# The role of entropy in classical and quantum communications

George Androulakis

University of South Carolina

Quantum Probability 40

Thursday August 15, 2019

## Outline

- 1 Definition of Shannon entropy
- 2 Set-up of communication scheme
- Shannon's noiseless coding Theorem
- 4 Shannon's noisy channel coding Theorem
- 5 Schumacher's coding Theorem
- 6 Give an upper bound for the accessible classical information of a q-q channel

## 7 The Holevo bound

## Shannon entropy



Figure 1: By cartoonist Mark Heath

# Definition of Shannon entropy

Entropy = measure of uncertainty (i.e. lack of information), measure of our surprise when an event happens.

First attempt to measure our surprise when an event happens:  $\frac{1}{p}$ . Additivity of surprise for independent events.

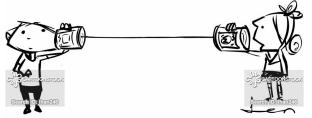
Second attempt to measure our surprise when an event happens:  $\log_2 \frac{1}{n}$ 

Average the surprises.

**Shannon Entropy** If *P* is a prob. distr. then  $H(P) = -\sum_{i} p_i \log_2 p_i$ . If *X* is a r.v. then  $H(X) = \langle -\log_2 X \rangle$ , (Claude Shannon, "A Mathematical Theory of Communication", 1948).

## Set-up of communication scheme

Cartoonist: Hawkins, Len Search ID: Ihan246 High-Res: 2900 x 1300 px



#### "I said, how do you send a text with this thing?"

#### Figure 2: By cartoonist Len Hawkins

## General communication scheme

Alice or information source  $\mathcal{S}(\mathfrak{A}) \xrightarrow{\mathcal{C}} \mathcal{S}(\mathcal{A}) \xrightarrow{\Phi} \mathcal{S}(\mathcal{B}) \xrightarrow{\mathcal{D}} \mathcal{S}(\mathfrak{B})$  Bob.

where

 $\mathfrak{A}, \mathcal{A}, \mathcal{B}, \mathfrak{B}$  are von Neumann algebras,

 $\mathcal{S}(\cdot)$  denotes the set of states (positive unital functionals) on the algebra,

$$C = \text{ coding}, \quad D = \text{ decoding}, \quad \Phi = \text{ channel}.$$

Usually,

$$\mathfrak{A} = \mathfrak{B} = C(\{1, \dots, M\})$$
 or  $C(\{0, 1\}^m)$ : classical communication,  
 $\mathfrak{A} = \mathfrak{B} = \mathcal{B}(H)$  or  $\mathcal{B}((\mathbb{C}^2)^{\otimes m})$ : quantum communication.

 $0,1,|0\rangle,|1\rangle=$  code characters. Sequences of code characters are called codewords.

George Androulakis (Univ. of South Carolina

# (General) states and channels

**Classical state spaces:** S = a finite set of symbols.  $\mathcal{A} =$  the Abelian algebra C(S) of all functions on S.  $S(\mathcal{A}) =$  all states (positive unital functionals) (i.e. prob. distr.) on S.

**Quantum state spaces:** A= the non-Abelian algebra  $\mathcal{B}(\mathcal{H})$ .  $\mathcal{S}(A)$ = all states on A.

A (noisy) channel is an affine map  $\Phi : \mathcal{S}(\mathcal{A}) \to \mathcal{S}(\mathcal{B})$  whose linear extension, still denoted by  $\Phi$ , has completely positive adjoint  $\Phi^{\dagger}$ .

- c-c (noisy) channels:  $\Phi = (p(y|x))_{x \in S, y \in S'}$  a column stochastic matrix.
- q-q (noisy) channels:  $\Phi(\cdot) = \sum_j V_j \cdot V_j^*$  with  $\sum_j V_j^* V_j = 1$ .
- **q-q reversible channels:**  $\Phi(\cdot) = U \cdot U^*$ , U is a unitary.
- c-q (noisy) channels:  $\Phi(P) = \sum_{s \in S} p_s \rho_s$

**q-c (noisy) channels:**  $\Phi(\rho) = (\operatorname{tr} (\rho M_s))_{s \in S}$  where  $M_s \ge 0$  for all  $s \in S$  with  $\sum_{s \in S} M_s = \mathbf{1}$  (POVM).

