Quantum Info Seminar (SteveFenner)
What is a quantum channt? (supt. 29, 2023)
Represents some (any) quantum process that physically realizable (in principle),
Examples:
-A quiontum compritatian

- Unitary evolution of an isolatedsystion
- Measurements
- Q. \& (Musical communication
-model errors or noise
n combinations of the above
94
Notation: A \mathbb{C}-space is a finite dimensional Hilbert

$$
\langle\because,\rangle: q+x q \rightarrow \mathbb{C}
$$

- conjugate gym trio
and an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\} \quad$ in $\left.=\operatorname{dim}(g)\right)$)

$$
\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}
$$

For σ-spaces $J d, J: L(\not, J)=\{A ; G \rightarrow J$ is linear $\}$

$$
L(9 t):=h(9 x, 9 t)
$$

Sdjuints: $A \in L(\%, J)$. $A^{*} \in L(J, G)$ is unique map such that, $\forall u \in q+\forall v \in J,\langle v, A u\rangle_{J} i\left\langle A^{*} v, u\right\rangle_{\text {qa }}$

Def: A quantum channel (from of to J) is a linear z $\operatorname{map} \Phi: L\left(g_{A}\right) \rightarrow L(J) \quad[\$ \in L(L(g), L(J))]$ that is
-trace-preserving

- completely positive
"trace preserving " means $\operatorname{tr}(\Phi(A))=\operatorname{tr} A \quad \forall A \in L(A)$
Defi: 里 is positive if $\forall A C L(9 d)$, if $A \geq 0$ then $\Phi(A) \geq 0$ A is positive
Let \mathbb{R} be any \mathbb{Q}-space. Can form the linear map

$$
\Phi \otimes \mathbb{1}_{L(K)}: L(q \otimes \in) \rightarrow L(J \otimes K)
$$

defined so that $\forall A \in L(\eta)$ and $B<L(T)$,

$$
\left(\Phi \otimes \mathbb{1}_{L(\pi)}\right)(A \otimes B)=\Phi(A) \otimes B
$$

 Def: $\Phi: L(Q) \rightarrow L(J)$ is completely positive if 本 $\otimes \mathbb{H}_{L(K)}$ is positive for every \mathbb{C}-space K.
Example of a positive operator that is not completely positive: transpose operator $\left[A \in \mathbb{C}^{2 \times 2}\right]$

$$
\Phi(A)=A^{\top}
$$

$\Phi \otimes \mathbb{1}_{\mathbb{C}^{2 \times 2}}$ is not positive
$L(g, J)$ is a \mathbb{C}-space! $\forall A B E L(H, J)$

$$
\langle A, B\rangle:=\operatorname{tr}\left(A^{*} B\right)
$$

Examples:
Unitary Channel): Φ 汭 $(H) \rightarrow L(H A)$

$$
\Phi(A)=U A U^{*} \quad[u \in L(g A) \text { is unitary }]
$$

describes any process on an isolated physical system. ENg. $\mathbb{1}_{L(H) T}$ is a unitary channel $\left(U=\mathbb{1}_{Q}\right)$ that curses no change (represents an ideal (noises) comm. channel, or perfectly preserved memory).
Replacement $\frac{\text { Channel): Fix } \sigma \in L(J)}{\text { Define for all } A \in L(G t)} \frac{\text { density apenentor }}{\sigma \geqslant C \& \operatorname{tr} \sigma=1}$ Define, for all $A \in L(H A)$

$$
\Phi(A)=(\operatorname{tr} A) \sigma \quad[s a \phi(p)=\sigma]
$$

 $\forall \alpha \in \mathbb{C}, \quad \Phi(\alpha)=\alpha \rho \quad$ [sone fixed density apentor $p]$
POVM (Positive operatornalued Measure):
Mast geneal measurement on a quantum system where prst-measurement state is ignored.

