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Special block codes, (adaptive encoding)

The question:

Consider a general quantum source that emits at discrete time steps
pure quantum states which are chosen from a finite alphabet according to
some probability distribution which may depend on the whole history.
Also, fix two positive integers m and l . We encode any tensor product of
ml many states emitted by the quantum source by breaking the tensor
product into m many blocks where each block has length l , and
considering sequences of m many isometries so that each isometry encodes
one of these blocks into the Fock space, followed by the concatenation of
their images. We first consider adaptive encoding via sequences of
isometries that we call special block codes in order to ensure that the
string of encoded states is uniquely decodable. What is the minimum
possible average indeterminate length?
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Special block codes, (adaptive encoding)

Concatenations in the Fock space

Definition (The Fock space)

(C2)⊕ = ⊕∞
n=0(C2)⊗n.
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Special block codes, (adaptive encoding)

Concatenations in the Fock space

Remark

Concatenation of arbitrary pure quantum states does not always preserve
the norm, and hence may not be well defined! However, the norm is
preserved if either or both of the pure quantum states being concatenated
are length states. Warning if both pure quantum states being
concatenated are indeterminate-length states, e.g.∥∥∥∥ 1√

2
(|0⟩+ |00⟩) ◦ 1√

2
(|0⟩ − |00⟩)

∥∥∥∥ =

∥∥∥∥12 (|00⟩ − |0000⟩)
∥∥∥∥ ̸= 1.

[Müller, Rogers, 2008].
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Special block codes, (adaptive encoding)

Uniquely decodable block quantum codes

Definition (Quantum code)

A quantum code on K is a linear isometry U : K → (C2)⊕, i.e.

U =
D∑
i=1

|ψi ⟩⟨ei | ,

where (|ψi ⟩)Di=1 is any o.n. sequence and (|ei ⟩)Di=1 is an o.n. basis of K.

Definition (Concatenation of quantum codes)

(U1◦· · ·◦Um) |s1 ⊗ . . .⊗ sm⟩ := U1 |s1⟩◦· · ·◦Um |sm⟩ , |s1s2 . . . sm⟩ ∈ K⊗m.

Definition (Uniquely decodable block quantum codes)

Let Ui : K → (C2)⊕ be quantum codes for i = 1, . . . ,m. (Ui )
m
i=1 is called

uniquely decodable ⇔ U1 ◦ · · · ◦ Um : K⊗m → (C2)⊕ is an isometry.
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Special block codes, (adaptive encoding)

Special block codes

Theorem

Let U j =
∑D

i=1

∣∣∣ψj
i

〉〈
e ji

∣∣∣ : K → (C 2)⊕ q. codes, for j = 1, . . . ,m. TFAE:

(U j)mj=1 is uniquely decodable.{ ∣∣ψ1
i1
◦ · · · ◦ ψm

im

〉
: (i1, . . . , im) ∈ {1, . . . ,D}m

}
is an o.n. set.

Definition (Jointly o.n. sequence)

(|ψi ⟩)Di=1 ⊆ (C2)⊕ is called jointly orthonormal if and only if for every
m ∈ N, {|ψi1 ◦ · · · ◦ ψim⟩ : (i1, . . . , im) ∈ {1, . . . ,D}m} is an o.n. set.

Definition (Special block codes, (adaptive encoding))

U =
{
Un1,...,n(k−1)l : 1 ≤ k ≤ m, n1, . . . , n(k−1)l ∈ {1, . . . ,N}

}
,

Un1,...,n(k−1)l =
d l∑
i=1

∣∣∣ψi

〉〈
e
n1,...,n(k−1)l

i

∣∣∣ , (|ψi ⟩)d
l

i=1 jointly o.n.
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Special block codes, (adaptive encoding)

Indeterminate length

Definition (Indeterminate length)

Λ =
∞∑
ℓ=0

ℓΠℓ : (C2)⊕ → (C2)⊕ length observable

Πℓ : (C2)⊕ → (C2)⊗ℓ orthogonal projection

Tr (ρΛ) = indeterminate length of the state ρ.
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Special block codes, (adaptive encoding)

Quantum source

Definition (Quantum source and the history probabilities)

S =
{
{|sn⟩}Nn=1 (alphabet), X = (Xn)

∞
n=1

}
. d := dimSpan {|sn⟩}Nn=1.