## Codes

An example of a code  $\mathcal{C}: S = \{a, b, \dots, z\} \rightarrow \{0, 1\}^+ := \cup_{n=0}^{\infty} \{0, 1\}^n$ ,

$$\mathsf{a} \mapsto \mathsf{0}, \mathsf{b} \mapsto \mathsf{1}, \mathsf{c} \mapsto \mathsf{00}, \mathsf{d} \mapsto \mathsf{01}, \mathsf{e} \mapsto \mathsf{10}, \mathsf{f} \mapsto \mathsf{11}, \ldots$$

## Definition

C is called **uniquely decodable** if every finite sequence of code characters corresponds to at most one message.

 ${\mathcal C}$  is called **instantaneous** if no codeword is a prefix of another codeword.

Instantaneous codes  $\subsetneqq$  Uniquely decodable codes. An example of an instantaneous code:

 $\mathsf{a}\mapsto \mathsf{1},\mathsf{b}\mapsto \mathsf{01},\mathsf{c}\mapsto \mathsf{001},\mathsf{d}\mapsto \mathsf{0001},\mathsf{e}\mapsto \mathsf{00001},\ldots$ 

An example of a uniquely decodable but not instantaneous code:

 $\mathsf{a}\mapsto 1,\mathsf{b}\mapsto 10,\mathsf{c}\mapsto 100,\mathsf{d}\mapsto 1000,\mathsf{e}\mapsto 10000,\ldots$ 

# Statistical ensembles

 $S = \{a, b, c, ..., z, space\}$  An element of S(C(S)) (i.e. a statistical ensemble): (.0651, .0124, ..., .0007, .1918)<sup>T</sup>  $\equiv$  ((a, .0651), (b, .0124,), ..., (z, .0007), (.1918, \_)) (freq. of English letters and space).

(obtained from http://www.data-compression.com/english.html)

#### Definition

Average codeword length of a code  $C = \sum_{i \in S} p_i length(C(i))$ .

For example, for the above statistical ensemble and for the instantaneous code

```
a\mapsto 1 , b\mapsto 01 , c\mapsto 001 , d\mapsto 0001 , ... ,
```

the average codeword length is equal to

 $1 \times .0651 + 2 \times .0124 + \dots + 26 \times .0007 + 27 \times .1918$ 

# Loseless and asymptotically losseless classical data compression

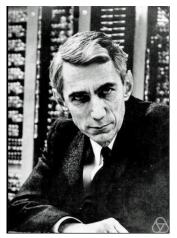


Figure 3: Claude Elwood Shannon (1916 – 2001)

George Androulakis (Univ. of South Carolina)

Entropy in communications

## Classical compression rates

### Question

Assume that an information source emits symbols from a set S in an i.i.d. way according to the statistical ensemble  $\mathcal{E} = (p_s)_{s \in S}$ . What is the minimum numbers of bits per symbol needed for an asymptotically losseless data compression?

**Reformulation:** What is the infimum of positive numbers R such that for every  $\delta > 0$  and for all n large enough there exist (**typical**) sets  $T_{R,\delta,n} \subseteq S^n$  with  $\frac{\log_2 |T_{R,\delta,n}|}{\log_2 |S|^n} < R$ , and there exist coding and decoding maps  $C_n$  and  $\mathcal{D}_n$  respectively as in the diagram

$$T_{R,\delta,n} \subseteq S^n \stackrel{\mathcal{C}_n}{\longrightarrow} S^n \stackrel{\mathcal{D}_n}{\longrightarrow} S^n$$

such that  $\mathcal{D}_n \circ \mathcal{C}_n(t) = t$  for all  $t \in \mathcal{T}_{R,\delta,n}$  ( $\Leftrightarrow \mathcal{C}_n ext{ is } 1-1$ ) and

$$\mathsf{Prob}\left(\mathsf{T}_{\mathsf{R},\delta,n}\right) = \sum_{s_1s_2\cdots s_n \in \mathsf{T}_{\mathsf{R},\delta,n}} p_{s_1}p_{s_2}\cdots p_{s_n} > 1-\delta.$$

# Shannon's noiseless coding Theorem (asymptotically loseless data compression)

Theorem (Shannon's noiseless coding Theorem (asymptotically loseless data compression))

