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Abstract. We present a family of some new Tsirelson-type norms for the separable Hilbert
space. Our results extend some results of S. Bellenot, J. Bernués and I. Deliyanni and provide
candidates for distorted norms on the Hilbert space.

In this note we present a family of some new Tsirelson-type norms for the separable Hilbert
space `2. The motivation for presenting these norms is the following question of E. Odell
and Th. Schlumprecht [1] which is also mentioned by T.W. Gowers [5]:

Question 1. Is it possible, for λ > 0 to explicitly define an equivalent norm | · | on `2

such that every infinite dimensional subspace Y of `2 contains two vectors y1 and y2 with
‖y1‖2 = ‖y2‖2 = 1 (where ‖ · ‖2 denotes the usual norm of `2) and |y1|/|y2| > λ?

An implicitly defined norm with the above property exists by the solution of the famous
distortion problem by Odell and Schlumprecht [1, 2]. The family of norms that we present
gives candidates for the solution of Question 1. Some of the norms of our family were first
presented by S. Bellenot [3] which recently A.M. Pelczar [6] proved that these norms do not
answer Question 1. Another purpose of present note, is to extend some results of Bellenot
[3], J. Bernués and I. Deliyanni [4].

In order to define the new norms on `2 we first introduce some notation. For x = (x(i)) ∈ `2

and E ⊆ N we denote by Ex the natural projection of x on E, i.e. Ex = ((Ex)(i)) where
(Ex)(i) = x(i) for all i ∈ E and (Ex)(i) = 0 otherwise. Let c00 be the vector space of scalar
sequences with finite support. Set

A =

{
y = (y(1), y(2), . . . , y(N)) ∈ (0,∞)N : N ∈ N, N ≥ 2,

N∑
i=1

|y(i)|2 = 1

}
.

We define a sequence of equivalent norms ‖ · ‖y, for y ∈ A, on `2 as follows. Fix y =
(y(i))N

i=1 ∈ A. Then ‖ · ‖y is the unique norm which satisfies

(1) ‖x‖y = sup
N∑

i=1

y(i)‖Eix‖y ∨ ‖x‖∞ for every x ∈ c00,

where the supremum is taken with respect to any sequence of sets E1 < E2 < · · · < EN .
Notice that in the definition of ‖ · ‖y we allow the sets Ei to be empty and we adopt the
convention that “A < ∅” and “∅ < B” are valid for any A, B ⊆ N. It is standard to show
that for every y ∈ A there exists a unique norm ‖ · ‖y which satisfies (1). We provide two
equivalent definitions of the ‖ · ‖y. Firstly, for every fixed y ∈ A we define a sequence of
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norms ‖·‖(n)
y for n ∈ N∪{0} which increases to the norm ‖·‖y, as follows. Let ‖·‖(0)

y = ‖·‖∞
(the `∞ norm). If for n ∈ N ∪ {0} the ‖ · ‖(n)

y has been defined, then we define

(2) ‖x‖(n+1)
y = sup

N∑
i=1

y(i)‖Eix‖(n)
y ∨ ‖x‖(n)

y for x ∈ c00,

where the supremum is taken with respect to any sequence of sets E1 < E2 < · · · < EN .

Then ‖ · ‖y is the (pointwise) limit of ‖ · ‖(n)
y for n ∈ N ∪ {0}, and it satisfies (1).

Secondly, we define a sequence of subsets Kn, n = 0, 1, 2, . . . of c00 as follows. Let

K0 = {λei : i ∈ N, |λ| = 1}.
If Kn has been defined for some n ∈ N ∪ {0} then

Kn+1 = Kn ∪ {
N∑

i=1

y(i)xi : x1 < x2 < · · · < xN and xi ∈ Kn for all i ∈ {1, . . . , N}}.

Let K = ∪∞n=1Kn. Then, for every x = (x(i)) ∈ c00 we have that

‖x‖y = sup
z=(z(i))∈K

∞∑
i=1

x(i)z(i).