The corresponding POVM is the channel 本：L（OA）$\rightarrow L\left(\mathbb{C}^{5}\right)$

$$
\left.\begin{array}{l}
\Phi: L\left(q \theta_{1}\right) \rightarrow L\left(J_{1}\right) \\
\Psi: L\left(q_{2}\right) \rightarrow L\left(J_{2}\right)
\end{array}\right\} \text { channels }
$$

implies

$$
\Phi \otimes \Phi: L\left(\psi_{1} \otimes q_{2}\right) \rightarrow L\left(J_{1} \otimes \sigma_{2}\right)
$$

is a channel
Trace Map；Tr ：$L(q) \rightarrow \frac{=\mathbb{C}}{L(\mathbb{C})}$ is a channel
＂discard $2+$＂．
＂ignore Il＂$^{\prime}$
Truk L（INGK）

$$
\underline{1 H}_{n} \otimes T_{-1}: L(g+\otimes \tau) \rightarrow L(g) \quad(\text { channel })
$$

＂ignore system 飞＂
＂trace out 飞＂

$$
\left(I_{q+} \otimes T r\right)(A \otimes B)=(\operatorname{tr} B) A \quad \begin{array}{ll}
A \in L(I A) \\
B \in L(T)
\end{array}
$$

Stere Finer
What is a Quantum Channel- Part 2.
Partial trace (correct this time):
it,$J \mathbb{C}$-spaces $\quad T_{f}: L(\eta+\Delta J) \rightarrow L\left(F_{A}\right)$

$$
\begin{gathered}
\operatorname{Tr}_{J}:=\mathbb{1}_{h(Q A)} \otimes t r \\
T_{r}(A \otimes B)=(\operatorname{tr} B) A
\end{gathered}
$$

Recall tomuspose op $L(q x) \rightarrow L\left(q \alpha_{x}\right)$

$$
x \rightarrow x^{\top}
$$

trace-preserving, positive but not completely positive. Conation example:

$$
\begin{aligned}
& \mathscr{H}=J=\mathbb{C}^{2} \\
& x:=u u^{*} \text { where } u=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] \in \mathbb{C}^{4} \cong \mathbb{C}^{2} \otimes \mathbb{C}^{2} \\
& x=\left[\begin{array}{ll|ll}
1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \geqslant 0
\end{aligned}
$$

$$
\begin{gathered}
\left(\underline{1}_{L\left(\mathbb{C}^{2}\right)} \otimes \text { trinppose }\right)(x) \\
\binom{0}{1}
\end{gathered}
$$

Apply tr $\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right]$ - conjngatie on brth sides get -2
Adjpints: For any linear map $\Phi: L(g A) \rightarrow L(J)$

$$
\begin{array}{rlrl}
\Phi^{*}: L(J) & \rightarrow L(A) & \text { s.t. } & \forall A \in L(J) \\
\langle A, \Phi(B)\rangle & \quad \forall B \in L(Q A)
\end{array}
$$

Def: Φ is unital if $\Phi(\mathbb{1})=\mathbb{1}$
Fact: Φ 里: $L\left(a_{2}\right) \rightarrow L(J)$ Inear.
(1) Is is completely positive $\Longleftrightarrow \Phi^{*}$ is completel) $\begin{gathered}\text { prr }\end{gathered}$
(2) Φ is tricee preserving $\Delta \Phi^{*}$ is unitil.

Proof of (2): $(\Rightarrow \forall B \in L(2 A)$

$$
\left\langle\Phi^{*}\left(\mathbb{1}_{J}\right), B\right\rangle=\left\langle\mathbb{1}_{J}, \Phi(B)\right\rangle=\operatorname{tr} \Phi(B)=\operatorname{tr} B
$$

$$
\begin{aligned}
& =\left\langle\mathbb{1}_{q}, B\right\rangle \quad \therefore \Phi^{*}\left(\mathbb{1}_{J}\right)=\mathbb{1}_{A}, \\
& \Leftrightarrow): \forall A \in L(O A), \operatorname{tr} \Phi(A)=\left\langle\mathbb{1}_{J}, \Phi(A)\right\rangle \\
& =\left\langle\Phi^{*}\left(\mathbb{1}_{J}\right), A\right\rangle=\left\langle\mathbb{1}_{q}, A\right\rangle=x \cdot A .
\end{aligned}
$$