Assume that an information source emits symbols from a set S according to the statistical ensemble  $\mathcal{E} = (p_s)_{s \in S}$  and let X be the r.v. with values in S and p.m.f. equal to  $\mathcal{E}$ . Then for every R > H(X) and for every  $\delta > 0$  there exist sets  $T_{R,\delta,n} \subseteq S^n$  for all n large enough, with  $\frac{\log_2 |T_{R,\delta,n}|}{\log_2 |S|^n} < R$  such that  $\operatorname{Prob}(T_{R,\delta,n}) \ge 1 - \delta$ . Moreover, for every R < H(X) and for every sequence of sets  $T_n \subseteq S^n$  with  $\frac{\log_2 |T_n|}{\log_2 |S|^n} < R$  we have that  $\operatorname{Prob}(T_n) \to 0$ .

$$T_{R,\delta,n} := \left\{ s_1 s_2 \cdots s_n \in S^n : \frac{1}{2^{nR}} < p_{s_1} p_{s_2} \cdots p_{s_n} < \frac{1}{2^{n(H(X)-\delta)}} \right\}$$

# Shannon's noiseless coding Thm, (loseless data compression)

### Question

What is the minimum average codeword length among all uniquelly decodable codes

$$\{1,\ldots,M\}\stackrel{\mathcal{C}}{\rightarrow}\{0,1\}^+:=\cup_{n=0}^{\infty}\{0,1\}^n.$$

Theorem (Shannon's noiseless coding Thm, (loseless data compression))

Let  $C : \{1, \ldots, M\} \to \{0, 1\}^+$  be a uniquely decodable code. Assume that the symbols  $1, \ldots, M$  are produced by i.i.d. copies of a r.v.  $X \sim (p_k)_{k=1}^M$ and assume that the length  $(C(k)) = n_k$  for all  $1 \le k \le M$ . Then Average codeword length  $= \sum_{k=1}^M p_k n_k \ge H(X)$ . Moreover, equality holds if and only if  $p_k = \frac{1}{2^{n_k}}$  for  $k = 1, \ldots, M$ .

# Optimal codes

An example:

X Probabilities

| $x_1$                 | 1/2 |
|-----------------------|-----|
| <i>x</i> <sub>2</sub> | 1/4 |
| <i>x</i> 3            | 1/8 |
| <i>X</i> 4            | 1/8 |
|                       |     |

Then

$$H(X) = -\frac{1}{2}\log_2 \frac{1}{2} - \frac{1}{4}\log_2 \frac{1}{4} - 2 \times \frac{1}{8}\log_2 \frac{1}{8} = \frac{7}{4}.$$

Consider the code C with  $C(x_1) = 0$ ,  $C(x_2) = 10$ ,  $C(x_3) = 110$  and  $C(x_4) = 111$ . Then

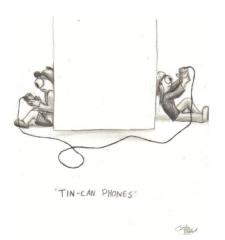
Average codeword length 
$$=\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 3 = \frac{7}{4}.$$

In general such optimal code may not exist, (if  $-\log_2 p_k \notin \mathbb{N}$  for some k), but always there exist a code (e.g. Huffman's or Shannon-Fano's code) s.t.

 $H(X) \leq$  Average codeword length  $\leq H(X) + 1$ .

George Androulakis (Univ. of South Carolina)

## The classical capacity of a c-c channel



#### Figure 4: By cartoonist Justin Dufford.

## The capacity of a noisy channel

#### Definition

Let  $\Phi : S(A) \to S(B)$  be a noisy channel. We define that the **classical** capacity  $C_c(\Phi)$  (resp. quantum capacity  $C_q(\Phi)$ ) of  $\Phi$  to be equal to the maximum asymptotic rate of (resp. cu)bits per repetition at which reliable classical (resp. quantum) communication is possible, i.e. the supremum of positive numbers R such that there exist two sequences  $(n_k)_k$  and  $(m_k)_k$ which tend to infinity such that  $\frac{m_k}{n_k} \ge R$ , and there exist sequences  $(C_{m_k,n_k})_k$  and  $(\mathcal{D}_{n_k,m_k})_k$ ) of coding and decoding functions in the communication scheme

$$\begin{split} \mathcal{S}(\mathcal{A}_{m_k}) & \stackrel{\mathcal{C}_{m_k,n_k}}{\longrightarrow} \mathcal{S}(\mathcal{A}^{\otimes n_k}) \stackrel{\Phi^{\otimes n_k}}{\longrightarrow} \mathcal{S}(\mathcal{B}^{\otimes n_k}) \stackrel{\mathcal{D}_{n_k,m_k}}{\longrightarrow} \mathcal{S}(\mathcal{A}_{m_k}) \\ \text{such that } \|\mathbf{1}_{\mathcal{S}(\mathcal{A}_{m_k})} - \mathcal{D}_{n_k,m_k} \circ \Phi^{\otimes n_k} \circ \mathcal{C}_{m_k,n_k}\| \to 0 \text{ as } k \to \infty, \text{ where } \\ \mathcal{A}_m &:= \mathcal{C}(\{0,1\}^m), \text{ (resp. } \mathcal{A}_m := \mathcal{B}((\mathbb{C}^2)^{\otimes m})). \end{split}$$

