1: (20 points) Let $f(x), g(x)$, and $h(x)$ be functions. Suppose that

$$
\lim _{x \rightarrow 5} f(x)=-1, \quad \lim _{x \rightarrow 5} g(x)=3, \quad \lim _{x \rightarrow 5} h(x)=11
$$

Compute the following limits.
(a) $\lim _{x \rightarrow 5} \sqrt{\frac{[f(x)]^{2}}{g(x) h(x)}}$
(b) $\lim _{x \rightarrow 5}\left[\frac{1}{f(x)}+\frac{f(x)}{g(x)-h(x)}\right]$

2: (20 points) Let $f(x)=\sqrt{x^{2}-1}$. Answer the following questions.
(a) Compute the inverse of $f(x)$. Check your answer using function composition.
(b) Compute the domain and range of $f(x)$ and $f^{-1}(x)$.

3: (20 points) Find the equation of the tangent line of $f(x)=x^{2}-x+1$ when $x=3$.

4: (10 points) Compute the following limit.

$$
\lim _{x \rightarrow-1} \frac{x^{2}+3 x+2}{x^{2}-x-2}
$$

5: (10 points) Compute the following limit.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{27 x^{2}-4}{3 x^{2}+x-1}}
$$

6: (20 points) Use the plot below to compute the following.

(a) Find $\lim _{x \rightarrow-1^{+}} f(x)$.
(b) Find $\lim _{x \rightarrow-1^{-}} f(x)$.
(c) Find $f(-1)$.
(d) Does $\lim _{x \rightarrow-1} f(x)$ exist? If so, what is the limit? If not, explain why.

