Quantum Seminar, Friday the 13 th (Oct.)
Connections between the reps
Prod: Let $\left\{A_{i}\right\}_{1 \leqslant i \leqslant d}$ and $\left\{B_{i}\right\}_{1 \leq i \leq d}$ be such that each $A_{i}, B_{i} \in L(O, J)$ and let \mathbb{K} be any d-dimennisinal © -space. TFAE for ny linear $\Phi=L L(\phi A) \rightarrow L(J)$:

1. $\Phi(x)=\sum_{i=1}^{d} A_{i} \times B_{i}^{*} \quad \forall x \in L(g)$
2. $J^{\prime}(\Phi)=\sum_{i \rightarrow 1}^{d} \operatorname{vec}\left(A_{i}\right) \operatorname{vec}\left(\theta_{i}\right)^{*}$
$[$ where vec $: L(9 \nsim J) \longrightarrow J$ oft lineer snch that $\operatorname{vec}\left(E_{i j}\right)=e_{i} \otimes e_{j}$

$$
\langle A, B\rangle=\langle\operatorname{vec}(A), \operatorname{vec}(B)\rangle
$$

3.

$$
\begin{aligned}
\Phi(X) & =\operatorname{Tr}_{\pi}\left(A \times B^{*}\right) \text { where } \\
A & =\sum_{i=1}^{d} A_{i} \otimes e_{i} \quad\left[\begin{array}{l}
e_{i} \in K \\
B
\end{array}=\sum_{i=1}^{d} B_{i} \otimes e_{i} \quad\left[\begin{array}{l}
\text { orth basis vector }
\end{array}\right.\right.
\end{aligned}
$$

More examples of channels

- Completely depolarizing channel $\Omega: L(O A) \rightarrow L$ LeA

$$
\Omega(x):=(\operatorname{tr} x) 1_{q} / \operatorname{dim} q
$$

A partial) depolarizing channel is of the form,

$$
\begin{aligned}
& p \Omega+\left(i-p \mathbb{I}_{L(A)} \quad p \in[0,1]\right. \\
& J(\Omega)=\frac{\mathbb{I}_{2 \alpha} \otimes \mathbb{1}_{3 \alpha}}{\operatorname{dim} g_{\alpha}}
\end{aligned}
$$

- Completely Dephasing (channel $\Delta: L(P A) \rightarrow L(O D)$

$$
\Delta(x):=\sum_{i=1}^{\operatorname{din} \pi}[x]_{i i} E_{i i}
$$

"set all off-diayoun elements to 0 "

$$
\begin{aligned}
& T(\Delta)=\sum_{i=1}^{\text {ding }} E_{i i} \Delta E_{i i} \\
& \Delta(X)=\sum_{i} E_{i 2} X E_{i i}^{*} \\
& =\operatorname{Tr}_{\pi}\left(A \times A^{*}\right) \\
& \text { where } A=\sum_{i=1}^{\operatorname{dim} h}\left(e_{i} \otimes e_{i}\right) e_{i}^{*} \\
& \& \kappa=q \text { 。 }
\end{aligned}
$$

Mixed Unitary Channel) - convex combo of unitary channels.
In 2 dims,

$$
\Omega(p):=\frac{1}{4}(p+x p x+y p y+z p z)
$$

Norm3 of superopentors $A \in L(\psi, y)$

$$
\|A\|_{1}:=\operatorname{Tr} \sqrt{A^{*} A}
$$

linear
induces a trace norm on linear apenturs $\$$

$$
\begin{aligned}
& \|⿻ 日 木\|_{1}:=\max \left\{\|\Phi(x)\|_{1}:\|x\|_{1} \leq 1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thm af kusso-bye }
\end{aligned}
$$

 \＆$\|(x)\|_{1} \leqslant\|x\|_{1}$
Completely Bounded Trace Norm（＂Sianmondnsm＂）

$$
\|⿻\|_{1}\left\|_{1} \therefore\right\| \Phi \otimes 1_{L(A+1} \|_{1}
$$

Key porperties：$\left\|\|\right.$ 本 $\left.1_{L(x)}\right\|\left\|_{1}=\right\| \mid \& \|_{1}$

III 在 \otimes 区