## Shannon's mutual information

Let X, Y be r.v. such that X takes the values  $x_1, x_2, \ldots$  and Y takes the values  $y_1, y_2, \ldots$ 

## Definition

The **Shannon's conditional entropy**  $H(X|Y = y_j) = -\sum_i p(x_i|y_j) \log_2 p(x_i|y_j)$  quantifies the uncertainty about the r.v. X conditionally that the r.v. Y takes the value  $y_j$ .

### Definition

The Shannon's conditional entropy  $H(X|Y) = \sum_{j} p(y_j)H(X|Y = y_j)$ the uncertainty about the r.v. X conditionally that the r.v. Y is known.

#### Definition

The Shannon's mutual information about X conveyed by Y is defined by I(X : Y) = H(X) - H(X|Y).

Easy Facts: 
$$H(X|Y) = H(X, Y) - H(Y)$$
 and  $I(X : Y) = I(Y : X)$ .

## Accessible information of a noisy c-c channel

Consider a c-c noisy channel  $\Phi$  and ignore the coding and decoding schemes:

$$\mathcal{S}(\mathcal{A}) \stackrel{\Phi}{\to} \mathcal{S}(\mathcal{B}).$$

Let  $\mathcal{E} = (x_i, p_i)_i$  be the statistical ensemble describing the input of the noisy channel  $\Phi$ , i.e. the p.m.f. of the r.v. X. Let X be the r.v. that produces the inputs  $x_1, x_2, \ldots$  of the channel and Y be the r.v. that describes the outputs  $y_1, y_2, \ldots$  of the channel.

 $\Phi = (p(y_j|x_i))_{i,j}$  (column stochastic matrix) where  $p(y_j|x_i)$  is the probability that the output of the channel is  $y_j$  when the input of the channel is  $x_i$  then Prob  $(Y = y_j) = \sum_i \operatorname{Prob} (X = x_i) p(y_j|x_i)$ .

#### Definition

The accessible information of the c-c channel  $\Phi$  is defined by  $Acc(\Phi) := \sup_{\mathcal{E}} I(X : Y)$ , (the maximum information about the input of the channel conveyed by the output of the channel).

George Androulakis (Univ. of South Carolina)

# Shannon's noisy channel coding Theorem

### Definition

A c-c channel  $\Phi : S(\mathcal{A}) \to S(\mathcal{B})$  is called **memoryless** if for every fixed  $n \in \mathbb{N}$ , if we apply the channel  $\Phi^{\otimes n}$  repeatedly, the value of  $\Phi^{\otimes n}$  at the (k+1)th application only depends on the value of  $\Phi^{\otimes n}$  on the kth application and not on the previous inputs/outputs.

### Theorem (Shannon's noisy channel Theorem)

Let  $\Phi : S(A) \to S(B)$  be a c-c memoryless channel with  $C(\Phi) > 0$ . Then  $C_c(\Phi) = Acc(\Phi)$ .

## Quantum data compression



## von Neumann entropy

## Definition

If  $\rho$  is a density operators (states) on a Hilbert space  $\mathcal{H}$ , then the **von Neumann entropy**  $H(\rho)$  is defined as follows:  $H(\rho) = -tr(\rho \log_2 \rho)$ .