The history probabilities: p(n1, . . . , nq) = P(X1 = n1, . . . ,Xq = nq).
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Special block codes, (adaptive encoding)

Average codeword length of special block codes

Definition (Average codeword length of special block codes)

U =
{
Un1,...,n(k−1)l : 1 ≤ k ≤ m, n1, . . . , n(k−1)l ∈ {1, . . . ,N}

}
,

L(U) =
N∑

n1,...,nml=1

p(n1, . . . , nml)Tr

(
∣∣∣U(sn1 · · · snl ) ◦ U

n1,...,nl (snl+1
· · · sn2l ) ◦ · · · ◦ U

n1,...,n(m−1)l (sn(m−1)l+1
· · · snml

)
〉

〈
U(sn1 · · · snl ) ◦ U

n1,...,nnl (snl+1
· · · sn2l ) ◦ · · · ◦ U

n1,...,n(m−1)l (sn(m−1)l+1
· · · snml

)
∣∣∣

Λ

)

ILS(S,m, l) = infimum of the set containing L(U) for every special
block code U which encodes m blocks each of size l .

George Androulakis (Univ. of South Carolina)Optimal lower bound of the average indeterminate length lossless quantum block encodingJuly 11, 2024 10 / 26



Special block codes, (adaptive encoding)

Conditional ensemble states

Definition (kth block conditional ensemble state)

ρn1,...,n(k−1)l

=
N∑

n(k−1)l+1,...,nkl=1

p(n1, . . . , nkl)

p(n1, . . . , n(k−1)l)

∣∣∣sn(k−1)l+1
· · · snkl

〉〈
sn(k−1)l+1

· · · snkl
∣∣∣

=
N∑

n(k−1)l+1,...,nkl=1

p(n(k−1)l+1, . . . , nkl |n1, . . . , n(k−1)l)∣∣∣sn(k−1)l+1
· · · snkl

〉〈
sn(k−1)l+1

· · · snkl
∣∣∣ .
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Special block codes, (adaptive encoding)

A picture for the kth block conditional ensemble state
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Special block codes, (adaptive encoding)

The infimum length over all adaptive encodings

Theorem (How to compute ILS(S,m, l))

ρn1,...,n(k−1)l =
d l∑
i=1

λ
n1,...,n(k−1)l

i

∣∣∣λn1,...,n(k−1)l

i

〉〈
λ
n1,...,n(k−1)l

i

∣∣∣ (sp. dec.,↘).

L =

(ℓ1, . . . , ℓd l ) : ℓi ∈ N ∪ {0}, ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓd l , and
d l∑
i=1

2−ℓi ≤ 1

 .

FS((ℓi )
d l

i=1) :=
m∑
j=2

 N∑
n1,...,n(j−1)l=1

p(n1, . . . , n(j−1)l)
d l∑
i=1

λ
n1,...,n(j−1)l

i ℓi


+

d l∑
i=1

λiℓi , for every (ℓi )
d l

i=1 ∈ L.

Then, ILS(S,m, l) = min{FS((ℓi )
d l

i=1) : (ℓi )
d l

i=1 ∈ L}.
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Special block codes, (adaptive encoding)

The optimal adaptive encoding

Theorem (The optimal adaptive encoding V)
Assume that FS achieves its minimum on L at the point (ℓi )

d l

i=1 ∈ L.

Apply the Kraft-McMillan inequality to (ℓi )
d l

i=1 to obtain uniquely

decodable (ωi )
d l

i=1.

Then, the corresponding qubit strings (|ωi ⟩)d
l

i=1 ∈ (C2)⊕ form a jointly
orthonormal sequence.
For k ∈ {1, . . . ,m}, and n1, . . . , n(k−1)l ∈ {1, . . . ,N}, define
V n1,...,n(k−1)l : H⊗l → (C2)⊕, by

V n1,...,n(k−1)l =
d l∑
i=1

∣∣∣ωi

〉〈
λ
n1,...,n(k−1)l

i

∣∣∣ .
V =

{
V n1,...,n(k−1)l : k ∈ {1, . . . ,m}, and n1, . . . , n(k−1)l ∈ {1, . . . ,N}

}
,

min{FS((ℓi )
d l

i=1) : (ℓi )
d l

i=1 ∈ L} = L(V).
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Constrained special block codes, (non-adaptive encoding)

Constrained special block codes, (non-adaptive encoding)

Definition (Special block codes (adaptive encoding))

U =
{
Un1,...,n(k−1)l : 1 ≤ k ≤ m, n1, . . . , n(k−1)l ∈ {1, . . . ,N}

}
,

Un1,...,n(k−1)l =
d l∑
i=1

∣∣∣ψi

〉〈
e
n1,...,n(k−1)l

i

∣∣∣ , (|ψi ⟩)d
l

i=1 jointly o.n.