By using the Cauchy-Schwartz inequality it is easy to show by induction on n ∈ N ∪{0} that

‖x‖(n)
y ≤ ‖x‖2 for every x ∈ c00, or ‖z‖2 ≤ 1 for all z ∈ Kn. Thus we have that ‖x‖y ≤ ‖x‖2

for every x ∈ c00. We will also show in Theorem 3 that ‖ · ‖y is in fact equivalent to ‖ · ‖2.
For the proof of our main result we will need the notions of the N-tree, (where N is an

integer larger than 1), the tree decomposition of an interval and the tree decomposition of a
function.

Definition 2. (a) Let N be an integer larger than 1. An N-tree is a subset of {∅} ∪
∪∞k=1{1, 2, . . . , N}k endowed with an order ≺, satisfying the following:
(i) ∅ ∈ T and ∅ ≺ t for all t ∈ T \ {∅}.
(ii) If 1 ≤ k ≤ `, ni ∈ {1, . . . , N} for 1 ≤ i ≤ ` and (n1, . . . , n`) ∈ T then

(n1, . . . , nk) ∈ T .
(iii) If k, ` ∈ N and ni, mi ∈ {1, . . . , N} then (n1, . . . , nk) ≺ (m1, . . . ,m`) if and only

if k < ` and mi = ni for 1 ≤ i ≤ k.
A tree may be finite (respectively infinite) if it has finitely (respectively infinitely)
many nodes. A node t ∈ T will be called maximal if there is no s ∈ T with t ≺ s.
If t ∈ T \ {∅} we denote by t− the unique immediate predecessor of T . We denote
by max(T ) the set of maximal nodes of T . If t ∈ T \max(T ) then t+ will denote the
set of the immediate successors of t, namely t+ = {s ∈ T : t ≺ s and there is no t′ ∈
T with t ≺ t′ ≺ s}.

(b) Let T be an N-tree for some N ∈ N, N > 1. By a tree decomposition or T -
decomposition of an interval E ⊂ R we mean a family of intervals (Et)t∈T indexed
by the tree T , satisfying the following:
(i) E∅ = E.
(ii) Let 1 ≤ n < m ≤ N . If (n), (m) ∈ T then E(n) < E(m). If k ∈ N, n1, . . . , nk ∈

{1, . . . , N} and (n1, . . . , nk, n), (n1, . . . , nk, m) ∈ T then E(t,n) < E(t,m), where for
t = (n1, . . . , nk) ∈ T and n ∈ {1, . . . , N} we write (t, n) to denote (n1, . . . , nk, n).
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(iii) Et ⊇ ∪{E(t,i) : (t, i) ∈ T , i ∈ {1, . . . , N}}.
(c) Let T be an N -tree for some N ∈ N, N > 1. By a tree decomposition or T -

decomposition of a function g : [0,∞) → R we mean a family of functions (gt)t∈T
indexed by the tree T , satisfying the following two properties.
(i) g∅ = g.
(ii) If t ∈ T \ max(T ) and t+ = {(t, i) : i ∈ F} for some F ⊆ {1, . . . N} then

gt =
∑

i∈F y(i)g(t,i) with supp (gt,i) < supp (gt,j) for every i, j ∈ F with i < j.
If g has a T -decomposition (gt)t∈T and I ⊆ max(T ) then there is a unique tree

T̃ ⊆ T such that max(T̃ ) = I. Let S := ∪t∈Isupp gt and f := g �S be the restriction

of g on S. Then f has a T̃ -tree decomposition (ft)t∈T̃ which is naturally inherited
by the T -decomposition of g, if we set ft := gt for all t ∈ I and ft := gt �S for all

t ∈ T̃ \max(T̃ ).

Theorem 3. For every y ∈ A, ‖ · ‖y is equivalent to the norm of `2.
Moreover, for y = (y(i))N

i=1 ∈ A, let a := min1≤i≤N y(i), b := max1≤i≤N y(i) and M ∈ N
such that bM ≤ a. We have that ‖ · ‖y ≤ ‖ · ‖2 ≤ (M + 4)N‖ · ‖y.