#### Theorem

- Unitary invar.:  $H(\rho) = H(U\rho U^*) (\Rightarrow H(\rho) = H(\text{ eigenvalues of } \rho)).$
- Positivity:  $0 \leq H(\rho) (\leq \dim(\mathcal{H}))$ .
- Concavity:  $H(\sum_{k} p_{k}\rho_{k}) \geq \sum_{k} p_{k}H(\rho_{k})$  for any prob. distr.  $(p_{k})_{k}$  and sequence of states  $(\rho_{k})_{k} \subseteq S(\mathcal{B}(\mathcal{H}))$ .
- Additivity: If  $\rho_i \in S(\mathcal{H})_i$ ) then  $H(\rho_1 \otimes \rho_2) = H(\rho_1) + H(\rho_2)$ .
- Subadditivity: If  $\rho \in S(\mathcal{H}_1 \otimes \mathcal{H}_2)$  then  $H(\rho) \leq H(tr_{\mathcal{H}_1}(\rho)) + H(tr_{\mathcal{H}_2}(\rho)).$
- Lower semicontinuity:  $\|\rho_n \rho\|_1 \to 0 \Rightarrow H(\rho) \leq \liminf_n H(\rho_n)$ .
- Entropy increase:  $H(\rho) \leq H(\Phi(\rho))$ .

## Setting for quantum data compression

Let  $\mathcal{H}$  be a d dimensional Hilbert space. Let a symbol set S of normalized vectors of a Hilbert space  $\mathcal{H}$ . WLOG assume that Span  $S = \mathcal{H}$ . Each  $s \in S$  is identified with the pure state  $|s\rangle\langle s|$ .

A quantum source emits symbols from S in an i.i.d. way according to the quantum statistical ensemble  $(|s\rangle, p_s)_{s \in S}$ . Thus the probability that the symbol  $|s_1s_2...s_n\rangle$  (i.e. the pure state  $|s_1s_2...s_n\rangle\langle s_1s_2...s_n| = |s_1\rangle\langle s_1| \otimes |s_2\rangle\langle s_2| \otimes \cdots \otimes |s_n\rangle\langle s_n|$ ), is emitted is equal to  $p_{s_1}p_{s_2}...p_{s_n}$ .

Find the smallest number of cubits per symbol for asymtotically lossless data recovery i.e. the smallest R such that for arbitrary  $0 < \delta$ there exist arbitrarily large  $n \in \mathbb{N}$ , a subspace  $T_{R,\delta,n}$  of  $S^{\otimes n}$  with dimension at most  $2^{Rn}$ , and a unitary map  $U : \mathcal{H}^{\otimes n} \to \mathcal{H}^{\otimes n}$  which is identity when restricted to  $T_{R,\delta,n}$  such that the average fidelity of any element of  $T_{R,\delta,n}^{\perp}$ and its image via U is at most equal to  $\delta$ :  $T_{R,\delta,n} \subseteq S^{\otimes n} \subseteq \mathcal{H}^{\otimes n} \stackrel{U}{\to} \mathcal{H}^{\otimes n}$ .

## Schumacher's Theorem

## Theorem (Schumacher's coding Theorem, 1995)

Let  $\mathcal{H}$  be a d-dimensional Hilbert space and let S be a set of normalized vectors of  $\mathcal{H}$ . Assume that a quantum source emits elements of S in an *i.i.d.* way according to the statistical ensemble  $\mathcal{E} = (|s\rangle, p_s)_{s \in S}$ . Let  $\rho = \sum_{s \in S} p_s |s\rangle \langle s|$  be the quantum state corresponding to this statistical ensemble. Since dim  $(\mathcal{H}) = d$  we have that  $H(\rho) \leq d$ . Given any  $R > H(\rho)$  and  $\delta > 0$  there exist arbitrarily large  $n \in \mathbb{N}$ , a subspace  $T_{R,\delta,n}$  of  $S^{\otimes n}$  of dimension at most  $2^{Rn}$ , and a unitary operator  $U : \mathcal{H}^{\otimes n} \to \mathcal{H}^{\otimes n}$  which is identity when restricted to  $T_{R,\delta,n}$  and such that the average fidelity between the elements of  $T_{R,\delta,n}^{\perp}$  and their images via U is at most equal to  $\delta$ .

## Idea of the proof of Schumacher's Theorem

$$ho = \sum_{s \in S} {\it p}_{s} |s 
angle \langle s |$$
 (the average state).

Let  $\rho = \sum_{t \in T} t |t\rangle \langle t|$  be the spectral decomposition of  $\rho$ .