Definition (Constrained special block codes, (non-adaptive encoding))

U =
{
Un1,...,n(k−1)l : 1 ≤ k ≤ m, n1, . . . , n(k−1)l ∈ {1, . . . ,N}

}
,

Un1,...,n(k−1)l = Uk =
d l∑
i=1

∣∣∣ψi

〉〈
eki

∣∣∣ , (|ψi ⟩)d
l

i=1 jointly o.n.
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Constrained special block codes, (non-adaptive encoding)

The question:

Consider a general quantum source that emits at discrete time steps
pure quantum states which are chosen from a finite alphabet according to
some probability distribution which may depend on the whole history.
Also, fix two positive integers m and l . We encode any tensor product of
ml many states emitted by the quantum stochastic source by breaking
the tensor product into m many blocks where each block has length l ,
and considering sequences of m many isometries so that each isometry
encodes one of these blocks into the Fock space, followed by the
concatenation of their images. We now consider non-adaptive encoding
via sequences of isometries that we call constrained special block codes
in order to ensure that the string of encoded states is uniquely decodable.
What is the minimum possible average indeterminate length?
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Constrained special block codes, (non-adaptive encoding)

Codeword length of constrained special block codes

Definition (Codeword length of constrained special block codes)

U =
{
Uk : 1 ≤ k ≤ m

}
,

L(U) =
N∑

n1,...,nml=1

p(n1, . . . , nml)Tr

(
∣∣∣U1(sn1 · · · snl ) ◦ U2(snl+1

· · · sn2l ) ◦ · · · ◦ Um(sn(m−1)l+1
· · · snml

)
〉

〈
U1(sn1 · · · snl ) ◦ U2(snl+1

· · · sn2l ) ◦ · · · ◦ Um(sn(m−1)l+1
· · · snml

)
∣∣∣

Λ

)

ILC(S,m, l) = infimum of the set containing L(U) for every constraint
special block code U which encodes m blocks each of size l .
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Constrained special block codes, (non-adaptive encoding)

kth block ensemble state

Definition (kth block conditional ensemble state)

ρn1,...,n(k−1)l

=
N∑

n(k−1)l+1,...,nkl=1

p(n1, . . . , nkl)

p(n1, . . . , n(k−1)l)

∣∣∣sn(k−1)l+1
· · · snkl

〉〈
sn(k−1)l+1

· · · snkl
∣∣∣

=
N∑

n(k−1)l+1,...,nkl=1

p(n(k−1)l+1, . . . , nkl |n1, . . . , n(k−1)l)∣∣∣sn(k−1)l+1
· · · snkl

〉〈
sn(k−1)l+1

· · · snkl
∣∣∣ .

Definition (kth block ensemble state)

ρk =
N∑

n1,...,n(k−1)l=1

p(n1, . . . , n(k−1)l)ρ
n1,...,n(k−1)l
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Constrained special block codes, (non-adaptive encoding)

A picture for the kth block ensemble state
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Constrained special block codes, (non-adaptive encoding)

The infimum length over all non-adaptive encodings

Theorem (How to compute ILC (S,m, l))

ρk =
d l∑
i=1

λki

∣∣∣λki 〉〈λki ∣∣∣ (sp. dec.,↘).

L =

(ℓ1, . . . , ℓd l ) : ℓi ∈ N ∪ {0}, ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓd l , and
d l∑
i=1

2−ℓi ≤ 1

 .

FC ((ℓi )
d l

i=1) :=
m∑

k=1

d l∑
i=1

λki ℓi for every (ℓi )
d l

i=1 ∈ L.