Proof. Fix y = (y(i))N
i=1 ∈ A. We consider the isometric embedding φ : (`2, ‖ · ‖2) →

(L2[0,∞), ‖ · ‖2) defined by φ(x) =
∑∞

i=1 x(i)χ[i−1,i) where x = (x(i)) ∈ `2 and χE denotes
the characteristic function of a set E. Here, by abuse of notation, ‖ · ‖2 denotes the usual
Hilbert space norm on both `2 and L2[0,∞). Let B denote the set of functions in L2[0,∞)
with bounded support, where for a function f ∈ L2[0,∞) the support of f , supp (f), is
defined to be the essential support of f . Obviously we have that φ(c00) ⊂ B. We divide the
proof into three steps. In Step 1 we define a norm | · |y on B such that the restriction φ �c00

of φ on c00, φ �c00 : (c00, ‖ · ‖y) → (B, | · |y) is an isometric embedding. In Step 2 we define a
norm ||| · |||y on L2[0,∞) and we prove that it is equal to the usual norm ‖ · ‖2 of L2[0,∞).
In Step 3 we prove that the norms | · |y and ||| · |||y are equivalent. Of course, these three
steps finish the proof.
Step 1: Define a norm | · |y on L2[0,∞) in terms of its dual ball, as follows. Let

L0 = {f ∈ L2[0,∞) : ‖f‖2 ≤ 1 and supp (f) ⊆ [n− 1, n) for some n ∈ N}.

If n ∈ N ∪ {0} and Ln has been defined, then

Ln+1 = Ln ∪ {
∑N

i=1 y(i)fi : fi ∈ Ln for all i and there exists (ni) ⊆ N such that

supp (f1) < n1 ≤ supp (f2) < n2 ≤ supp (f3) < . . . < nN−1 ≤ supp(fN)}.

Let L = ∪∞n=0Ln and for f ∈ L2[0,∞) define

|f |y = sup
g∈L

∫ ∞

0

fg.

Notice that L ⊂ B and for every g ∈ L we have that ‖g‖2 ≤ 1. Thus | · |y is well defined and
| · |y ≤ ‖ · ‖2. We now prove that φ �c00 : (c00, ‖ · ‖y) → (B, | · |y) is an isometric embedding.
For this purpose we will need to prove (3), (4) and (5) which follow.

(3) For every x = (x(i)), z = (z(i)) ∈ c00 we have that
∞∑
i=1

x(i)z(i) =

∫ ∞

0

φ(x)φ(z).
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Indeed,

∞∑
i=1

x(i)z(i) =
∞∑
i=1

∫
[i−1,i)

∞∑
j=1

x(j)χ[j−1,j)

∞∑
k=1

z(k)χ[k−1,k)

=
∞∑
i=1

∫
[i−1,i)

φ(x)φ(z)

=

∫ ∞

0

φ(x)φ(z).

(4) For all n ∈ N ∪ {0} we have that φ(Kn) ⊂ Ln.

In order to prove (4) we proceed by induction on n. For n = 0 and z ∈ Kn we have that
z = λek where |λ| = 1 and k ∈ N. Thus φ(z) = λχ[k−1,k) ∈ L0. Assume that (4) is valid for
some n ∈ N ∪ {0} and let z ∈ Kn+1. There exist z1 = (z1(i)) < z2 = (z2(i)) < · · · < zN =

(zN(i)) in Kn such that z =
∑N

i=1 y(i)zi =
∑N

i=1 y(i)
∑∞

j=1 zi(j)ej (where (ej) denotes the

standard unit vector basis of `2). Then φ(z) =
∑N

i=1 y(i)
∑∞

j=1 zi(j)χ[j−1,j). Notice that for

all i ∈ {1, . . . , N},
∑∞

j=1 zi(j)χ[j−1,j) = φ(zi) ∈ Kn and

∞∑
j=1

z1(j)χ[j−1,j) < max(supp (z1)) ≤
∞∑

j=1

z2(j)χ[j−1,j) < max(supp (z2)) ≤ · · · ≤
∞∑

j=1

zN(j)χ[j−1,j).

