode displaced faithful thermal states

ρ = W (µ1)γ(r)W (µ1)† and σ = W (µ2)γ(s)W (µ2)†.

Then

Dα(ρ||σ) < ∞ ⇔ α ∈
{

(0, 1) ∪ (1, s
s−r ) if r < s

(0, 1) ∪ (1,∞)otherwise
.

A similar result holds in n-modes as well. This helped us to prove a special
case of a conjecture of Seshadreesan-Lami-Wilde (2018).
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The Nussbaum-Szko la distributions

Open Questions

Given two Gaussian states ρ and σ determine the exact range of α
such that Dα(ρ||σ) < ∞. It is known that this set always contains
(0, 1].

Construct states in von Neumann algebras whose “Nussbaum-Szko la
distributions” are continuous. I.e. for any two states ρ and σ in a
family of states of a von Neumann algebra construct continuous
probability distributions P and Q such that

Df (ρ||σ) = Df (P||Q)

for every convex or concave function f : (0,∞) → R.
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The Nussbaum-Szko la distributions

Thank you!
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