Thus

$$\rho^{\otimes n} = \sum_{t1,...,t_n \in \mathcal{T}} t_1 \cdots t_n |t_1 \cdots t_n\rangle \langle t_1 \cdots t_n| \quad \text{is the spectral decomp. of } \rho^{\otimes n}.$$

$$T := \left\{ |t_1 t_2 \cdots t_n\rangle : \frac{1}{2^{nR}} < t_1 t_2 \cdots t_n < \frac{1}{2^{n(H(X)-\delta)}} \right\} \text{ and } T_{R,\delta,n} := \operatorname{Span}(T)$$
  
Then 
$$\sum_{|t_1 t_2 \cdots t_n\rangle \in T_{R,\delta,n}^c} t_1 t_2 \cdots t_n F(|U(|t_1 t_2 \cdots t_n\rangle), |t_1 t_2 \cdots t_n\rangle) < \delta$$

where fidelity between  $\rho$  and  $|v\rangle$ , is  $F(u, v) := \operatorname{tr}(u|v\rangle\langle v|) = \langle v|u|v\rangle$ .

## Compute the accessible information of a quantum channel





Define and give an upper bound for the accessible classical information of a q-q channel

Consider the classical communication scheme

$$\mathcal{S}(\mathcal{C}(\mathcal{S})) \stackrel{\mathcal{C}}{\longrightarrow} \mathcal{S}(\mathcal{B}(\mathcal{H})) \stackrel{\Phi}{\longrightarrow} \mathcal{S}(\mathcal{B}(\mathcal{H})) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{S}(\mathcal{C}(\mathcal{S}'))$$

via a noisy q-q channel  $\Phi$ .

Alice transmits info according to a **classical statistical ensemble**  $\mathcal{E} = (p_s)_{s \in S}$ . Let X denote the r.v. with values in S and p.m.f. equal to  $(p_s)_{s \in S}$ .

Assume that Alice uses the **code**  $C(s) = \rho_s$  where  $(\rho_s)_{s \in S}$  is a set of quantum states on some Hilbert space  $\mathcal{H}$ .

For every state  $\Phi(\rho_s)$  that Bob receives, he performs a POVM  $M = (M_{s'})_{s' \in S'}, (M_{s'} \ge 0 \text{ for all } s' \in S' \text{ and } \sum_{s' \in S'} M_{s'} = 1)$  in order to obtain a p.m.f. (decoding)  $\mathcal{D}(\Phi(\rho_s)) = (\operatorname{tr}(M_{s'}\Phi(\rho_s)))_{s' \in S'}$ .

Give an upper bound on the accessible classical information that Bob

# Definition and upper bound for the accessible classical information of a q-q channel

Thus if Alice sends the symbol  $s \in S$  then Bob receives the symbol  $s' \in S'$  with transitional probability  $p(s'|s) = \operatorname{tr} (M_{s'} \Phi(\rho_s))$ . Hence Bob receives the symbol  $s' \in S'$  with probability  $q_{s'} := \sum_{s \in S} p(s'|s)p_s$ . Let Y be the r.v. with values in S' and p.m.f.  $(q_{s'})_{s' \in S'}$ .

#### Definition

Define the accessible classical information that Bob receives to be  $Acc(\mathcal{C}, \Phi) = \sup_M I(X : Y).$ 

If  $(\Phi(\rho_s))_{s\in S}$  have pairwise orthogonal supports, then Bob can identify with certainty the states  $\Phi(\rho_s)$  by choosing S' = S and  $M_s$  to be the orthogonal projection to the support of  $\Phi(\rho_s)$  for every  $s \in S$ . Hence  $p(s'|s) = \operatorname{tr} (M_{s'}\Phi(\rho_s)) = \delta_{s,s'} \Rightarrow I(X : Y) = H(X) - H(X|Y) = H(X)$ . On the other hand, if  $(\Phi(\rho_s))_{s\in S}$  do not have pairwise orthogonal supports then no measurement will identify them perfectly, so H(X|Y) > 0 and  $\operatorname{Acc} (\mathcal{C}, \Phi) < H(X)$ .

George Androulakis (Univ. of South Carolina)

## Compute the classical capacity of a quantum channel



Figure 5: Detail from the cover page of "Introduction to quantum computation and information", Lo, Popescu, Spiller (Editors), World Scientific 1998.