Thus φ(z) ∈ Ln+1 which finishes the inductive proof of (4).

(5)
For every n, m, ` ∈ N ∪ {0}, x ∈ c00, with m < ` we have that

supz∈Kn

∫ `

m
φ(x)φ(z) = supg∈Ln

∫ `

m
φ(x)g.

Notice that by (4) we obtain “≤” in (5). In order to prove “≥” in (5) we use induction on
n. Let n = 0, g ∈ Ln and m < ` in N. There exists k ∈ N such that supp (g) ⊆ [k − 1, k)

and ‖g‖2 ≤ 1. Thus
∫ `

m
φ(x)g = x(k)

∫
[m,`)∩[k−1,k)

g since φ(x) is constant on [k − 1, k). The

last expression is equal to zero if [m, `) ∩ [k − 1, k) = ∅. If [m, `) ∩ [k − 1, k) 6= ∅ then
[k − 1, k) ⊆ [m, `) and the last expression is dominated by

|x(k)|
∫

[k−1,k)

|g| ≤ |x(k)|
(∫

[k−1,k)

|g|2
)1/2

≤ |x(k)| =
∫

[k−1,k)

x(k)φ(z) =

∫ `

m

φ(x)φ(z)

where z = (z(i)) ∈ K0 is defined by z(i) = 0 for all i 6= k, z(k) = |x(k)|/x(k) if x 6= 0,
z(k) = 0 if x = 0. Assume that (5) is valid for some n ∈ N∪{0}. Let g ∈ Ln+1 and m < ` in
N. There exist g1, g2, . . . , gN ∈ Ln and (ni)

N−1
i=1 ⊂ N such that supp(g1) < n1 ≤ supp(g2) <

n2 ≤ · · · < nN−1 ≤ supp(gN) and g =
∑N

i=1 y(i)gi. Thus if we set n0 = 0 and we adopt the
4



convention that [s, t) = ∅ whenever s ≥ t, then∫
[m,`)

φ(x)g =
N∑

i=1

y(i)

∫
[m,`)

φ(x)gi

=
N∑

i=1

y(i)

∫
[m∨ni−1,`∧ni)

φ(x)gi

≤
N∑

i=1

y(i) sup
zi∈Kn

∫
[m∨ni−1,`∧ni)

φ(x)φ(zi),

where the last inequality follows by the inductive hypothesis. Thus we continue our estimates
as follows:∫

[m,`)

φ(x)g =
N∑

i=1

y(i) sup
zi ∈ Kn

supp (zi) ∈ [ni−1 + 1, ni]

∫
[m,`)

φ(x)φ(zi)

≤ sup

{∫
[m,`)

φ(x)φ

(
N∑

i=1

y(i)zi

)
: zi ∈ Kn for all i, and

supp (z1) ≤ ñ1 < supp (z2) ≤ ñ2 < · · · ≤ supp(zN) for some (ñi) ⊆ N
}

= sup
z∈Kn+1

∫
[m,`)

φ(x)φ(z)

which finishes the inductive proof of (5).
Now, by combining (3) and (5) we obtain that φ �c00 : (c00, ‖·‖y) → (B, | · |y) is an isometric

embedding. Indeed, for every x = (x(i)) ∈ c00 we have that

‖x‖y = sup
z=(z(i))∈K

∞∑
i=1

x(i)z(i)

= sup
z=(z(i))∈K

∫ ∞

0

φ(x)φ(z) (by (3))

= sup
g∈L

∫ ∞

0

φ(x)g (by (5))

= |φ(x)|y.

Step 2: We define a norm ||| · |||y on L2[0,∞) in terms of its dual ball as follows. Let

L′
0 = {f ∈ L2[0,∞) : ‖f‖2 ≤ 1 and supp (f) ⊆ [α, α + 1) for some α ≥ 0}.