Then, ILC (S,m, l) = min{FC ((ℓi )
d l

i=1) : (ℓi )
d l

i=1 ∈ L}.
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Constrained special block codes, (non-adaptive encoding)

The optimal non-adaptive encoding

Theorem (The optimal non-adaptive encoding V)
Assume that FC achieves its minimum on L at the point (ℓi )

d l

i=1 ∈ L.

Apply the Kraft-McMillan inequality to (ℓi )
d l

i=1 to obtain uniquely

decodable (ωi )
d l

i=1.

Then, the corresponding qubit strings (|ωi ⟩)d
l

i=1 ∈ (C2)⊕ form a jointly
orthonormal sequence.
For k ∈ {1, . . . ,m}, define V k : H⊗l → (C2)⊕, by

V k =
d l∑
i=1

∣∣∣ωi

〉〈
λki

∣∣∣ .
V =

{
V k : k ∈ {1, . . . ,m}

}
.

Then,
min{FC ((ℓi )

d l

i=1) : (ℓi )
d l

i=1 ∈ L} = L(V).
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Constrained special block codes, (non-adaptive encoding)

An application for stationary quantum source

Definition

Stationary quantum sources A quantum source S is stationary (or
translation-invariant) if the associated stochastic process X is invariant
with respect to the translation map, i.e.

P(X1 = n1, . . . ,Xq = nq) = P(Xk+1 = n1, . . . ,Xk+q = nq) (1)

for every k ∈ N, q ∈ N and (n1, . . . , nq) ∈ {1, . . . ,N}q.

Remark

If S is a stationary quantum source, with a finite alphabet (|si ⟩)Ni=1 and
history probabilities p, then for every m, l ∈ N, the kth block conditional
ensemble state ρk is equal to the average state after l emissions

ρl :=
N∑

n1,...,nl=1

p(n1, . . . , nl) |sn1 · · · snl ⟩⟨sn1 · · · snl | ,

for every k = 1, . . . ,m.
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Constrained special block codes, (non-adaptive encoding)

The infimum length over all non-adaptive encodings for
stationary source

Theorem (How to compute ILC (S,m, l) for a stationary source)

ρk = ρl =
d l∑
i=1

λi |λi ⟩⟨λi | (sp. dec.,↘).

L =

(ℓ1, . . . , ℓd l ) : ℓi ∈ N ∪ {0}, ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓd l , and
d l∑
i=1

2−ℓi ≤ 1

 .

FC ((ℓi )
d l

i=1) = m
d l∑
i=1

λiℓi for every (ℓi )
d l

i=1 ∈ L.

Then, ILC (S,m, l) = min{FC ((ℓi )
d l

i=1) : (ℓi )
d l

i=1 ∈ L}.
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Constrained special block codes, (non-adaptive encoding)

The optimal non-adaptive encoding for stationary source

Theorem (The optimal non-adaptive encoding for stationary source)

Assume that FC achieves its minimum on L at the point (ℓi )
d l

i=1 ∈ L.

Apply the Kraft-McMillan inequality to (ℓi )
d l

i=1 to obtain uniquely

decodable (ωi )
d l

i=1.

Then, the corresponding qubit strings (|ωi ⟩)d
l

i=1 ∈ (C2)⊕ form a jointly
orthonormal sequence.
For k ∈ {1, . . . ,m} define V k = V := H⊗l → (C2)⊕, by

V =
d l∑
i=1

|ωi ⟩⟨λi | . “Q. Huffman code” [Braunstein, Fuchs, Gottesman, Lo]

V =
{
V k : k ∈ {1, . . . ,m}

}
.

Then,
min{FC ((ℓi )

d l

i=1) : (ℓi )
d l

i=1 ∈ L} = L(V).
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Constrained special block codes, (non-adaptive encoding)

An application for stationary quantum source

We recover the following result of [Bellomo, Bosyk, Holik, Zozor, (2017)]:

Corollary (Average asymptotic codeword length for stationary source)

Consider a stationary quantum source S with alphabet {|sn⟩}Nn=1 and
history probabilities p. For l ∈ N consider the average state after l
emissions:

ρl :=
N∑

n1,...,nl=1

p(n1, . . . , nl) |sn1 · · · snl ⟩⟨sn1 · · · snl | .

Then,

lim
l→∞

ILC (S, 1, l)
l

= lim
l→∞

S(ρl)
l

.
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Constrained special block codes, (non-adaptive encoding)

Thank you!
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