Stere Finer
What is a Quantum Channel- Part 2.
Partial trace (correct this time):
it,$J \mathbb{C}$-spaces $\quad T_{f}: L(\eta+\Delta J) \rightarrow L\left(F_{A}\right)$

$$
\begin{gathered}
\operatorname{Tr}_{J}:=\mathbb{1}_{h(Q A)} \otimes t r \\
T_{r}(A \otimes B)=(\operatorname{tr} B) A
\end{gathered}
$$

Recall tomuspose op $L(q x) \rightarrow L\left(q \alpha_{x}\right)$

$$
x \rightarrow x^{\top}
$$

trace-preserving, positive but not completely positive. Conation example:

$$
\begin{aligned}
& \mathscr{H}=J=\mathbb{C}^{2} \\
& x:=u u^{*} \text { where } u=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] \in \mathbb{C}^{4} \cong \mathbb{C}^{2} \otimes \mathbb{C}^{2} \\
& x=\left[\begin{array}{ll|ll}
1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \geqslant 0
\end{aligned}
$$

$$
\begin{gathered}
\left(\underline{1}_{L\left(\mathbb{C}^{2}\right)} \otimes \text { trinppose }\right)(x) \\
\binom{0}{1}
\end{gathered}=\left[\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],
$$

Apply tr $\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right]$ - comjngate on brth sides get -2
Adjpints: For any linear map $\Phi: L(g A) \rightarrow L(J)$

$$
\begin{array}{rlrl}
\Phi^{*}: L(J) & \rightarrow L(A) & \text { s.t. } & \forall A \in L(J) \\
\langle A, \Phi(B)\rangle & \quad \forall B \in L(Q A)
\end{array}
$$

Def: Φ is unital if $\Phi(\mathbb{1})=\mathbb{1}$
Fact: Φ 里: $L\left(a_{2}\right) \rightarrow L(J)$ Inear.
(1) Is is completely positive $\Longleftrightarrow \Phi^{*}$ is completel) $\begin{gathered}\text { prr }\end{gathered}$
(2) Φ is tricee preserving $\Delta \Phi^{*}$ is unitil.

Proof of (2): $(\Rightarrow \forall B \in L(2 A)$

$$
\left\langle\Phi^{*}\left(\mathbb{1}_{J}\right), B\right\rangle=\left\langle\mathbb{1}_{J}, \Phi(B)\right\rangle=\operatorname{tr} \Phi(B)=\operatorname{tr} B
$$

$$
\begin{aligned}
& =\left\langle\mathbb{1}_{q,}, B\right\rangle \quad \therefore \Phi^{*}\left(\mathbb{1}_{J}\right)=\mathbb{1}_{\mathcal{H}} \\
& \Leftrightarrow): \forall A \in L(O / A), \operatorname{tr} \Phi(A)=\left\langle\mathbb{1}_{J}, \Phi(A)\right\rangle \\
& =\left\langle\Phi^{*}\left(\mathbb{1}_{J}\right), A\right\rangle=\left\langle\mathbb{1}_{q}, A\right\rangle=\operatorname{tr} A
\end{aligned}
$$

Lemme: $A \in L(\phi), A \geq 0$ iff $\langle A, B\rangle \geq 0$
for all $B \geq 0$.
Lemmn: Φ proitive $\Rightarrow \Phi^{*}$ is pasitive,
Prorf $\hat{A}\left\{\Phi^{*}(A), B\right\rangle=\langle A, \Phi(B)\rangle \geqslant 0$
Cor: (1) of the Fuct $): \Phi$ completely positine

Representations of Quantum Channels
Opeontor Sum Rep. (Kraus Rep):
Thine A liner map $\Phi: L(9 \alpha) \rightarrow L(T)$ is a channel inf $\exists K_{1}, \ldots, K_{n} \in L(\eta, J)$,

$$
\sum_{i=1}^{n} K_{i}^{*} K_{i}=1_{\text {ot }} \longleftarrow \begin{gathered}
\text { completeness } \\
\text { condition }
\end{gathered}
$$

$a n d, \forall A \in L(D)$,

$$
\Phi(A)=\sum_{i=1}^{n} K_{i} A K_{i}^{*} .
$$

The K_{i} are called Kraus operators.
Momus mink of $\Phi=$ least n such $\operatorname{tant} K_{1}, \ldots, t_{n}$ exist.
Φ Koans mat $1 \Longleftrightarrow \Phi$ kunitny choc)
Choi Representation: Given liver $\frac{\text { \& }}{}: L(\%) \rightarrow L(X)$ define

$$
J(\mathbb{N}):=\sum_{\substack{i, j \in[n] \\\{1, \ldots, n\}}} \Phi\left(E_{i, j}\right) \otimes E_{i, j}
$$

$\left\{E_{i j}=e_{i} e_{j}^{T}\right.$ standard ${ }^{2} s i s$ for $\left.L(q+)_{\text {. }}\right]$

$$
J(\Phi) \in L(K \oplus \%)
$$

(mn xmn matrix)

Fart: (1) Φ completely prositive $\Longleftrightarrow J(\$) \geq 0$

$$
\quad\left[\begin{array}{l}
\sum_{i, j} E_{i, j} \otimes \Phi\left(E_{i j}\right) \\
\quad=\left[\begin{array}{l|l|l}
\Phi\left(E_{11}\right) & \Phi\left(E_{12}\right) & \cdots \\
\hline \Phi\left(E_{21}\right) & \Phi\left(E_{22}\right) & \\
\hline \vdots & \vdots & \ddots
\end{array}\right]
\end{array}\right.
$$

(2) $\$$ is timce-preserving $\Leftrightarrow T_{r_{k}}(J(\not))=1_{\psi}$

Proof of (2);

$$
\begin{aligned}
& \left(\operatorname{Tr}_{k}(J(\mathbb{*}))=\operatorname{Tr}_{k}\left(\sum_{i, j} \Phi\left(E_{i, j}\right) \otimes E_{i, j}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i, j} \operatorname{tr}\left(\Phi\left(E_{i, j}\right)\right) E_{i j}=\sum_{i, j} \delta_{i j} E_{i, j}^{\prime \prime}
\end{aligned}
$$

iff $\operatorname{tr}\left(\Phi\left(E_{i, j}\right)\right)=\delta_{i, j} \quad \forall i, j$
iff $\operatorname{tr}\left(\Phi\left(E_{i, j}\right)\right)=\operatorname{tr} E_{i j}$
iff is is trace preserving
Summanj $\left.\operatorname{Tr}_{k}(J t)\right)=\mathbb{1}_{a r}$ iff $\$$ is truce-presensy.
'Stinespoing Rep:

Any linens Φ iL $(9 \theta) \rightarrow L(J)$, there exists K and $A, B \in L(O A, J \odot K)$ such that, $\forall x \in L(O A)$

$$
\begin{aligned}
& \Phi(x)=\operatorname{Tr}_{K}\left(A X B^{*}\right)
\end{aligned}
$$

 such that, $\forall x \in L(q q)$

$$
\Phi(x)=T_{r_{k}}\left(A \times A^{*}\right)
$$