If n ∈ N ∪ {0} and L′
n has been defined then

L′
n+1 = L′

n ∪ {
∞∑
i=1

y(i)fi : fi ∈ L′
n for all i and supp (f1) < supp (f2) < · · · < supp (fN)}.
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Let L′ = ∪∞n=0L
′
n and for a function f ∈ L2[0,∞) define

|||f |||y = sup
g∈L′

∫ ∞

0

fg.

Notice that L′ is a subset of the unit ball of (L2[0,∞), ‖ · ‖2) thus ||| · |||y ≤ ‖·‖2. Also notice
that for every g ∈ L′ there exists a finite tree T and functions (gt)t∈T with

(6) g∅ = g,

(7)
gt =

∑N
i=1 y(i)gti with supp (gt1) < supp (gt2) < · · · < supp(gtN )

for every t ∈ T \max(T ),

(where t+ = {t1, . . . , tN}), and

(8)
‖gt‖2 ≤ 1 and there exists αt ≥ 0 such that supp (gt) ⊆ [αt, αt + 1)
for every t ∈ max(T ).

We now show that L′ is a dense subset of {f ∈ B : ‖f‖2 ≤ 1}. Since {f ∈ B : ‖f‖2 ≤
1} is a dense subset of the unit ball of (L2[0,∞), ‖ · ‖2), we obtain that ||| · |||y is equal
to ‖ · ‖2. Now let f ∈ B with ‖f‖2 ≤ 1. We define a (perhaps infinite) tree T , a T -
decomposition (Et)t∈T of [inf(supp (f)), sup(supp (f))), and for every t ∈ T we define ft ∈
L2[0,∞) with supp (ft) ⊆ Et as follows. Let f∅ = f and E∅ = [inf(supp (f)), sup(supp (f))).
Assume that ft has been defined for some t ∈ T , and ‖ft‖2 = ‖f‖2. Then t is a maximal
node of T if there exists α ≥ 0 such that supp (ft) ⊆ [α, α + 1). Otherwise, let α0 =
inf(Et) and define α0 < α1 < α2 < · · · < αN = sup(Et) (where N = #supp (y)) such
that ‖ftχ[αi−1,αi)‖2 = y(i)‖ft‖2 for all i = 1, . . . , N . Notice that this task is feasible since∑n

i=1 y(i)2 = 1 and the function α 7→ ‖ftχ[αi−1,α)‖2 is continuous. Then define Eti = [αi−1, αi)
and fti = ‖ft‖2ftχ[αi−1,αi)/‖ftχ[αi−1,αi)‖2 for i = 1, . . . , N and t+ = {t1, . . . , tN}. Notice that
‖fti‖2 = ‖ft‖2 = ‖f‖2 for all i, and

N∑
i=1

y(i)fti =
N∑

i=1

y(i)‖ft‖2

ftχ[αi−1,αi)

‖ftχ[αi−1,αi)‖2

=
N∑

i=1

ftχ[αi−1,αi) = ft.

It is easy to see by induction on n = 0, 1, 2, . . . that for every t ∈ T which has n predecessors,
‖fχEt‖2 = ‖f‖2y(j1)y(j2) · · · y(jn) for some j1, j2, . . . , jn ∈ {1, . . . , N} (which depend on t).
Thus

(9) ‖fχEt‖ → 0 as n (the number of predecessors of t) tends to infinity.

Notice also that for every two incomparable nodes t, s ∈ T we have that the intervals Et

and Es are disjoint. Thus there exist at most sup(E∅)− inf(E∅) many t’s in T such that the
length of Et is larger than 1. Thus by (9) we obtain that

g := f −
∑

(length of Et)>1

fχEt +
∑

(length of Et)>1

‖fχEt‖2
2χ[inf(Et),inf(Et)+1)