# The Holevo Theorem

## Question

*Give an upper (tight!) bound on the classical capacity of a quantum channel.* 

## Theorem (Holevo, 1973)

Consider the classical communication scheme

$$\mathcal{S}(C(\{0,1\}^{\otimes m})) \xrightarrow{\mathcal{C}_{m,n}} \mathcal{S}(\mathcal{B}(\mathcal{H})^{\otimes n}) \xrightarrow{\Phi^{\otimes n}} \mathcal{S}(\mathcal{B}(\mathcal{H})^{\otimes n}) \xrightarrow{\mathcal{D}_{m,n}} \mathcal{S}(C(\{0,1\}^{\otimes m}))$$

using repeated transmitions via a memoryless noisy q-q channel  $\Phi : S(\mathcal{B}(\mathcal{H})) \to S(\mathcal{B}(\mathcal{H}))$ . Then  $C_c(\Phi) \leq \lim_{n \to \infty} \frac{1}{n} \chi(\Phi^{\otimes n})$ .

#### • The definition of $\chi$ is in the next page.

- Is this inequality saturated?
- Are there easily computable upper bounds?

# Holevo's $\chi$

#### Definition

If  $\Psi : \mathcal{S}(\mathcal{B}(\mathcal{H})) \to \mathcal{S}(\mathcal{B}(\mathcal{H}))$  is a q-q channel, then we define Holevo's  $\chi$  as

$$\chi(\Psi) := \sup \left\{ H\left(\sum_{x} \rho_{x} \Psi(\rho_{x})\right) - \sum_{x} \rho_{x} H(\Psi(\rho_{x})) \right\}$$

where the sup is taken w.r.t. all prob. distr.  $(p_x)_x$  and all collections  $(\rho_x)_x$  of density operators on  $\mathcal{H}$ .

- By the concavity of von Neumann entropy,  $\chi(\Psi) \ge 0$ .
- $\chi$  plays the role of the mutual information for q-q channels.
- A better understanding for why χ is a "natural" upper bound for the capacity for the q-q channel can be understood via the quantum mutual information which is presented next.

# Quantum relative entropy

## Definition

Given two states  $\rho, \sigma \in S(\mathcal{B}(\mathcal{H}))$  the **Umegaki relative entropy** is defined by  $D(\rho||\sigma) = \begin{cases} tr(\rho(\log_2 \rho - \log_2 \sigma)) & \text{if } supp(\rho) \subseteq supp(\sigma) \\ \infty & \text{otherwise} \end{cases}$ 

#### Theorem

- Positivity:  $D(\rho || \sigma) \ge 0$  and if  $D(\rho || \sigma) = 0$  then  $\rho = \sigma$ .
- Joint convexity:  $D(\lambda \rho_1 + (1 - \lambda)\rho_2 || \lambda \sigma_1 + (1 - \lambda)\sigma_2) \le \lambda D(\rho_1 || \sigma_1) + (1 - \lambda)D(\rho_2 || \sigma_2).$
- Additivity:  $D(\rho_1 \otimes \sigma_1 || \rho_2 \otimes \sigma_2) = D(\rho_1 || \rho_2) + D(\rho_2 || \sigma_2).$
- Unitary invariance:  $D(U\rho U^*||U\sigma U^*) = D(\rho||\sigma)$ .
- Monotonicity:  $D(\Phi(\rho_1)||\Phi(\rho_2)) \leq D(\rho_1||\rho_2).$
- Lower semicontinuity:  $\|\rho_n \rho_1\|_1 \to 0$  and  $\|\sigma_n \sigma\|_1 \to 0$  imply  $D(\rho||\sigma) \leq \liminf_n D(\rho_n||\sigma_n)$ .

# Quantum mutual information

## Definition (Ohya 1983)

Given a q-q channel  $\Phi : S(\mathcal{B}(\mathcal{H})) \to S(\mathcal{B}(\mathcal{H}))$  and a state  $\rho \in S(\mathcal{B}(\mathcal{H}))$ the quantum mutual information  $I(\rho, \Phi)$  is defined by the following expression:

$$\sup\left\{D\left(\sum_{k}\mu_{k}E_{k}\otimes\Phi(E_{k})\right\|\rho\otimes\Phi(\rho)\right):\rho=\sum_{k}\mu_{k}E_{k}\text{ spectral decomp.}\right\}$$

 $I(\rho, \Phi)$  indicates how much quantum information about the specific input  $\rho$  of the q-q channel  $\Phi$  is conveyed about its output. Thus  $\sup_{\rho} I(\rho, \Phi)$  represents how much quantum information about the input of the channel  $\Phi$  is conveyed by its output.

Theorem (Ohya, Watanabe, 2010)  $\chi(\Phi) = \sup_{\rho} I(\rho, \Phi).$ 

George Androulakis (Univ. of South Carolina)



#### Thank you for your attention!

George Androulakis (Univ. of South Carolina)