Lemme: $A \in L(\phi), A \geq 0$ iff $\langle A, B\rangle \geq 0$
for all $B \geq 0$.
Lemmn: Φ proitive $\Rightarrow \Phi^{*}$ is pasitive,
Prorf: $\hat{A}\left\langle\Phi^{*}(A), B\right\rangle=\langle A, \Phi(B)\rangle \geqslant 0$
Cor: ((1) of the Fuct $): \Phi$ completely positine

Representations of Quantum Channels
Opeontor Sum Rep. (Kraus Rep):
Thine A liner map $\Phi: L(9 \alpha) \rightarrow L(T)$ is a channel inf $\exists K_{1}, \ldots, K_{n} \in L(\eta, J)$,

$$
\sum_{i=1}^{n} K_{i}^{*} K_{i}=1_{\text {ot }} \longleftarrow \begin{gathered}
\text { completeness } \\
\text { condition }
\end{gathered}
$$

$a n d, \forall A \in L(D)$,

$$
\Phi(A)=\sum_{i=1}^{n} K_{i} A K_{i}^{*} .
$$

The K_{i} are called Kraus operators.
Momus mink of $\Phi=$ least n such $\operatorname{tant} K_{1}, \ldots, t_{n}$ exist.
Φ Koans mat $1 \Longleftrightarrow \Phi$ kunitny choc)
Choi Representation: Given liver $\frac{\text { \& }}{}: L(\%) \rightarrow L(X)$ define

$$
\begin{aligned}
& J(\mathbb{W}):=\sum_{i, j \in[n]} \Phi\left(E_{i, j}\right) \otimes E_{i, j} \\
& \{1, \ldots, \ldots n\}
\end{aligned}
$$

$\left\{E_{i j}=e_{i} e_{j}^{T}\right.$ standard bnsij for $L\left(q_{4}\right)$. $\}$

$$
J(\Phi) \in L(K \otimes) \phi)
$$

(mnxmn matrix)

Fart: (1) Φ completely prsitive $\Longleftrightarrow J(\$) \geq 0$

$$
\begin{aligned}
\operatorname{dgress} & \left.\begin{array}{ll|l}
\sum_{i, j} E_{i, j} \otimes \Phi\left(E_{i j}\right) \\
& =\left[\begin{array}{l|l|l}
\Phi\left(E_{11}\right) & \Phi\left(E_{12}\right) & \cdots \\
\hline \Phi\left(E_{21}\right) & \Phi\left(E_{22}\right) & \\
\hline, & \vdots & \ddots
\end{array}\right]
\end{array}\right]
\end{aligned}
$$

(2) \not is trace-preserving $\Leftrightarrow \operatorname{Tr}_{r_{k}}(J(\$))=1_{k}$

Proof of (2);

$$
\begin{aligned}
& \left(\operatorname{Tr}_{k}(J(\mathbb{*}))=\operatorname{Tr}_{k}\left(\sum_{i, j} \Phi\left(E_{i j}\right) \otimes E_{i, j}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i, j} \operatorname{tr}\left(\Phi\left(E_{i, j}\right)\right) E_{i j}=\sum_{i, j} \delta_{i j} E_{i, j}^{\prime \prime}
\end{aligned}
$$

iff $\operatorname{tr}\left(\Phi\left(E_{i, j}\right)\right)=\delta_{i, j} \quad \forall i, j$
iff $\operatorname{tr}\left(\Phi\left(E_{i, j}\right)\right)=\operatorname{tr} E_{i j}$
iff is is trace preserving
Summanj $\left.\operatorname{Tr}_{k}(J t)\right)=\mathbb{1}_{a r}$ iff $\$$ is truce-presensy.
'Stinespoing Rep:

Any linen Φ iL $(q \theta) \rightarrow L(J)$, there exists K and $A, B \in L(q \not, J \odot K)$ suuhthnt, $\forall x \in L(O A)$

$$
\Phi(x)=\operatorname{Tr}_{K}\left(\sqrt{A X B^{X}}\right)
$$

 such that, $\forall x \in L(q \alpha)$

$$
\Phi(x)=T_{r_{k}}\left(A \times A^{*}\right)
$$

Quantum Seminar, Friday the 13th (Oct.)
Connections between the reps
Prop: Let $\left\{A_{i}\right\}_{1 \leqslant i \leqslant d}$ and $\left\{B_{i}\right\}_{1 \leqslant i \leq d}$ be such that each $A_{i}, B_{i} \in L(O, J)$ and let \mathcal{K} be any d dimensitional $\&$-space. TFAE for any linear $\Phi: L(\phi, A) \rightarrow L(J)$:

1. $\Phi(x)=\sum_{i=1}^{d} A_{i} \times B_{i}^{*} \quad \forall x \in L(G)$
2. $J^{\prime}(\Phi)=\sum_{i>1}^{d} \operatorname{vec}\left(A_{i}\right) \operatorname{vec}\left(\theta_{i}\right)^{*}$
$\left[\right.$ where vec: $L\left(9 \psi_{,} J\right) \longrightarrow$ Jot liner snch that $\operatorname{vec}\left(E_{i j}\right)=e_{i} \otimes e_{j}$

$$
\langle A, B\rangle=\langle\operatorname{vec}(A), \operatorname{vec}(B)\rangle
$$

3.

$$
\begin{aligned}
\Phi(X) & =\operatorname{Tr}_{\pi}\left(A \times B^{*}\right) \text { where } \\
A & =\sum_{i=1}^{d} A_{i} \otimes \otimes e_{i} \\
B & =\sum_{i=1}^{d} B_{i} \otimes e_{i} \quad\left[\begin{array}{l}
e_{i} \in K \\
\text { orth basis vector }
\end{array}\right.
\end{aligned}
$$

More examples of channels

- Completely depolarizing channel $\Omega: L(O A) \rightarrow L$ LeA

$$
\Omega(x):=(\operatorname{tr} x) 1_{q} / \operatorname{dim} q
$$

A partial) depolarizing channel is of the form,

$$
\begin{aligned}
& p \Omega+\left(i-p \mathbb{I}_{L(A)} \quad p \in[0,1]\right. \\
& J(\Omega)=\frac{\mathbb{I}_{2 \alpha} \otimes \mathbb{1}_{3 \alpha}}{\operatorname{dim} g_{\alpha}}
\end{aligned}
$$

- Completely Dephasing (channel $\Delta: L(P A) \rightarrow L(O D)$

$$
\Delta(x):=\sum_{i=1}^{\operatorname{din} \pi}[x]_{i i} E_{i i}
$$

"set all off-diayonal elements to 0 "

$$
\begin{aligned}
& T(\Delta)=\sum_{i=1}^{\text {ding }} E_{i i} \Delta E_{i i} \\
& \Delta(X)=\sum_{i} E_{i i} X E_{i i}^{*} \\
& =\operatorname{Tr}_{\pi}\left(A \times A^{*}\right) \\
& \text { where } A=\sum_{i=1}^{\lim _{n}}\left(e_{i} \otimes e_{i}\right) e_{i}^{*}
\end{aligned}
$$

Mixed Unitary Channel) - convex combo of unitary channels.
In 2 dims,

$$
\Omega(p):=\frac{1}{4}(p+x p x+y p y+z p z)
$$

Norms of superopentors $A \in L(\psi, y)$

$$
\|A\|_{1}:=\operatorname{Tr} \sqrt{A^{x} A}
$$

linear

$$
\begin{aligned}
& \|⿻ 日 木\|_{1}:=\max \left\{\|\Phi(x)\|_{1}:\|x\|_{1} \leq 1\right\}
\end{aligned}
$$

 \＆$\|(x)\|_{1} \leqslant\|x\|_{1}$
Completely Bounded Trace Norm（＂Siammon nom＂＂）

$$
\|⿻\|_{1}\left\|_{1} \therefore\right\| \Phi \otimes 1_{L(A+1} \|_{1}
$$