is a good approximant of f if every t ∈ T for which (length of Et) > 1 has sufficiently
large number of predecessors. Moreover, working as above we obtain a finite tree T and
functions (gt)t∈T which satisfy (6), (7) and (8). Thus g ∈ L′ which implies that L′ is dense
in {f ∈ B : ‖f‖2 ≤ 1}.
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Step 3: We now prove that |||·|||y is equivalent to |·|y. Obviously we have that |·|y ≤ |||·|||y.
Let a := min1≤i≤N y(i) and b := max1≤i≤N y(i). Let M ∈ N such that bM ≤ a. We will
show that every function g ∈ L′, the norming set of ||| · |||y, can be written as a sum of
at most (M + 4)N many functions from L which will finish the proof. Fix g ∈ L′ and
consider an N -tree T and functions (gt)t∈T ⊂ L2[0,∞) which satisfy (6), (7) and (8). In
particular, (gt)t∈T is a T -decomposition of g. By (8), for every t ∈ max(T ) there exists
αt ≥ 0 such that supp (gt) ⊆ [αt, αt + 1). Notice that if αt ∈ N ∪ {0} for every t ∈ max(T )
and moreover for every s, t ∈ max(T ) with s 6= t we have that αt 6= αs then g ∈ L. For every
i = 1, 2, . . . , N let Ti ⊆ T to be the smallest tree which contains all maximal nodes of T of
the form (n1, . . . , nk, i). Thus all maximal nodes of Ti have the form (n1, . . . , nk, i) for some
k ∈ N and nj ∈ {1, . . . , N} for 1 ≤ j ≤ k. For every t ∈ T let Et to be the smallest interval
(closed from the left, open from the right) containing the support of gt. For t ∈ T \max(T )
we have that the length of Et is larger than 1. For every i = 1, . . . , N let Ai, Bi ⊆ max(Ti)
with Ai∪Bi = max(Ti) be defined by Ai = {t ∈ max(Ti) : Et∩N = ∅} and Bi = max(Ti)\Ai.
For every t ∈ Bi let n(t) ∈ N ∩ Et, (such n(t) is unique since the length of Et is at most
equal to 1). We have that

supp (g) ⊆
N⋃

i=1

{⋃
{Et : t ∈ Ai} ∪

⋃
{Et ∩ [0, n(t)) : t ∈ Bi} ∪

⋃
{Et ∩ [n(t),∞) : t ∈ Bi}

}
.

For i ∈ {1, . . . , N} let Fi be the restriction of g on ∪{Et : t ∈ Ai}, Gi be the restriction of
g on ∪{Et ∩ [0, n(t)) : t ∈ Bi} and Hi be the restriction of g on ∪{Et ∩ [n(t),∞) : t ∈ Bi}.
Notice that for any fixed i ∈ {1, . . . , N}, any two intervals of the form Et ∩ [0, n(t)), where
t ∈ Bi, are separated with an integer. The same is true for any two intervals of the form
Et ∩ [n(t),∞), where t ∈ Bi. Thus for i ∈ {1, . . . , N}, each of the functions Gi and Hi

has a Ti-tree decomposition (naturally inherited from the T -tree decomposition of g), such
that if (Gi,t)t∈Ti

and (Hi,t)t∈Ti
are the tree decompositions of Gi and Hi respectively, then

the following is satisfied. For any s, t ∈ max(Ti) with s 6= t and Gi,t, Gi,s 6= 0, we have that
the supports of Gi,s and Gi,t are separated by an integer. Similarly, for any s, t ∈ max(Ti)
with s 6= t and Hi,t, Hi,s 6= 0, we have that the supports of Hi,s and Hi,t are separated by an
integer. Thus for i ∈ {1, . . . , N}, Gi, Hi belong to L, the norming set for | · |y.

Unfortunately we cannot say the same about Fi! Indeed for i ∈ {1, . . . N}, let (Fi,t)t∈max Ti

be the Ti-tree decomposition of Fi which is naturally inherited by the T -tree decomposition
of g. In general for s, t ∈ max(Ti) with s 6= t, the supports of Fi,s and Fi,t may not be
separated by an integer. Indeed, let s, t ∈ max(Ti) be such that s 6= t, Fi,t 6= 0, Fi,s 6= 0 and
the sets (s−)+ and (t−)+ contain only maximal elements of Ti. These conditions guarantee
that Et− and Es− are disjoint intervals, each of length larger than 1. Also ∅ 6= Et ⊆ Et−

and ∅ 6= Es ⊆ Es− . It is easy to see that these conditions do not imply that Et and
Es are separated by an integer. On the other hand there are no three different nodes
s, t, w ∈ max(Ti) so that Fi,s, Fi,t, Fi,w 6= 0, the sets (s−)+, (t−)+, (w−)+ contain only maximal
nodes of Ti and Et, Es, Ew are contained in the same integer interval (i.e. an interval of the
form [m, m + 1) for some m ∈ N ∪ {0}). Thus if from each integer interval we extract the
“most left” and the “most right” interval Et for t ∈ max(Ti), then there is no other node s in
max(Ti) such that Es 6= ∅, (s−)+ has only maximal nodes and Es ⊆ [m, m + 1). This is the
task of the next two paragraphs. For the rest of the proof, fix i ∈ {1, . . . , N} and let (Fi,t)t∈Ti

be the natural Ti-tree decomposition of Fi which is inherited by the T -decomposition of g.
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Fix t ∈ Ai. There exists a unique integer interval [m, m + 1) with Et ⊆ [m,m + 1). The
node t will be called left (perhaps the term i-left would be more precise, but since i is fixed we
do not want to make the terminology too long) if there is no s ∈ Ai such that m ≤ Es < Et

and Es is non-empty. Let Li be the restriction of Fi on ∪{Et : t is left }. The function Li has
a Ti-tree decomposition (Li,t)t∈Ti

which is naturally inherited by the Ti-tree decomposition
of Fi. For any two left nodes t1, t2 with Li,t1 , Li,t2 6= 0, we have that the supports of Li,t1 and
Li,t2 are separated by an integer, thus Li belongs to L, the norming set for | · |y.

Fix t ∈ Ai and let [m,m + 1) be the unique integer interval with Et ⊆ [m, m + 1). The
node t will be called right if t is not left and there is no s ∈ Ai such that Et < Es < m + 1
and Es is non-empty. Let Ri be the restriction of Fi on ∪{Et : t is right }. Arguing similarly
as we did for Li, we have that Ri ∈ L.

Let F̃i := Fi − (Li + Ri) and (F̃i,t)t∈Ti
be the Ti-tree decomposition of F̃i which is nat-

urally inherited by the Ti-tree decomposition of Fi. For s, t ∈ max(Ti) with s 6= t and
F̃i,s, F̃i,t 6= 0, the supports of Fi,s and Fi,t may not be separated by an integer! For instance
consider the following scenario. Consider two maximal nodes s, t of Ti with s− ≺ t−. Since
supp (F̃i,t−) ⊂ supp (F̃i,s−), and supp (F̃i,t−) is not contained in any integer interval we have

that supp (F̃i,s−) is not contained in any integer interval either. Obviously the inclusions

supp (F̃i,s) ⊆ supp (F̃i,s−) and supp (F̃i,t) ⊆ supp (F̃i,t−) do not imply that the sets supp (F̃i,s)

and supp (F̃i,t) are separated by an integer! The special nodes s, t that we just considered
have to be treated in a special way, and that is what we do in what follows.

A sequence (t1, t2, . . . , tk) ⊂ Ti, (k ≥ 2), is called i-special if the following are satisfied:

(a) tj ∈ max(Ti) for 1 ≤ j ≤ k.
(b) t−1 ≺ t−2 ≺ · · · ≺ t−k .

(c) The sets supp (F̃i,tj) for j ∈ {1, . . . , k} are all contained in the same integer interval.
(d) None of the tj’s is left or right.
(e) The sequence (t1, t2, . . . , tk) is maximal with the properties (a), (b), (c) and (d) (i.e.

it is not properly contained in any sequence which satisfies (a), (b), (c) and (d)).

Properties (c), (d) and (e) ensure that any two i-special sequences are disjoint.
Define Ti,1 to be the smallest subtree of Ti satisfying the following two conditions:

(i) If t ∈ max(Ti) and t does not belong in any i-special sequence then t ∈ Ti,1.
(ii) For any i special sequence (t1, . . . , tk) we have that t1 ∈ Ti,1.

Recall that in the beginning of Step 3 we defined a, b and M by: a := min1≤`≤N y(`),
b := max1≤`≤N y(`) and M ∈ N such that bM ≤ a. For j ∈ {2, . . . ,M − 1} let Ti,j be the
smallest subtree of Ti whose maximal nodes are the elements tj of any i-special sequence
(t1, . . . , tk) with k ≥ j. By the definition of Ti,j for 1 ≤ j ≤ M −1 we have that if (t1, . . . , tk)
is an i-special sequence and 1 ≤ j ≤ k then t` 6∈ Ti,j for ` ∈ {1, . . . k} \ {j}. For every

j ∈ {1, . . . ,M − 1} let F̃i,j be the restriction of F̃i on ∪{Et : t ∈ Ai ∩ Ti,j}. Hence F̃i,j has a

Ti,j-tree decomposition (F̃i,j,t)t∈Ti,j
which is naturally inherited by the Ti-tree decomposition

of F̃i. Moreover, since i-special sequences are maximal, (see (e) in the definition of i-special
sequences), we have that no two maximal nodes of Ti,j belong in the same i-special sequence.

Hence for every two maximal nodes s, t of Ti,j we have that the supports of F̃i,j,s and F̃i,j,t

are separated by an integer. Thus F̃i,j belongs to the norming set L of | · |y for every
j ∈ {1, . . . ,M − 1}.
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Notice that ∪M−1
j=1 supp (F̃i,j) may be a strict subset of supp (F̃i) and thus F̃i may not be

equal to
∑M−1

j=1 F̃i,j. This will be the case if there are i-special sequences that have length k ≥
M . Now we take care of such long i-special sequences. Fix an i-special sequence (t1, . . . , tk)
with k ≥ M . Let [m, m + 1) be the unique integer interval with supp (F̃i,tj) ⊆ [m,m + 1) for

all j ∈ {1, . . . , k}. Let F̃i,t−1
�[m,m+1) and F̃i,t−M

�[m,m+1) be the restrictions of F̃i,t−1
and F̃i,t−M

respectively on [m, m + 1). Thus we can write

F̃i,t−1
�[m,m+1)=

(∏
y(nα)mα

)
F̃i,t−M

�[m,m+1)

where nα, mα ∈ {1, . . . , N} and the product
∏

y(nα)mα has at least M -terms counting multi-
plicities. Thus

∏
y(nα)mα ≤ bM ≤ a ≤ y(i). Hence ‖F̃i,t−1

�[m,m+1) ‖2 ≤ y(i)‖F̃i,t−M
�[m,m+1) ‖2

and ‖F̃i,t−M
�[m,m+1) ‖2 ≤ ‖F̃i,t−M

‖2 ≤ 1 by (8). Let Ti,M be the subtree of Ti,1 whose maximal

nodes are the nodes t1 for any i-maximal sequence (t1, . . . , tk) with k ≥ M . Let

Si := ∪{Et : t ∈ Ai and there exists an i-special sequence (t1, . . . , tk) with k ≥ N

and M ≤ j ≤ k such that t = tj}.

Thus the restriction F̃i,M := F̃i �Si
of the function F̃i on Si has a Ti,M -tree decomposition

(F̃i,M,t)t∈Ti,M
, where for any i-special sequence (t1, . . . , tk) with k ≥ M we set F̃i,M,t1 :=

F̃i,t−M
�[m,m+1), (where [m,m + 1) is the unique integer interval which contains the sets

supp (F̃i,tj) for j ∈ {1, . . . , k}) and F̃i,M,t−1
:= F̃i,t−1

�[m,m+1). Hence F̃i,M belongs to L the

norming set of | · |y.
We have decomposed the arbitrary element g of the norming set L′ of ||| · |||y into the sum

of the functions Gi, Hi, Li, Ri, F̃i,j (where i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}), a total of
(M+4)N many functions of the norming set L of |·|y. This implies that |||·|||y ≤ (M+4)N |·|y
and finishes the proof. �
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